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to PTI (Tsuda et al., 2009; Mine et al., 2017), we assessed whether a sid2/ics1 mutant, 448 

a myc2 myc3 myc4 (myc234) triple mutant, or a combined myc234 sid2 quadruple 449 

mutant show altered PTI-related electrolyte leakage. We found that the electrolyte 450 

leakage triggered by the Pf0-1 tester strain at 24 h was reduced in the myc234 sid2 451 

mutant compared to Col. Taken together, our data show that TPR1 dampens ICS1- 452 

and MYC2,3,4-dependent immune responses after their activation by bacteria. 453 

 454 

  455 

Fig. 4 Arabidopsis TPR1 counteracts electrolyte leakage triggered by the T3SS-equipped Pf0-1 
bacteria and promoted by ICS1 and MYC TFs. (a) Representative photos of rosettes of 5-6-week-old 
plants from three independent T3 homozygous complementation lines expressing pTPR1:TPR1-GFP in 
tpr1 tpl tpr4 (t3). TPR1 Col is shown for comparison. The complementation lines do not show dwarfism in 
contrast to TPR1 Col with the constitutive defense signaling. (b) Steady-state levels of TPR1-GFP in lines 
from (a), determined via Western blot analysis. Total protein extracts were probed with α-GFP antibodies. 
Ponceau S staining was used to control loading. The experiment was repeated two times with similar 
results. (c) Electrolyte leakage in the complementation lines from (a) and control lines Col and t3 at 24 h 
after the Pf0-1 T3SS (OD600=0.2) infiltration. The complementation lines L1-L3 show a level of the 
electrolyte leakage comparable to Col (Tukey’s HSD α=0.001; different colors of data points correspond 
to independent experiments, n=12-24 from three or six independent experiments). (d) Electrolyte leakage 
in leaf discs of indicated genotypes after the Pf0-1 T3SS infiltration (Tukey’s HSD α=0.001; different colors 
of data points correspond to independent experiments, n=16 from four independent experiments). The 
high order mutant myc2 myc3 myc4 sid2 (myc234 sid2) shows lower conductivity than Col. 
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TPL/TPRs reduce physiological damage associated with prolonged immunity 456 

Because Arabidopsis TPR1 and TPL/TPRs appear to globally limit the expression of 457 

induced defense-related genes (Fig. 3e, S6a,b, S7a,b) without compromising bacterial 458 

resistance (Fig. 3a,b), we speculated that these transcriptional corepressors reduce 459 

adverse effects of bacteria-activated defenses on plant growth and physiology. We 460 

tested whether TPL/TPRs help to maintain photosynthetic efficiency in infected plants 461 

by quantifying photosystem II (PSII) fluorescence. While alterations of the operating 462 

PSII efficiency (ϕPSII) are measurable during short-term stress, a drop in the maximum 463 

quantum yield of PSII (Fv/Fm) reflects more acute damage to PSII, and is observed 464 

under prolonged stress conditions (Baker, 2008). The tpr1 and t3 mutants were 465 

infiltrated alongside Col with a low dose of Pst bacteria (OD600=0.005). A reduction in 466 

ϕPSII and Fv/Fm values was minimal in infected Col leaves over the course of 3 d, 467 

indicating that these plants effectively balance bacterial growth restriction and PSII 468 

performance (Figure 5A, purple line). By contrast, tpr1 and more obviously t3 mutant 469 

lines, showed a decrease in ϕPSII and Fv/Fm over 3 d relative to Col (Fig. 5a; orange 470 

line – tpr1, blue line – t3), despite having similar total chlorophyll as Col at 3 d after 471 

infection (Fig. S8a). We concluded that a likely role of TPL/TPRs is to reduce collateral 472 

damage of activated host defenses and thus maintain crucial photosynthetic functions. 473 

  474 
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 475 

  476 

Fig. 5 Role of TPL/TPRs in limiting adverse effects of activated immune system on Arabidopsis 
physiology and growth. (a) Maximum quantum yield of PSII (Fv/Fm) (upper panels) and operating PSII 
efficiency (φPSII) (lower panels) in indicated genotypes over the three-day time course after syringe 
infiltration of Pst (OD600=0.005; left panels). Compared to Col, the t3 mutant shows significantly reduced 
Fv/Fm at 3 days after infection with Pst but not in the mock-treated samples (Tukey’s HSD α=0.05; n=9-12 
from three independent experiments). (b) Boxplot representation of root growth inhibition caused by pep1 
(200 nM) in 10-day-old seedlings of indicated genotypes grown on 0.5x liquid MS medium (Tukey’s HSD 
α=0.05; n=58 from three independent experiments). (c) Representative photos of seedlings from (b). The 
t3 is overly sensitive to pep1 at the level of root growth, and this phenotype is complemented in three 
independent complementation lines pTPR1:TPR1-GFP (in t3 background). Scale bar = 1 cm (d) MPK3 
and MPK6 phosphorylation assessed via Western blot analysis with α-p42/44 antibodies in indicated 
genotypes at 15 and 180 min after mock (mQ water) or pep1 (200 nM) treatment. The t3 mutant showed 
Col level of MPK3 and MPK6 phosphorylation. (b-d) eds1-12 was used as eds1. The experiment was 
repeated three times with similar results. (e) Fresh weight reduction in leaves inoculated with Pst 
(OD600=0.005) compared to mock-treated leaves in indicated genotypes 3 days after infiltration (Tukey’s 
HSD α=0.05; n=20-24 from four independent experiments). (f) Model of the function of TPR1 and other 
TPL/TPRs in immune-triggered Arabidopsis leaves. TPL/TPRs are not essential for limiting bacterial 
growth but help the plant to maintain PSII activity and growth after the activation of immune responses. 
The picture was created with BioRender.com. 
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Our model of TPL/TPRs limiting adverse effects of activated immunity on plant 477 

