$\mathcal{N}=(0,4)$ Black String Chains

Christopher Couzens ${ }^{\text {a }}$, Yolanda Lozano ${ }^{\text {b,c }}$, Nicolò Petri ${ }^{\text {b,c }}$ and Stefan Vandoren ${ }^{\text {a }}$
${ }^{\text {a }}$ Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CE Utrecht, The Netherlands
${ }^{\mathrm{b}}$ Department of Physics, University of Oviedo, Avda. Federico Garcia Lorca s/n, 33007 Oviedo, Spain
${ }^{\text {c }}$ Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Calle de la Independencia 13, 33004 Oviedo, Spain

Abstract

We construct black string solutions in Type IIA supergravity arising from intersecting D2-D4-D6-NS5 branes in the presence of fractional D4-branes. The fractional D4-branes arise from D6-branes wrapping (collapsing) two-cycles in a Calabi-Yau two-fold. In the near horizon limit these solutions give rise to AdS_{3} geometries preserving $\mathcal{N}=(0,4)$ supersymmetry and fall within the recent classification of [1]. We interpret a sub-class of our solutions as describing chains of black strings stacked on top of each other along an interval. We construct 2d quiver CFTs dual to our solutions that reproduce the Bekenstein-Hawking entropy microscopically.

Contents

1 Introduction 1
2 Black strings in massless Type IIA 3
2.1 Black string solution 4
2.2 Near-horizon solution 6
3 Black string chains 7
3.1 Large gauge transformations, NS5 branes and Page fluxes 7
3.2 Global analysis 12
4 Field theory 19
4.1 Cancellation of gauge anomalies 20
4.2 Central charge 20
5 Conclusions and future directions 22
A Multiplets from strings 23
B Massive quivers 27

1 Introduction

One of the fundamental problems in theoretical physics is to understand the microscopic origin of the Bekenstein-Hawking entropy. For extremal black holes, which admit an AdS near-horizon limit, AdS/CFT plays an important role. The first success in this direction was in [2] where five dimensional black holes preserving 16 supersymmetries were studied. These black holes originate from the D1-D5 system in Type IIB compactifications, and occur as black string solutions of 6 d supergravity, whose infrared dynamics are described by $2 \mathrm{~d} \mathcal{N}=(4,4)$ CFTs. Later, black holes preserving 8 supersymmetries were constructed in M-theory compactifications on non-singular compact Calabi-Yau threefolds $\left(\mathrm{CY}_{3}\right)$ [3-6]. Microscopically, they are described by M5 branes wrapped on $\mathbb{R} \times S^{1}$ times a 4-cycle inside the CY_{3}, giving rise to strings wrapping $\mathbb{R} \times S^{1}$, whose infrared dynamics are described by 2 d $\mathcal{N}=(0,4)$ CFTs. More general bound states of strings with infrared dynamics described by $2 \mathrm{~d} \mathcal{N}=(0,4)$ CFTs, some of which are of quiver type, have been obtained more recently from M- and F-theory constructions, see e.g. [4, 7-14].

In M-theory the interacting strings arise as self-dual strings on the tensor branch of M5-branes probing A- or D-type singularities, or "end of the space" M9-branes. The six dimensional theory living on the M5-branes admits a deformation away from the conformal fixed point where the M5-branes are separated in the extra transverse direction. In this deformation the interacting strings arise as the boundaries of M2-branes stretched between parallel M5-branes. These M2-M5 brane intersections are Hanany-Witten brane set-ups, that support 2 d quiver gauge theories. In the IR these give rise to $2 \mathrm{~d} \mathcal{N}=(0,4) \mathrm{CFTs}$ living on self-dual strings in the world-volume of the M5-branes. Given the M-theory origin of these interacting strings they are commonly referred to as M-strings [15]. For M5-branes probing A-type singularities, the case most related to our work in this paper, they support quiver gauge theories with unitary gauge groups. More general quivers involving symplectic, orthogonal and exceptional gauge groups can be obtained from the M-strings associated to M5-branes probing D-type singularities or end of the space M9-branes [8]. Given the quiver gauge theories, quantities such as the elliptic genus have been computed using localisation [7, 8, 15-17].

In [1] AdS_{3} solutions of massive Type IIA preserving $\mathcal{N}=(0,4)$ supersymmetry were classified. ${ }^{1}$ These solutions include black string near horizons dual to $\mathcal{N}=(0,4)$ quiver CFTs [39]. Moreover, they arise within controlled string theory set-ups with known holographic duals, where the AdS/CFT dictionary can be used. The $\mathcal{N}=(0,4)$ quiver gauge theories constructed in [39] contain two families of unitary gauge groups, $\prod_{i=1}^{n} \mathrm{U}\left(k_{i}\right) \times \mathrm{U}\left(\tilde{k}_{i}\right)$. The gauge group $\mathrm{U}\left(k_{i}\right)$ is associated to $k_{i} \mathrm{D} 2$-branes while the gauge group $\mathrm{U}\left(\tilde{k}_{i}\right)$ is associated to \tilde{k}_{i} D6-branes, wrapped on a compact CY_{2}. Both D2 and D6 branes are stretched between NS5branes, in generalised Hanany-Witten brane set-ups containing two types of colour branes. In addition, D4 and D8 perpendicular branes provide flavour groups to both types of gauge groups, rendering the field theory anomaly-free.

Besides extending the known explicit AdS_{3} solutions, we give a black string interpretation for these solutions. The black string lives in the asymptotically flat ${ }^{2}$ background geometry $\mathbb{R}^{1,1} \times \mathbb{R}^{3} \times \mathrm{CY}_{2} \times I$, with I an interval which foliates the space. ${ }^{3}$ The black strings arise from a D2-D4-D6-D8-NS5 brane intersection and have near-horizon geometry $\mathrm{AdS}_{3} \times S^{2} \times \mathrm{CY}_{2} \times I$. ${ }^{4}$ Our goal in this paper will be to find the black string solutions that lead to the near-horizon

[^0]geometries constructed in [1], computing their entropy as well as other observables. We will restrict to the massless case and leave the massive extension for future work.

We begin in section 2 with the construction of black strings in massless Type IIA arising from intersecting D2-D4-D6-NS5 branes. A key addition, with respect to the brane set-ups discussed in [1, 39], will be the inclusion of fractional D4-branes, arising from D6-branes wrapping collapsing two-cycles in the Calabi-Yau. These branes are linked to a closed two form field H_{2} living on the Calabi-Yau, present in the solutions of [1]. However this twoform was set to zero in the global and field theory analysis performed in [39]. In section 3 we proceed with the global analysis of these solutions, emphasising the new features that arise due to the presence of the H_{2} form. We quantise the fluxes, identify the source branes of the geometry and compute the holographic central charge. In section 4 we turn to the field theory interpretation of these solutions. We construct $\mathcal{N}=(0,4)$ quiver gauge theories that extend the constructions in [39] to include fractional D4-branes. Thus, these quiver CFTs extend further the constructions in [8], once again within well controlled string theory settings with known holographic duals. Our constructions rely on the concrete stringy origin of the multiplets that live and connect the different branes underlying the solutions. We show that they correct the quivers constructed in [39], not only to include fractional branes but also to modify the fields associated to certain branes. In particular, we show that in our modified quivers there is no need to appeal to a scaling argument, as used in [39] for example, to match to the holographic calculation. We conclude in section 5 presenting a number of future directions. Appendix A contains a detailed account of the stringy origin of the quivers constructed in section 4. In Appendix B D8-branes are added to this analysis and new quivers in massive Type IIA are constructed that correct those in [39].

2 Black strings in massless Type IIA

In this section we will construct black strings in massless Type IIA arising from intersecting D2-, D4-, D6- and NS5 branes in the presence of fractional D4-branes. The branes are embedded in a $\mathbb{R}^{1,1} \times \mathbb{R}^{3} \times I \times \mathrm{CY}_{2}$ asymptotic geometry and intersected as in table 1 . The fractional D4-branes arise from D6-branes wrapping (collapsing) two-cycles in the CalabiYau. In the following we will consider the fractional branes wrapping a single two-cycle
replaced by \mathbb{R}^{4}. This was key to finding an interpretation of these solutions as defects within 5 d SCFTs (see also [53]). In order to find a defect interpretation, a non-compact coordinate must become part of the higher dimensional AdS background, AdS_{6} in this case, in which the defects are embedded. However, the non-compactness of the Calabi-Yau leads to an infinite value of the central charge, obscuring their black string interpretation.

Brane	$\mathbb{R}^{1,1}$		\mathbb{R}^{3}			I	CY_{2}			
							C		\bar{C}	
D2	\times	\times	-	-	-	\times	-	-	-	-
D4	\times	\times	\times	\times	\times	-	-	-	-	-
D6	\times	\times	-	-	-	\times	\times	\times	\times	\times
D6'	\times	\times	\times	\times	\times	-	\times	\times	-	-
NS5	\times	\times	-	-	-	-	\times	\times	\times	\times
NS5	\times	\times	-	\times	\times	-	\times	\times	-	-

Table 1: The brane configuration we will consider. I denotes a line interval of length $2 \pi(P+1)$ whilst in the present setup the Calabi-Yau two-fold must be compact and is therefore either T^{4} or $K 3$. C and \bar{C} are dual divisors on the Calabi-Yau two-fold, with the curve C wrapped by the fractional branes.
in the Calabi-Yau two-fold, however the generalisation to multiple curves is also possible. We will see that even in the single two-cycle case the analysis is broken up into distinct classes labelled by a positive integer. We begin this section with a general analysis of the brane solution in massless Type IIA supergravity, showing that it is determined by a single differential constraint. We then proceed in taking the near-horizon limit, without specifying an explicit solution to the differential condition, and obtain an AdS_{3} solution contained in the classification of [1]. In section 3 we proceed in analysing the near-horizon geometry for a given solution of the differential constraint, quantising the fluxes, identifying the source branes of the geometry and computing the central charge.

2.1 Black string solution

We begin this section by considering a black string arising from intersecting D2-, D4-, D6- and NS5-branes in the presence of fractional D4-branes. This solution is a generalisation of the solution in [49] to include fractional D4-branes. In particular, the result is an amalgamation of the background in [49] with the technique for including fractional branes used in [68]. The metric in string frame, following from the brane configuration given in table 1 and obtained by using the usual supposition rules for intersecting branes, is

$$
\begin{align*}
\mathrm{d} s^{2} & =\frac{1}{\sqrt{H_{D 2} h_{4} H_{D 6} h_{8}}} \mathrm{~d} s^{2}\left(\mathbb{R}^{1,1}\right)+\frac{\sqrt{H_{D 2} H_{D 6}} H_{N S 5}}{\sqrt{h_{4} h_{8}}} \mathrm{~d} s^{2}\left(\mathbb{R}^{3}\right) \\
& +\frac{\sqrt{h_{4} h_{8}} H_{N S 5}}{\sqrt{H_{D 2} H_{D 6}}} \mathrm{~d} z^{2}+\frac{\sqrt{H_{D 2} h_{4}}}{\sqrt{H_{D 6} h_{8}}} \mathrm{~d} s^{2}\left(\mathrm{CY}_{2}\right) . \tag{2.1}
\end{align*}
$$

Here the functions H_{\bullet} are harmonic functions on \mathbb{R}^{3}, whilst the function h_{4} depends on both the line interval parametrised by the coordinate z and the Calabi-Yau. In massless Type IIA h_{8} is a constant while in the massive theory it is promoted to a linear function on the interval, with the leading order piece proportional to the Romans mass. The Bianchi identities for F_{2} and F_{4} imply that the functions $H \bullet$ must be equated:

$$
\begin{equation*}
H_{D 2}=H_{D 6}=H_{N S 5}=1+\frac{Q}{r} \equiv H(r), \tag{2.2}
\end{equation*}
$$

with r the radial distance on \mathbb{R}^{3}. The metric is supported by the RR fluxes

$$
\begin{align*}
& F_{2}=h_{8} r^{2} H^{\prime}(r) \operatorname{dvol}\left(S^{2}\right)+H_{2} \tag{2.3}\\
& F_{4}=-h_{8} H^{\prime}(r) \operatorname{dvol}\left(\mathbb{R}^{1,1}\right) \wedge \mathrm{d} r \wedge \mathrm{~d} z-\partial_{z} h_{4} \operatorname{dvol}\left(C Y_{2}\right)-h_{8}\left(\star_{4} \mathrm{~d}_{4} h_{4}\right) \wedge \mathrm{d} z
\end{align*}
$$

and by a non-trivial dilaton and NS-NS three-form

$$
\begin{align*}
\mathrm{e}^{-\phi} & =h_{8}^{5 / 4} h_{4}^{1 / 4} \\
\mathrm{~d} B & =r^{2} H^{\prime}(r) \mathrm{d} z \wedge \operatorname{dvol}\left(S^{2}\right)-h_{8}^{-2} \mathrm{~d} z \wedge H_{2} \tag{2.4}
\end{align*}
$$

The equations of motion are satisfied provided the function h_{4} satisfies the differential equation ${ }^{5}$

$$
\begin{equation*}
\partial_{z}^{2} h_{4}+h_{8} \nabla_{C Y_{2}}^{2} h_{4}+\frac{1}{h_{8}}\left|H_{2}\right|^{2}=0 \tag{2.5}
\end{equation*}
$$

and the two-form H_{2} is both closed and anti-self-dual living exclusively on the Calabi-Yau two-fold with support along the divisor C. The presence of this two-form accounts for the inclusion of the fractional D4 branes. Observe that the condition on h_{4} is of the form Laplacian plus source term arising from the norm of a form, this is indicative of fractional branes. It is trivial, using the readers favourite computer program, that this satisfies the equations of motion of massless Type IIA and is supersymmetric.

After equating the H_{\bullet} functions it follows that the metric takes the form

$$
\begin{equation*}
\mathrm{d} s^{2}=\frac{1}{\sqrt{h_{4} h_{8}}}\left(\frac{1}{H(r)} \mathrm{d} s^{2}\left(\mathbb{R}^{1,1}\right)+H(r)^{2} \mathrm{~d} s^{2}\left(\mathbb{R}^{3}\right)\right)+\frac{\sqrt{h_{4}}}{\sqrt{h_{8}}}\left(h_{8} \mathrm{~d} z^{2}+\mathrm{d} s^{2}\left(\mathrm{CY}_{2}\right)\right) . \tag{2.6}
\end{equation*}
$$

The first bracketed part of the metric is that of an extremal five-dimensional black string which has a centre at the poles of the harmonic function $H(r)$. The black string arises from the intersection of the D2- D6- and NS5-branes and not from the D4 branes per se. Instead, the presence of the D4-branes warps the size of the black string through the function

[^1]h_{4}. Indeed, later we will see that when we take h_{4} to depend only on the interval we have multiple stacks of D2- and D6-branes stretched between NS5 branes. At the intersection of all three of these types of branes we find a black string. This gives rise to a chain of black strings stacked on top of each other along the interval. It is important to emphasise that this is not a multi-centered black string in \mathbb{R}^{3} in the usual sense, since such an object has a harmonic function, H, which has multiple poles in the radial coordinate. This is not the case here since we take H to have a single pole at $r=0$. We will come back to this point later having constructed the Hanany-Witten brane setup which will make this point manifest. Before proceeding, note that there was nothing special about taking the function h_{4} to depend only on the interval. In fact more general solutions with Calabi-Yau dependence are possible and are the subject of future work.

2.2 Near-horizon solution

Having studied the full solution let us flow to the near-horizon. The near-horizon limit is taken by sending the radial coordinate to zero. After a few trivial rescalings of the coordinates the resulting NS-NS sector of the near-horizon solution is

$$
\begin{align*}
\mathrm{d} s^{2} & =\frac{1}{\sqrt{h_{4} h_{8}}}\left(\mathrm{~d} s^{2}\left(\mathrm{AdS}_{3}\right)+\frac{1}{4} \mathrm{~d} s^{2}\left(S^{2}\right)\right)+\sqrt{\frac{h_{4}}{h_{8}}} \mathrm{~d} s^{2}\left(\mathrm{CY}_{2}\right)+\sqrt{h_{4} h_{8}} \mathrm{~d} z^{2}, \tag{2.7}\\
\mathrm{e}^{-\Phi} & =h_{4}^{1 / 4} h_{8}^{5 / 4}, \quad B=-\frac{z}{2} \operatorname{dvol}\left(S^{2}\right)-\frac{z}{h_{8}} H_{2} . \tag{2.8}
\end{align*}
$$

This is supported by the RR fluxes,

$$
\begin{align*}
& F_{2}=-\frac{h_{8}}{2} \operatorname{dvol}\left(S^{2}\right)+H_{2} \tag{2.9}\\
& F_{4}=2 h_{8} \mathrm{~d} z \wedge \operatorname{dvol}\left(\mathrm{AdS}_{3}\right)-h_{8} \star_{4} \mathrm{~d} h_{4} \wedge \mathrm{~d} z-\partial_{z} h_{4} \operatorname{dvol}\left(\mathrm{CY}_{2}\right) . \tag{2.10}
\end{align*}
$$

This geometry falls within the classification of $\mathcal{N}=(0,4) \mathrm{AdS}_{3}$ solutions in (massive) Type IIA performed in $[1]^{6}$.