physiology predicts that the t3 mutant would be overly sensitive to an exposure to 478 

bacterial PAMP such as flg22 or the phytocytokine pep1 at the level of root growth. 479 

While primary root growth inhibition (RGI) was similar in Col, tpr1 and t3 mutants in the 480 

presence of flg22 (Fig. S8b,c), RGI on the pep1-supplemented medium was more 481 

pronounced in the t3 mutant (Fig. 5b,c). Hyper-sensitivity of t3 seedlings to pep1 was 482 

rescued in the TPR1-GFP complementation lines (Fig. 5b,c). Perception of pep1 was 483 

not altered in t3 because pep1-induced mitogen-activated protein kinase 3 and 6 484 

(MPK3 and MPK6) phosphorylation was similar to Col (Fig. 5d). Hence, TPR1 and 485 

other TPL/TPRs reduce negative effects of activated immunity on root growth in 486 

phytocytokine-stimulated sterile seedlings. Finally, we tested whether Arabidopsis 487 

TPL/TPRs limit a host growth penalty in response to bacterial infection. We infiltrated 488 

leaves of 5-6-week-old Col, tpr1, t3 and TPR1 complementation lines (in the t3 489 

background) with 10 mM MgCl2 (mock) or virulent Pst bacteria (OD600=0.005) and 490 

measured fresh weight of extracted leaf discs at 3 dpi. Whereas Pst-infected Col leaves 491 

lost ~20% fresh weight, t3 mutant leaves lost ~30%, which was recovered to Col levels 492 

in the TPR1-GFP complementation lines (Fig. 5e). Taken together, the data suggest 493 

that Arabidopsis TPR1 and other TPL/TPRs limit physiological and growth penalties 494 

associated with induced immunity to bacteria. 495 

 496 

Discussion 497 

Timely activation and control of immune responses is essential for plant resilience to 498 

pathogens. How activated defenses are restricted to prevent damaging over-reaction 499 

of tissues is less clear. Here we present evidence that the TPL family of transcriptional 500 

corepressors contribute to limiting physiological damage and growth inhibition 501 
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associated with host induced immunity, and therefore might be important components 502 

for maintaining plant vital functions and productivity under pathogen stress. 503 

We present ChIP-seq chromatin binding profiles for Arabidopsis TPR1 with or without 504 

constitutive EDS1-dependent defense. TPR1-GFP associated with immediate 505 

upstream regions of ~1,400 genes and ~10% of these genes showed enhanced TPR1-506 

GFP binding when EDS1-dependent immunity signaling was active (Fig. 2). Our data 507 

suggest that TPR1 and other TPL/TPRs limit the expression of defense-promoted 508 

genes after their initial activation during bacterial infection (Fig. 3). We further discover 509 

a role of TPL/TPRs in reducing the damage to photosystem II and weight loss in 510 

bacteria-infected leaves or seedling growth inhibition elicited by the pep1 511 

phytocytokine (Fig. 5). Hence, we propose that Arabidopsis TPR1 and other TPL/TPRs 512 

transcriptional corepressors mitigate adverse effects of activated immunity signaling 513 

on host physiology and growth (Fig. 5f). 514 

TPR1-GFP associated primarily with genic regions immediately upstream of the 515 

transcription start site (TSS). This ChIP pattern is consistent with a role of TPL/TPRs 516 

in physical interaction with DNA-binding TFs (Szemenyei et al., 2008; Causier et al., 517 

2012) and with the location of predicted TF binding sites being predominantly close to 518 

the TSS (Yu et al., 2016). The TPR1-bound genes we detected are strongly enriched 519 

for ChIP signals of MYC2 (Van Moerkercke et al., 2019; Wang et al., 2019; Zander et 520 

al., 2020), WRKYs (Birkenbihl et al., 2018), and SARD1 (Sun et al., 2015) TFs (Fig. 521 

2f). Whether TPR1 forms complexes with MYC, WRKY and SARD1 TFs in planta 522 

during pathogen infection remains unclear. 523 

In addition to immunity-related functions, TPR1-GFP bound genes are enriched for GO 524 

terms associated with control of growth and development (Tables S6, S7). More 525 

specifically, the TPR1 eds1 ChIP-seq profile might be informative for studies of 526 