A fully explicit solution is provided once a solution to (2.5) is given. In general this is a non-trivial PDE one must solve. A simplifying assumption one may make, is that the function h_{4} is independent of the Calabi-Yau coordinates. In turn this requires that the norm of the two-form H_{2} to be constant. It is solutions of this form that we study in this paper and in particular the following section. A more general solution with Calabi-Yau dependence is the subject of future work.

[^2]
3 Black string chains

In this section we will study an explicit class fo solutions. We use an ansatz where the function h_{4} is only a function of the interval and does not depend on the Calabi-Yau coordinates. As explained above, solving equation (2.5) implies that the norm of the two-form H_{2} on the Calabi-Yau must be constant. We therefore take

$$
\begin{equation*}
H_{2}=\gamma \omega, \tag{3.1}
\end{equation*}
$$

with ω a closed, anti-self-dual two-form on the Calabi-Yau two-fold satisfying

$$
\begin{equation*}
|\omega|^{2}=1, \quad \int_{C} \omega=2 \pi \tag{3.2}
\end{equation*}
$$

with ω Poincaré dual to the divisor C and γ taken without loss of generality to be a positive constant. ${ }^{7}$ Note that the choice of this two-form uniquely determines the volume of the Calabi-Yau two-fold to be (the slightly uncanonical) $-(2 \pi)^{2}$. One could extend this to include additional divisors, however we will content ourselves with a single divisor in the following. With these assumptions the defining equation reduces to

$$
\begin{equation*}
\partial_{z}^{2} h_{4}+\frac{\gamma^{2}}{h_{8}}=0 . \tag{3.3}
\end{equation*}
$$

This is now a simple linear ordinary differential equation and has general local solution

$$
\begin{equation*}
h_{4}=\alpha+\beta z-\frac{\gamma^{2}}{2 h_{8}} z^{2} \tag{3.4}
\end{equation*}
$$

with α and β constants. Our goal is to extend this local solution to a global one. This imposes a few constraints on the form of h_{4}. Firstly, in order for the metric to be well defined h_{4} must be strictly positive, except at the ends of the interval, and moreover it must be continuous. However before we proceed with extending h_{4} to a global function we must study the Kalb-Ramond two-form B in more detail.

3.1 Large gauge transformations, NS5 branes and Page fluxes

For the solution to admit a well-defined partition function in string theory, and not be merely a supergravity solution, the B field must be properly quantised. The condition arises from

[^3]for any closed two-form α on the Calabi-Yau two-fold.
a generalisation of the Aharonov-Bohm effect for a two-dimensional gauge potential. Recall that the Kalb-Ramond two-form couples minimally to a string with world-sheet Σ, via
\[

$$
\begin{equation*}
\frac{1}{\left(2 \pi \ell_{\mathrm{s}}\right)^{2}} \int_{\Sigma} B \tag{3.5}
\end{equation*}
$$

\]

Now a large gauge transformation of the B-field by an integral two-form does not change the stringy Aharonov-Bohm phase, since it simply adds 2π to the phase. Similarly, increasing the flux through Σ by multiples of $8 \pi^{3} \ell_{s}{ }^{2}$ shifts the stringy Aharonov-Bohm phase by 2π and is thus the same effect as a large gauge transformation. We are therefore left to conclude that the physically distinct fluxes are those for which (3.5) lies in the interval $[0,1]$. As soon as this condition is violated, we should perform a large gauge transformation by an integral cohomology class. ${ }^{8}$ The importance of correctly identifying the large gauge transformation is two-fold. Firstly as we will see it requires the interval to be split into segments, which, upon crossing, NS5 branes are produced, generating a Hanany-Witten like effect. Secondly, the conserved charges in our setup are not Maxwell charges but Page charges which explicitly depend on the choice of gauge for B. A non-trivial large gauge transformation contributes to the Page charges. Here we will perform this analysis explicitly for our local solution above.

First, let us identify the possible large gauge transformations. Using the representative of the B-field given in (2.8) the necessary large gauge transformations are

$$
\begin{equation*}
B \rightarrow B+\delta B, \quad \delta B=n \pi \operatorname{dvol}\left(S^{2}\right)+2 \pi M \omega . \tag{3.6}
\end{equation*}
$$

Consider first the two-cycle given by the two-sphere: we have ${ }^{9}$

$$
\begin{equation*}
-\frac{1}{2(2 \pi)^{2}} \int_{S^{2}}(2 n \pi-z) \operatorname{dvol}\left(S^{2}\right) \in[0,1] \tag{3.7}
\end{equation*}
$$

The quantisation condition we must impose is

$$
\begin{equation*}
n-\frac{z}{2 \pi} \in[0,1], \tag{3.8}
\end{equation*}
$$

which implies that we must partition the interval into segments of length 2π. Let the interval have $P+1$ segments of length 2π. As we go from one segment to the next (for increasing $z)$ we must perform a large gauge transformation $\delta B=\pi \operatorname{dvol}\left(S^{2}\right)$. By a coordinate shift we may take the interval to begin at $z=0$ and consequently the line interval is broken up into the segments

$$
\begin{equation*}
2 \pi k \leq z \leq 2 \pi(k+1) \tag{3.9}
\end{equation*}
$$

[^4]for integer k. In the $[k, k+1]$ segment the total large gauge transformation we must perform to the representative in equation (2.8) is
\[

$$
\begin{equation*}
\delta_{[k]} B=k \pi \operatorname{dvol}\left(S^{2}\right) \tag{3.10}
\end{equation*}
$$

\]

Consider now the non-trivial two-cycle C inside the Calabi-Yau two-fold. We have

$$
\begin{equation*}
-\frac{1}{(2 \pi)^{2}} \int_{C} B=-\left(M-\frac{\gamma}{h_{8}} \frac{z}{2 \pi}\right) \in[0,1] . \tag{3.11}
\end{equation*}
$$

In the interval $[k, k+1]$ we must impose

$$
\begin{equation*}
\frac{\gamma}{h_{8}} k-M \in[0,1] \quad \text { and } \quad \frac{\gamma}{h_{8}}(k+1)-M \in[0,1] . \tag{3.12}
\end{equation*}
$$

For both to be true it follows that a necessary requirement is $\gamma h_{8}^{-1} \in(0,1] .{ }^{10}$ We will see shortly that the ratio must be integer and therefore we must take

$$
\begin{equation*}
\gamma=h_{8} . \tag{3.13}
\end{equation*}
$$

This however is not the most general way to solve this, an alternative solution is to further partition the line interval, which allows for the solution

$$
\begin{equation*}
\gamma=p h_{8} \tag{3.14}
\end{equation*}
$$

with p a positive integer. The line interval is then divided up into segments of length $2 \pi p^{-1}$

$$
\begin{equation*}
2 \pi\left(k+\frac{l}{p}\right) \leq z \leq 2 \pi\left(k+\frac{l+1}{p}\right), \quad l \in \mathbb{Z} \tag{3.15}
\end{equation*}
$$

with a large gauge transformation proportional to ω with parameter

$$
\begin{equation*}
M=k+\frac{l}{p}, \tag{3.16}
\end{equation*}
$$

performed in the $[k, l]$ interval above.
To write the large gauge transformations more concisely it is useful to define some additional notation. Let $\Theta(z-a)$ denote the Heaviside step function defined via

$$
\Theta(z-a)=\left\{\begin{array}{ll}
0 & z<a \tag{3.17}\\
1 & z \geq a
\end{array},\right.
$$

[^5]and let, for $a<b, \hat{\Theta}$ be given by
\[

\hat{\Theta}[a, b]=\Theta(z-2 \pi a)-\Theta(z-2 \pi b)=\left\{$$
\begin{array}{ll}
1 & 2 \pi a \leq z \leq 2 \pi b \tag{3.18}\\
0 & \text { otherwise }
\end{array}
$$.\right.
\]

Then, for $\gamma=h_{8}$, the total large gauge transformation is

$$
\begin{equation*}
\delta B=\sum_{k=1}^{P} \hat{\Theta}[k, k+1] k\left(\pi \operatorname{dvol}\left(S^{2}\right)+2 \pi \omega\right) . \tag{3.19}
\end{equation*}
$$

Before proceeding with the computation of the Page fluxes let us give the quantisation of the Kalb-Ramond field strength. The field strength is quantised as

$$
\begin{equation*}
\frac{1}{4 \pi^{2}} \int_{\Sigma_{3}} H \in \mathbb{Z} \tag{3.20}
\end{equation*}
$$

There are two three-cycles over which we must quantise the flux, both take the form of the product of the interval with one of either the two-sphere or the two-cycle C in the Calabi-Yau Poincaré dual to ω. Though the Calabi-Yau admits other two-cycles, the field strength has no support on these cycles and so we may safely ignore them.

For the three-cycle containing the two-sphere, we find

$$
\begin{equation*}
\frac{1}{4 \pi^{2}} \int_{I \times S^{2}} H=P+1 \equiv Q_{\mathrm{NS} 5} \tag{3.21}
\end{equation*}
$$

If we further restrict to each of the segments of length 2π we see that there is a single NS5 brane in a given segment of the interval. This makes clear the need for the large gauge transformations needed between segments: an NS5 brane is localised on the boundaries of these segments generating a Hanany-Witten like effect. Note that this is independent of the choice of p, and the further partitioning of the line interval. The large gauge transformation should only be performed when crossing an integer multiple of 2π.

Now consider the other three-cycle, we find

$$
\begin{equation*}
Q_{\mathrm{NS}^{\prime}} \equiv \frac{1}{4 \pi^{2}} \int_{I \times C} H=\frac{p}{2 \pi} \int_{0}^{2 \pi(P+1)} \mathrm{d} z=p Q_{\mathrm{NS} 5} \tag{3.22}
\end{equation*}
$$

As in the previous case we can look at the number of these NS5' branes in each segment of the interval. It is not difficult to see that in each segment of smallest length (i.e. with segment length $2 \pi p^{-1}$) there is precisely 1 NS5' brane. This then accounts for the factor of p in relating the total number of NS5 branes to the NS5' branes in (3.22).

The full analysis of the solution for the $p=1$ case and the $p>1$ case are qualitatively different and we shall only consider the simpler $p=1$ case in this paper.

Page fluxes

We may now turn our attention to evaluating the Page fluxes of the solution, using the fluxes given in (2.9) and (2.10). Page fluxes are defined as

$$
\begin{equation*}
\hat{f} \equiv F \wedge \mathrm{e}^{-B}, \tag{3.23}
\end{equation*}
$$

with F denoting the polyform of the magnetic parts of the RR-fluxes. Though we require the function h_{4} to be continuous, so that both the metric and dilaton are well defined, it need not be smooth and may have discontinuities in the first derivative (and higher). Mathematically what we require is that the function is of differentiability class $C^{0} .{ }^{11}$ We may write the function as the union of a set of smooth continuous functions which have domain each of the segments, subject to a matching condition between segments ensuring that the function is continuous. We take

$$
\begin{equation*}
h_{4}(z)=\sum_{k} h_{4}^{[k]}(z) \hat{\Theta}[k, k+1], \tag{3.24}
\end{equation*}
$$

with $h_{4}^{[k]}$ a smooth continuous function in the interval $2 \pi k<z<2 \pi(k+1)$. The continuity of the function implies the matching condition

$$
\begin{equation*}
h_{4}^{[k]}(2 \pi k)=h_{4}^{[k-1]}(2 \pi k), \tag{3.25}
\end{equation*}
$$

for each segment. Explicit computation of the magnetic part of the Page fluxes gives

$$
\begin{align*}
& \hat{f}_{2}=\gamma \omega-\frac{h_{8}}{2} \operatorname{dvol}\left(S^{2}\right), \\
& \hat{f}_{4}=-\sum_{k=0}^{P}\left(\gamma(z-2 \pi k)+h_{4}^{[k]^{\prime}}\right) \hat{\Theta}[k, k+1] \operatorname{dvol}\left(\mathrm{CY}_{2}\right), \tag{3.26}\\
& \hat{f}_{6}=\sum_{k=0}^{P} \frac{1}{2}\left(h_{4}^{[k]}-(z-2 \pi k) h_{4}^{[k]^{\prime}}-\frac{\gamma}{2}(z-2 \pi k)^{2}\right) \hat{\Theta}[k, k+1] \operatorname{dvol}\left(S^{2}\right) \wedge \operatorname{dvol}\left(\mathrm{CY}_{2}\right) .
\end{align*}
$$

With these expressions we may compute the Bianchi identities for these Page fluxes, taking care with the step functions. After using the defining equation for h_{4}, namely equation (3.3), we find

$$
\begin{aligned}
& \mathrm{d} \hat{f}_{2}=0 \\
& \mathrm{~d} \hat{f}_{4}=\left(-h_{4}^{[0]^{\prime}}(0) \delta(z)+\sum_{k=1}^{P}\left(2 \pi \gamma+h_{4}^{[k-1]^{\prime}}(2 \pi k)-h_{4}^{[k]^{\prime}}(2 \pi k)\right) \delta(z-2 \pi k)\right.
\end{aligned}
$$

[^6]\[

$$
\begin{align*}
& \left.+\left(2 \pi \gamma+h_{4}^{[P]^{\prime}}(2 \pi(P+1))\right) \delta(z-2 \pi(P+1))\right) \mathrm{d} z \wedge \operatorname{dvol}\left(\mathrm{CY}_{2}\right) \tag{3.27}\\
\mathrm{d} \hat{f}_{6} & =\sum_{k=1}^{P+1} \pi\left(h_{4}^{[k-1]^{\prime}}(2 \pi k)+\pi \gamma\right) \delta(z-2 \pi k) \mathrm{d} z \wedge \operatorname{dvol}\left(S^{2}\right) \wedge \operatorname{dvol}(\mathrm{CY}) .
\end{align*}
$$
\]

We have simplified the result using the matching conditions and that the function h_{4} should vanish at the end-points of the line segment. This is a slightly subtle point and we will come back to why this condition is necessary, and also meaningful, later. It is clear that the nontrivial Bianchi identity for \hat{f}_{4} has two different origins. The first comes from the terms with an explicit γ factor. This contribution is new and purely down to the fractional branes. The second contribution is a universal contribution and arises when the derivative of h_{4} is not smooth. The form of this contribution is present even in the absence of fractional branes, however since the function h_{4} differs in the two cases this contribution also implicitly depends on the fractional branes. For the six-form the origin of the contributions is not as clear cut and we shall postpone this discussion to later in this section. ${ }^{12}$

Central Charge

For the final part of our general analysis we will give the formula for the central charge. The Brown-Henneaux formula [69] specified to our setup reads

$$
\begin{equation*}
c=\frac{3}{2^{4} \pi^{6} \ell_{\mathrm{s}}^{8}} \int \mathrm{e}^{-2 \phi}\left(h_{4} h_{8}\right)^{-1 / 4} \mathrm{dvol}_{7} . \tag{3.28}
\end{equation*}
$$

For the case at hand where h_{4} is a function of only the line interval and h_{8} is constant this may be simplified to

$$
\begin{equation*}
c=\frac{6 h_{8}}{(2 \pi)^{3} \ell_{\mathrm{s}}^{8}} \int h_{4} \mathrm{~d} z \tag{3.29}
\end{equation*}
$$

3.2 Global analysis

We begin by analysing the gravity solution in more detail: computing the Page charges, the central charge and studying the Bianchi identities. With a thorough understanding of the gravity solution we will construct in the next section a two-dimensional quiver field theory which is conjecturally dual to the gravity solution. We will motivate this two-fold. First by giving a stringy origin using the brane configuration inferred from the gravity analysis and

[^7]identifying the massless strings stretching between the branes, and secondly by showing that the central charge agrees in the holographic limit with the gravity result. ${ }^{13}$