TPL/TPR-chromatin interactions in growth and development (Fig. S4; (Goralogia et al., 527 
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2017; Gorham et al., 2018; Lee et al., 2020; Plant et al., 2021)) since autoimmunity 528 

effects are lost in this line (Fig. 1). We provide processed input-normalized TPR1-GFP 529 

enrichment profiles for both TPR1 Col and TPR1 eds1 at nucleotide resolution and 530 

scripts to prepare metaplots for the genes of interest in R environment (see Methods 531 

S1 and Data availability section). 532 

TPR1 was proposed to promote defense by repressing negative regulators of 533 

resistance (Zhu et al., 2010). Consistent with this view, TPR1 is enriched at promoters 534 

of genes that are repressed during TNLRRS1-RPS4 ETI (Bartsch et al., 2006; Zhu et al., 535 

2010) and can repress DND1/CNGC2 and DND2/CNGC4 promoter activity (Niu et al., 536 

2019). This idea is further supported by the observations that MYC2, which interacts 537 

with and is repressed by TPL complexes (Pauwels et al., 2010), antagonizes EDS1-538 

dependent bacterial resistance (Cui et al., 2018; Bhandari et al., 2019). Based on our 539 

data, we present here a more refined picture of TPR1 functions. In the extended model, 540 

TPR1 binds genes induced early during a bacterial infection and prevents their 541 

prolonged over-expression (Fig. 5f). In support of this, ~ 10% of TPR1 binding was 542 

contingent on EDS1-mediated immunity (Fig. 2). These targets included ICS1 (Fig. S2) 543 

which is important for resistance to a range of biotrophic and hemi-biotrophic 544 

pathogens (Ding & Ding, 2020). Second, the t3 mutant showed elevated expression of 545 

gene sets co-targeted by TPR1-GFP and MYC2, SARD1, and WRKY TFs (Fig. 3e) at 546 

24 h after infection with Pst avrRps4. Third, ICS1/MYCs-dependent PTI-elicited 547 

electrolyte leakage was enhanced in t3 mutants (Fig. 3g) but recovered in 548 

complementation TPR1-GFP lines (Fig. 4). The enhanced defense responses of t3 549 

resemble hypersensitivity of tpl to MeJA at the level of root growth (Pauwels et al., 550 

2010). 551 

Several studies have suggested a positive role of TPR1 in the regulation of TNL and 552 

basal immunity signaling (Zhu et al., 2010; Zhang et al., 2019; Harvey et al., 2020; 553 
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Navarrete et al., 2021). Indeed, we observed mildly delayed expression of genes from 554 

immunity-linked GO terms in tpr1 and t3 within minutes of Pst avrRps4 infiltration (Fig. 555 

4A). This might be attributed to the reduced PAMP flg22-triggered ROS burst in tpl and 556 

t3 mutants (Navarrete et al., 2021). Although immediate early responses contributing 557 

to PTI involve CAMTA TFs (Jacob et al., 2018; Bjornson et al., 2021), no enrichment 558 

of CAMTA-bound DNA motifs was found under TPR1 peaks in our ChIP-seq 559 

experiments (Fig. S5). We also detected marginally increased susceptibility of the t3 560 

mutant to Pst Δcor bacteria impaired in the ability to manipulate host MYC2/JA 561 

signaling (Fig. 3d). The removal of different sectors of immunity signaling in the t3 562 

mutant might facilitate analysis of the TPR1 positive role in NLR and basal resistance. 563 

Timely downregulation of defense signaling is relevant because prolonged pathogen 564 

infection and plant immune activation often lead to reduced photosynthetic activity and 565 

biomass accumulation regardless of the plant’s ability to cope with the stress of 566 

infections and disease (Walters, 2015a; Walters, 2015b). Accordingly, pathogen-free 567 

induction of SA and JA signaling is associated with reduced expression of genes 568 

involved in photosynthesis (Hickman et al., 2017; Hickman et al., 2019). Despite 569 

identification of multiple genes impacting the balance between plant growth and 570 

defense (Huot et al., 2014; Bruessow et al., 2021), knowledge of how infected plants 571 

turn off transcriptional defenses and regain physiological homeostasis is fragmentary. 572 

Cytoplasmic condensates of the SA receptor NPR1 were reported to be responsible 573 

for the ubiquitination of ETI cell death-promoting WRKY TFs to limit their activities 574 

(Zavaliev et al., 2020). Also, an SA receptor, NPR4, suppresses Arabidopsis WRKY70 575 

promoter activity (Ding et al., 2018). We find that the tpr1 and t3 mutants are defective 576 

in maintaining optimal photosystem II function, even though resistance to Pst bacteria 577 

was largely intact in these mutants (Fig. 3b, 5a). Similarly, loss of fresh weight in Pst-578 
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infected t3 was more extreme than in Col or the TPR1 complementation lines (Fig. 5e), 579 

and t3 seedlings treated with the phytocytokine pep1-triggered RGI was stronger in t3 580 

than Col plants (Fig. 5b,c). Hence, our study identifies the Arabidopsis transcriptional 581 

corepressor TPR1 as a factor that prevents overshooting of an immune response and 582 

therefore potentially as a contributor to plant stress-fitness balance. 583 
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