Gravity Analysis

To begin we must specify the function h_{4} explicitly. We have discussed above the continuity constraint however it is necessary to impose some additional constraints on its form in order that the internal space is compact giving a well-defined holographic dual. This is equivalent to imposing that the function h_{4} has two single roots at both ends of the interval. The reader may be wary of h_{4} vanishing at the end-points of the interval since it appears prominently in both the metric and dilaton and looks like it will make the metric singular. Indeed, points where h_{4} vanishes do produce a singularity, however by requiring that h_{4} has a single root at these points, rather than a double root, one may interpret this singularity as the presence of branes ending the space. Taking the function h_{4} to have a single root at z^{*} the metric and dilaton close to the root are given by

$$
\mathrm{d} s^{2}=\frac{1}{\sqrt{h_{8}} \sqrt{\left(z-z^{*}\right) h_{4}^{\prime}\left(z^{*}\right)}}\left(\mathrm{d} s^{2}\left(\operatorname{AdS}_{3}\right)+\frac{1}{4} \mathrm{~d} s^{2}\left(S^{2}\right)\right)+\frac{\sqrt{(z-z *) h_{4}^{\prime}\left(z^{*}\right)}}{\sqrt{h_{8}}}\left(\mathrm{~d} s^{2}\left(\mathrm{CY}_{2}\right)+h_{8} \mathrm{~d} z^{2}\right)
$$

$$
\begin{equation*}
\mathrm{e}^{-\Phi}=\left(\left(z-z^{*}\right) h_{4}^{\prime}\left(z^{*}\right)\right)^{1 / 4} h_{8}^{5 / 4} \tag{3.30}
\end{equation*}
$$

which is precisely the form of either an O4 plane on $\mathrm{AdS}_{3} \times S^{2}$ or a stack of D4 branes on $\mathrm{AdS}_{3} \times S^{2}$ smeared over the Calabi-Yau two-fold. This interpretation of the singularity in terms of branes is not possible if h_{4} has a double root and is therefore not physically interesting.

We may use the shift symmetry in the z coordinate to fix the interval to take values in $[0,2 \pi(P+1)]$, with h_{4} developing a root at both end-points and being strictly positive everywhere else in the domain. An explicit form for h_{4} following the general expression in

$$
h_{4}= \begin{cases}2 \pi \beta_{0} z-\frac{\gamma}{2} z^{2} & 0 \leq z \leq 2 \pi \tag{3.24}\\ (2 \pi)^{2} \alpha_{k}+2 \pi \beta_{k}(z-2 \pi k)-\frac{\gamma}{2}(z-2 \pi k)^{2} & 2 \pi k \leq z \leq 2 \pi(k+1) \\ (2 \pi)^{2} \alpha_{P}+2 \pi \beta_{P}(z-2 \pi P)-\frac{\gamma}{2}(z-2 \pi P)^{2} & 2 \pi P \leq z \leq 2 \pi(P+1)\end{cases}
$$

[^8]By construction this has a root at $z=0$, however we must still impose that it is both continuous and has a root at $2 \pi(P+1)$. Continuity requires that the constants are fixed by the iterative constraint,

$$
\begin{equation*}
\alpha_{k}+\beta_{k}-\frac{\gamma}{2}=\alpha_{k+1}, \tag{3.32}
\end{equation*}
$$

which may be rewritten as

$$
\begin{equation*}
\alpha_{k}=\sum_{i=0}^{k-1}\left(\beta_{i}-\frac{\gamma}{2}\right) \tag{3.33}
\end{equation*}
$$

We see that the fractional branes shift the constants α_{k}. Notice also that a trivial rewriting gives

$$
\begin{equation*}
\beta_{k-1}-\beta_{k}=2 \alpha_{k}-\alpha_{k-1}-\alpha_{k+1} \tag{3.34}
\end{equation*}
$$

which should remind the reader of the anomaly cancellation for certain linear quivers. In order for there to be a root at $z=2 \pi(P+1)$ we must fix the constants so that

$$
\begin{equation*}
\alpha_{P}+\beta_{P}-\frac{\gamma}{2}=0, \tag{3.35}
\end{equation*}
$$

or, after using (3.33), that

$$
\begin{equation*}
\sum_{i=0}^{P}\left(\beta_{i}-\frac{\gamma}{2}\right)=0 \tag{3.36}
\end{equation*}
$$

Notice that of the $2 P+1$ free parameters in (3.31) specifying $h_{4}, P+1$ are fixed in terms of γ and the remaining $P \beta$'s. As we will see later, these constraints are essential on the field theory side for anomaly cancellation. The final check is to require that h_{4} is strictly positive in the domain except at the two end-points where it vanishes. A necessary requirement for this is $\alpha_{k}>0$ for all $1 \leq k \leq P$. This immediately implies $\gamma<2 \beta_{0}$, whilst the constraints on the higher order β 's are less stringent. We see from (3.36) that there must be at least one β, certainly the last one, which satisfies $2 \beta<\gamma$. A representative example of h_{4} is given in figure 1. One should contrast this to the linear rank-functions studied in [39]. The fractional branes lead to a substantially different class of rank function.

Page charges

With our expression for h_{4} in hand we are now able to compute the Page charges of the solution. Recall that the magnetic part of the Page fluxes \hat{f}_{8-p}, should be quantised according to 14

$$
\begin{equation*}
Q_{p}=\frac{1}{(2 \pi)^{7-p}} \int_{\Sigma_{8-p}} \hat{f}_{8-p}, \tag{3.37}
\end{equation*}
$$

[^9]

Figure 1. A representative example of h_{4}. Here we have taken $P=6$, and fixed the 7 free parameters as: $\beta_{0}=22, \beta_{1}=21, \beta_{2}=19, \beta_{3}=17, \beta_{4}=15, \beta_{5}=15, \gamma=32$. Note that this example has $\beta_{k-1}>\beta_{k}$ for all k.

Brane	Page charge	Type	$\mathbb{R}^{1,1}$	\mathbb{R}^{3}			I	CY $_{2}$			
							C		\bar{C}		
D2	α_{k}	Colour	\times	\times	-	-	-	\times	-	-	-
D4	β_{k}	Flavour	\times	\times	\times	\times	\times	-	-	-	-
D6	γ	Colour	\times	\times	-	-	-	\times	\times	\times	\times
D6 $^{\prime}$	γ	Flavour	\times	\times	\times	\times	\times	-	\times	\times	-
NS5	1	N.A.	\times	\times	-	-	-	-	\times	\times	\times
NS5		1	N.A.	\times	\times	-	\times	\times	-	\times	\times

Table 2: Brane configuration for the solution, with the Page charges associated to the branes in the interval $2 \pi k<z<2 \pi(k+1)$.
through all integral cycles. Due to our decomposition of h_{4} it is natural to look at the various Page charges in each of the segments. The Page charges read

$$
\begin{equation*}
Q_{D 2}^{[k, k+1]}=-\alpha_{k}, \quad Q_{D 4}^{[k, k+1]}=\beta_{k}, \quad Q_{D 6}^{[k, k+1]}=\gamma, \quad Q_{D 6^{\prime}}^{[k, k+1]}=\gamma \tag{3.38}
\end{equation*}
$$

This corroborates that the gravity solution arises from the brane configuration given in table 2 from which the black string solution was constructed in section 2 . This will form the starting point for the construction of the field theory dual. Note that the quantisation condition imposes that $\alpha_{k}, \beta_{k}, \gamma$ are all integers and therefore consistency with (3.33) implies that γ should be an even integer.

We may substitute our expression for h_{4} into the Bianchi identities computed in (3.27).

We find ${ }^{15}$

$$
\begin{align*}
& \mathrm{d} \hat{f}_{2}=0 \tag{3.39}\\
& \mathrm{~d} \hat{f}_{4}=2 \pi\left(-\beta_{0} \delta(z)+\sum_{k=1}^{P}\left(\beta_{k-1}-\beta_{k}\right) \delta(z-2 \pi k)+\beta_{P} \delta(z-2 \pi(P+1))\right) \mathrm{d} z \wedge \operatorname{dvol}\left(\mathrm{CY}_{2}\right) \\
& \mathrm{d} \hat{f}_{6}=2 \pi^{2}\left(\sum_{k=1}^{P}\left(\alpha_{k}-\alpha_{k-1}\right) \delta(z-2 \pi k)-\alpha_{P} \delta(z-2 \pi(P+1))\right) \mathrm{d} z \wedge \operatorname{dvol}\left(S^{2}\right) \wedge \operatorname{dvol}\left(\mathrm{CY}_{2}\right) .
\end{align*}
$$

A first point to recall is that the contribution of a Dp-brane and that of an anti-Dp-brane to the source term of the Bianchi identity differs by a minus sign. Since parallel anti-Dp-branes and Dp-branes preserve no supersymmetry ${ }^{16}$ we must require that we have either type but not both in our solution. This is equivalent to imposing $\beta_{k-1}-\beta_{k} \geq 0$ for all intervals. On the field theory side we will interpret the difference as the rank of the flavour group, which must of course be positive definite and therefore this condition is required on the field theory side also. A second point to stress out is that the first and last contributions to $\mathrm{d} \hat{f}_{4}$ identify the singularities at both ends of the z-interval as associated to O 4 orientifold fixed planes, given that both give negative contributions (recall the definition of β_{P} from equation (3.35)).

We have just seen that the Bianchi identities are satisfied up to the source terms. It remains to interpret these sources. The source terms arise in the Bianchi identities due to the presence of localised branes in the solution. One may derive the general form of the Bianchi identities by supplementing the usual supergravity action with the D-brane effective action

$$
\begin{equation*}
S_{\mathrm{eff}}=S_{\mathrm{DBI}}[g, \phi, B]+S_{\mathrm{CS}}\left[C_{p}\right] \tag{3.40}
\end{equation*}
$$

for each brane in the theory. We will be concerned with the RR-flux potentials in the following and therefore the DBI part of the action will not play a role in this analysis, only the ChernSimons part will. It takes the form

$$
\begin{equation*}
\left.\mu_{p} \int_{W} \operatorname{Tr}\left(\mathrm{e}^{2 \pi \alpha^{\prime} \mathcal{F}}\right) \wedge \sqrt{\frac{\hat{A}\left(4 \pi^{2} \alpha^{\prime} R_{T}\right)}{\hat{A}\left(4 \pi^{2} \alpha^{\prime} R_{N}\right)}} \wedge \bigoplus_{q} C_{q}\right|_{p+1} \tag{3.41}
\end{equation*}
$$

where \mathcal{F} is the gauge invariant field strength on the Dp-branes to which strings couple,

$$
\begin{equation*}
2 \pi \alpha^{\prime} \mathcal{F}=B 1_{n \times n}+2 \pi \alpha^{\prime} \hat{F} . \tag{3.42}
\end{equation*}
$$

[^10]The polynomial \hat{A} is the A-roof genus and takes as argument the curvature of the tangent and normal bundles respectively. Using the formulation of the potentials which are all electric it is simple to calculate the most general Bianchi identities for the magnetic fluxes. We have ${ }^{17}$

$$
\begin{align*}
\mathrm{d} \hat{f}_{2} & =\hat{\mu}_{6} \operatorname{Tr}\left[1_{D 6}\right] \delta W_{D 6} \tag{3.43}\\
\mathrm{~d} \hat{f}_{4} & =\hat{\mu}_{4} \operatorname{Tr}\left[1_{D 4}\right] \delta W_{D 4}+2 \pi \alpha^{\prime} \hat{\mu}_{6} \operatorname{Tr}\left[\hat{F}_{D 6}\right] \wedge \delta W_{D 6} \tag{3.44}\\
\mathrm{~d} \hat{f}_{6} & =\hat{\mu}_{2} \operatorname{Tr}\left[1_{D 2}\right] \delta W_{D 2}+2 \pi \alpha^{\prime} \hat{\mu}_{4} \operatorname{Tr}\left[\hat{F}_{D 4}\right] \wedge \delta W_{D 4} \\
& +\left(2 \pi \alpha^{\prime}\right)^{2} \hat{\mu}_{6}\left(\frac{1}{2} \operatorname{Tr}\left[\hat{F}_{D 6} \wedge \hat{F}_{D 6}\right]+(2 \pi)^{2} \operatorname{Tr}\left[1_{D 6}\right]\left(p_{1}\left(R_{N}\right)-p_{1}\left(R_{T}\right)\right)\right) \wedge \delta W_{D 6} . \tag{3.45}
\end{align*}
$$

Here δW_{\bullet} denotes the Poincaré dual of the world-volume wrapped by the brane and is normalised to give 1 when integrated over the world-volume. Note that both the left- and right-hand side are gauge dependent since it is the gauge dependent field strength \hat{F}_{\bullet} that appears and not the gauge independent combination \mathcal{F}. We can now compare these general expressions with the expressions obtained by direct calculation.

First let us identify the Poincaré duals for the various branes, focussing on terms containing delta functions along the interval. Since the D2 and D6 branes are not located at definite points on the interval they will not give rise to such delta function terms along the interval. ${ }^{18}$ Instead, the D4 branes will give rise to delta function terms and we can write

$$
\begin{equation*}
\delta W_{D 4}=-\frac{1}{4 \pi} \delta(z-2 \pi k) \mathrm{d} z \wedge \operatorname{dvol}\left(\mathrm{CY}_{2}\right) . \tag{3.46}
\end{equation*}
$$

The final contribution we need to consider is from the D6' branes with Poincaré dual

$$
\begin{equation*}
\delta W_{D 6^{\prime}}=\frac{1}{2 \pi} \delta(z-2 \pi k) \mathrm{d} z \wedge \omega . \tag{3.47}
\end{equation*}
$$

However as we will see momentarily there is no gauge field living on the D6' branes. First let us study the Bianchi identity for \hat{f}_{2}. We see that agreement with (3.39) implies that there is no brane theory living on the D6' branes located at the distinguished points of the interval. This is not surprising since the number of branes ending on the NS5 brane from the left and right is the same. Given this it follows that the Bianchi identity for \hat{f}_{4} is satisfied if there is an $\mathrm{U}\left(\beta_{k-1}-\beta_{k}\right)$ gauge theory living on the D4 branes at the k 'th NS5 brane. Finally the Bianchi identity implies that the field strength on the D4 branes at the k 'th NS5 brane

[^11]satisfies
\[

$$
\begin{equation*}
\operatorname{Tr}\left[\hat{F}_{D 4}^{(k)}\right]=\beta_{k}-\frac{\gamma}{2} . \tag{3.48}
\end{equation*}
$$

\]

It would be interesting to explicitly construct these fields in the future.

Central charge

Finally, we may compute the central charge of the solution. The Brown-Henneaux formula gives the central charge to be

$$
\begin{align*}
c & =\frac{3 \pi}{2 G_{N}} \operatorname{vol}(\mathrm{CY}) \int_{0}^{2 \pi(P+1)} \gamma h_{4} \mathrm{~d} z \\
& =6 \gamma \sum_{k=0}^{P}\left(\alpha_{k}+\frac{1}{2} \beta_{k}-\frac{\gamma}{6}\right) . \tag{3.49}
\end{align*}
$$

Using the continuity condition we may rewrite this into the form

$$
\begin{equation*}
c=6 \gamma \sum_{k=0}^{P}\left(\alpha_{k}+\frac{\gamma}{12}\right) . \tag{3.50}
\end{equation*}
$$

Since this is a small $\mathcal{N}=(0,4)$ theory the central charge should be an integer multiple of 6 . Naively this seems to be problematic since γ needs not be divisible by 12 generically, though it is divisible by 2 . The resolution to this apparent paradox is that it is the full central charge, including all subleading contributions, that should be divisible by 6 and not the result from the Brown-Henneaux formula. The gravity calculation we have performed computed the exact leading order piece of the central charge and some, but not all, subleading contributions. If one would in addition compute the full subleading contributions from holography one would find a central charge which is integer including the subleading terms. A similar mechanism was seen in [11] when considering small $\mathcal{N}=(0,4) \mathrm{AdS}_{3}$ solutions in Type IIB. Only once the subleading contributions were taken into account was the central charge an integer multiple of 6 .

The interpretation of the global solutions constructed in this section is that they describe chains of black strings stacked on top of each other along the z-interval. These strings carry three quantised charges, associated to the numbers of D2 and D6 branes wrapped at each interval, together with the number of fractional D4 branes. This is supplemented by global charges that denote the number of D4 branes, flavouring the field theory living on the black string. In the next section we will construct $2 \mathrm{~d} \mathcal{N}=(0,4)$ quiver CFTs dual to these solutions. These extend the quiver CFTs constructed in [8] to include fractional branes. A benefit of our study is that the quivers come along with their explicit $\mathrm{AdS}_{3} \times S^{2} \times \mathrm{CY}_{2}$ holographic duals as
studied in this section. This is a well-controlled string theory setting where the implications of holography can be studied in detail.

4 Field theory

Having studied the supergravity solution let us turn our attention to constructing its field theory dual. We propose that the field theory dual of the supergravity solutions constructed in the previous section is given by a $2 \mathrm{~d} \mathcal{N}=(0,4)$ quiver gauge theory with quiver as given in figure 2. The stringy origin of the different multiplets appearing in the quiver is discussed in

Figure 2. The $2 \mathrm{~d}(0,4)$ quiver dual to our solutions. The blue lines denote $\mathcal{N}=(4,4)$ twisted hypermultiplets, the red lines denote $\mathcal{N}=(0,4)$ hypermultiplets and green dashed lines are $\mathcal{N}=$ $(0,2)$ Fermi multiplets. The round nodes are $\mathcal{N}=(0,4)$ vector multiplets plus $\mathcal{N}=(0,4)$ adjoint hypermultiplets, whilst the rectangular nodes are flavour symmetries. The flavour symmetries ending the horizontal line of h_{8} 's arise from semi-infinite D6 branes in the geometry.
detail in Appendix A. Note that our proposal for the quivers has fundamental differences to the quivers previously considered in [39] which did not consider fractional branes. We want to emphasise that the differences are not purely due to the fractional branes, our analysis indicates that the previous quivers are not the correct duals in those cases. To exemplify this we show that the central charge for our new quivers matches the gravity result without the need for unnatural scaling arguments as in the previous works. This analysis is extended to the massive case considered in [39] and later works in Appendix B.

4.1 Cancellation of gauge anomalies

The contribution of the different multiplets in the quiver depicted in Figure 2 to the gauge anomaly is given in Table 3.

Multiplet	Contribution
$(0,4)$ hyper or twisted hyper (adjoint)	2 N
$(0,4)$ hyper or twisted hyper (fund.)	1
$(0,4)$ vector	-2 N
$(0,2)$ Fermi	$-\frac{1}{2}$

Table 3: Contribution to the gauge anomaly of the multiplets.
First focus on the k^{\prime} th D2 gauge node. It is simple to see that the $\mathcal{N}=(4,4)$ hypermultiplets do not contribute to the anomaly, leaving just the contribution of the $\mathcal{N}=(0,4)$ hypermultiplet and the $(0,2)$ Fermi multiplets. We find that the anomaly condition is trivially satisfied. For the k 'th D6 gauge node the anomaly is proportional to

$$
\begin{equation*}
2 \alpha_{k}-\left(\beta_{k-1}-\beta_{k}\right)-\alpha_{k-1}-\alpha_{k+1} \tag{4.1}
\end{equation*}
$$

which is zero by virtue of the relation

$$
\begin{equation*}
\alpha_{k+1}=\alpha_{k}+\beta_{k}-\frac{\gamma}{2} . \tag{4.2}
\end{equation*}
$$

For the end points of the quiver the computation works similarly and is guaranteed by the matching condition. Note that anomaly cancellation is blind to the differences between our quivers and those conjectured in [39] since twisted hypermultiplets and hypermultiplets contribute equally to the anomaly.

4.2 Central charge

The central charge is given by

$$
\begin{equation*}
c=3 \operatorname{Tr}\left[\gamma^{3} Q_{R}^{2}\right] \tag{4.3}
\end{equation*}
$$

with Q_{R} the R-charge under the $\mathrm{U}(1)_{R} \subset \mathrm{SU}(2)_{R}$, and the trace is over all Weyl fermions in the theory. The matter is organised as in table 4.

From the construction of the gauge nodes of our quivers, containing a $\mathcal{N}=(0,4)$ vector multiplet and a $\mathcal{N}=(0,4)$ adjoint hypermultiplet, it is clear that they do not contribute to the R-symmetry anomaly. Moreover, neither the $\mathcal{N}=(0,2)$ Fermi multiplets nor the $\mathcal{N}=(4,4)$

Multiplet	$(0,2)$ Origin	Number of Fermions	Chirality	R-charge of Fermion
$(0,4)$ hyper	$2 \times$ Chiral	2	R.H.	-1
$(0,4)$ twisted hyper	$2 \times$ Chiral	2	R.H.	0
$(0,4)$ vector	$(0,2)$ vector	1	L.H.	1
	$(0,2)$ Fermi	1	L.H.	1
$(0,2)$ Fermi	-	1	L.H.	0

Table 4: R-charges and fermion content of the multiplets.
twisted hyper multiplets contribute. Therefore the only contributions to the central charge are from isolated $\mathcal{N}=(0,4)$ hypermultiplets, and the central charge is ${ }^{19}$

$$
\begin{equation*}
c=3 \cdot 2 n_{H}^{(0,4)}=6 h_{8} \sum_{k=1}^{P} \alpha_{k}, \tag{4.4}
\end{equation*}
$$

which agrees with the gravity result (3.50), upon discarding the $\frac{\gamma}{12}$ term which is subleading. Note that since twisted hypermultiplets do not contribute to the anomaly whilst hypermultiplets do one can see the difference between our quiver here and those in [39].

Finally we compute the gravitational anomaly. One may compute it using that

$$
\begin{equation*}
c_{L}-c_{R}=\operatorname{Tr} \gamma^{3}, \tag{4.5}
\end{equation*}
$$

where the trace is over the Weyl fermions of the theory as before and γ^{3} is the chirality matrix in 2d. Let us first look at how the multiplets appearing in the quiver contribute. Using table 4 we can see that the gauge nodes contain two right-handed Weyl fermions and two lefthanded Weyl fermions and therefore do not contribute to the anomaly. Similarly a $\mathcal{N}=(4,4)$ (twisted) hypermultiplet contains two right-handed Weyl fermions and two left-handed Weyl fermions and therefore also does not contribute to the gravitational anomaly. Conversely, isolated bifundamental $\mathcal{N}=(0,4)$ (twisted-) hypermultiplets contain two right-handed Weyl fermions and therefore contribute 2 to the anomaly. Finally an isolated $\mathcal{N}=(0,2)$ Fermi multiplet contains a single left-moving Weyl fermion and therefore contributes -1 to the anomaly. With these considerations we have the simple formula

$$
\begin{equation*}
c_{L}-c_{R}=2 n_{H}^{(0,4)}-n_{F}^{(0,2)}, \tag{4.6}
\end{equation*}
$$

[^12]where $n_{\#}^{(p, q)}$ denotes the number of isolated $\mathcal{N}=(p, q) \#$ multiplets in the quiver. We have
\[

$$
\begin{align*}
& n_{H}^{(0,4)}=\sum_{k=1}^{P} h_{8} \alpha_{k}, \\
& n_{F}^{(0,2)}=h_{8} \sum_{k=1}^{P}\left(\beta_{k-1}-\beta_{k}\right)+2 h_{8} \sum_{k=1}^{P} \alpha_{k}, \tag{4.7}
\end{align*}
$$
\]

and therefore

$$
\begin{equation*}
c_{L}-c_{R}=h_{8}\left(\beta_{P}-\beta_{0}\right) . \tag{4.8}
\end{equation*}
$$

Note that the contribution we get is only from the 'end' D4-branes multiplied by the number of D6 branes that they meet. We see that these nodes are somewhat special in that they have only two Fermi lines connecting them whilst the other nodes of this type have three.

Observe that the gravitational anomaly apparently vanishes for $\beta_{0}=\beta_{P}$. Recall that we require $\beta_{k-1} \geq \beta_{k}$ and therefore the vanishing of the gravitational anomaly imposes $\beta_{k}=\beta$ for all k. Moreover consistency with (3.36) implies $\beta=\frac{\gamma}{2}$, therefore $\alpha_{k}=0$ and consequently the total central charge, (4.4), vanishes.

5 Conclusions and future directions

In this paper we have investigated the near-horizon geometry of a chain of 5 d black strings living in an asymptotic $\mathbb{R}^{1,4} \times I \times \mathrm{CY}_{2}$ geometry. The black strings are constructed through a D2-D4-D6-NS5 brane intersection coupled with the presence of fractional branes. We have given a candidate dual 2 d quiver CFT, motivated by studying the stringy embedding of the solution, and checked that the central charges of the two sides of the duality are in agreement. One important aspect of this work is that we have provided a different proposal for the dual quiver for the solutions of [1] as studied in [39]. Our proposal replaces the need to perform a scaling argument to obtain agreement between the gravity and field theory results.

There is an interesting alternate construction one can do with the same asymptotic geometry. One may replace the 5d black strings with 5d black holes instead, stacking them along the interval. The near-horizon geometries of this setup, which will contain an AdS_{2} factor, were constructed in [70-72]. There AdS_{2} solutions in Type II supergravities were constructed from the seed solutions studied in [1] (which is also the seed for the solution in this paper) using both double-analytic continuation and T-duality. Like here, they possess a closed two-form H_{2} and a function satisfying a similar equation to the defining equation here. Given the origin of these solutions, and the close connection to those of this paper, it
would be interesting to study these solutions in this light extending known explicit examples and their dual field theories.

Another interesting setup, connected to the work here, are AdS_{3} solutions in M-theory with $\mathcal{N}=(0,4)$ supersymmetry which are the uplifts of the solutions discussed here. These solutions should arise from taking the near-horizon of chains of 6 d black strings living in the asymptotic geometry $\mathbb{R}^{1,5} \times I \times \mathrm{CY}_{2}$. The most general solutions constructed in [46] contain fractional M5-branes, arising from KK-monopoles wrapping collapsing two-cycles in the Calabi-Yau two-fold, that should modify the quivers constructed in [46] in a manner similar to that of this paper.

Finally, one can consider backgrounds in M-theory of the type $\mathbb{R}^{1,3} \times I \times \mathrm{CY}_{3}$ and look for BPS solutions in which 4 d black holes are stacked along the interval. If such solutions exist, they will have a near horizon geometry $\mathrm{AdS}_{2} \times S^{2} \times I \times \mathrm{CY}_{3}$ that might be related to the solutions recently constructed in [73] (see appendix A). We leave this interesting possibility for future work.

Acknowledgments

We would like to thank Carlos Nunez for very useful discussions. Y.L. and N.P. are partially supported by the Spanish government grant PGC2018-096894-B-100. C.C. and S.V are supported in part by the D-ITP consortium, a program of the Netherlands Organisation for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture and Science (OCW).

A Multiplets from strings

In this appendix we give a stringy origin for the quiver theory depicted in Figure 2. Our analysis utilises the brane intersection underlying the gravity solution, from which one can study the different ways of obtaining massless modes from strings stretching between the branes. We view this as giving additional weight to the conjectured field theory dual of our supergravity setup alongside the matching of the central charges.

Recall that the branes live in the asymptotic geometry

$$
\begin{equation*}
\mathbb{R}^{1,4} \times I \times \mathrm{CY}_{2}, \tag{A.1}
\end{equation*}
$$

and are configured as given in table 5. The presence of the branes, and compact Calabi-Yau space, breaks the $\mathrm{SO}(1,9)$ Lorentz group to $\mathrm{SO}(1,1) \times \mathrm{SO}(3)$. Recall that the double cover

Brane	Type	$\mathbb{R}^{1,1}$		\mathbb{R}^{3}			I	CY_{2}		
				r	S^{2}		C		\bar{C}	
D2	Colour	\times	\times	-	-	-	\times	-	-	-
D4	Flavour	\times	\times	\times	\times	\times	-	-	-	-
D6	Colour	\times	\times	-	-	-	\times	\times	\times	\times
D6'	Flavour	\times	\times	\times	\times	\times	-	\times	\times	-
NS5		\times	\times	-	-	-	-	\times	\times	\times
NS5'		\times	\times	-	\times	\times	-	\times	\times	-

Table 5: Brane configuration for the solution
of $\mathrm{SO}(3), \mathrm{SU}(2)_{R}$ is dual to the R-symmetry of the SCFT. When the interval is periodically identified the symmetry group is enhanced by a flavour $\mathrm{U}(1)$ coming from the now circular interval. Given that the function h_{4} is quadratic in the interval coordinate it follows that in this case when it is periodically identified it must be constant and the fractional branes disappear. One may then T-dualise along this $\mathrm{U}(1)$ to obtain the D1-D5 system. Since this is well-studied we shall ignore this case with enhanced symmetry and assume a non-trivial interval in the remainder of this section.

The key to this analysis is in identifying the 2d multiplets one obtains from quantising the fundamental strings stretching between the various branes in the setup. There is a large literature on this type of analysis for similar setups, much of which is transferable to this setup, see for example [74, 75]. Despite this, we will be as detailed as possible in order to present a consistent and complete story at the cost of reviewing some 'well-known' material in places. We hope the reader can forgive us for this, but for those who just want to jump to the punch-line we have presented an overall summary in table 6.

D2-D2 strings

There are two distinct cases of D2-D2 strings to consider depending on whether both endpoints of the string lie in the same segment of the line interval or not. We first consider the case where they are in the same segment before considering adjacent segments. For segments which are not adjacent there are no massless modes on the strings and therefore these will be ignored in the following.

For the case where the two endpoints both lie in the same segment the problem reduces to identifying the massless modes of a stack of D2-branes bounded in one spacetime direction by NS5 branes. This is a well-studied problem, see for example the T-dual setup in [75],

String	Segment	Multiplet	Representation
D2-D2	Same	$\mathcal{N}=(0,4)$ vector $+\mathcal{N}=(0,4)$ hyper	Adjoint
D2-D2	Adjacent	$\mathcal{N}=(4,4)$ twisted hyper	bi-fundamental
D6-D6	Same	$\mathcal{N}=(0,4)$ vector $+\mathcal{N}=(0,4)$ hyper	Adjoint
D6-D6	Adjacent	$\mathcal{N}=(4,4)$ twisted hyper	bi-fundamental
D2-D6	Same	$\mathcal{N}=(0,4)$ hyper	bi-fundamental
D2-D6	Adjacent	$\mathcal{N}=(0,2)$ Fermi	bi-fundamental
D2-D4	Same	$\mathcal{N}=(4,4)$ twisted hyper	bi-fundamental
D4-D6	Same	$\mathcal{N}=(0,2)$ Fermi	bi-fundamental

Table 6: We give the summary of the multiplets arising from the different strings stretching from the branes in the setup. The segment column determines whether the branes lie in the same segment or in adjacent segments. For strings that do not contribute massless modes we have ignored their contribution in the table, for example D4-D4 strings.
however for completeness let us sketch the argument as there is still an important point we wish to emphasise. On a stack of N infinitely extended D2 branes there lives a 3d $\mathrm{U}(N)$ gauge theory consisting of a single $\frac{1}{2}$-BPS vector multiplet. We now want to bound the D2 brane in one spacetime direction by two NS5 branes, one at each end-point. The D2-branes are now infinite in extent in only two spacetime dimensions and the effective theory living on the branes becomes two-dimensional. Furthermore, the presence of the NS5-branes breaks one half of the supersymmetry of the setup. ${ }^{20}$

We now want to decompose the 3d vector multiplet in terms of 2d multiplets before truncating out the fields fixed by the Neumann boundary conditions affixing the D2 branes to the NS5 branes. Recall that the bosonic field content of a $\frac{1}{2}$-BPS 3d vector multiplet is a 3 d vector and 7 real scalars: the latter of which parametrise the fluctuations of the D 2 brane in the transverse directions. Reducing to 2d we end up with a 2 d vector and 8 real scalars, the eighth scalar coming from the third component of the 3 d vector in the KK reduction. The preserved supersymmetry arising from the projection conditions implies that the fields combine into: a $\mathcal{N}=(0,4)$ vector multiplet; a $\mathcal{N}=(0,4)$ hypermultiplet, arising from the fluctuations along the Calabi-Yau; and a $\mathcal{N}=(4,4)$ twisted hypermultiplet arising from combining the scalar in the decomposition of the 3 d vector and the fluctuations in $\mathbb{R}^{3} .{ }^{21}$ In

[^13]order for the D2 brane to end on the NS5's we must impose Neumann boundary conditions on the fields. This sets to zero the $\mathcal{N}=(4,4)$ twisted hypermultiplet, leaving just the $\mathcal{N}=(0,4)$ vector multiplet and the $\mathcal{N}=(0,4)$ hypermultiplet, in the adjoint of $\mathrm{U}(N)$. Note that this does not combine into a $\mathcal{N}=(4,4)$ vector multiplet. This is one difference between our quiver here and the quivers appearing previously in [39], where the nodes were taken to be $\mathcal{N}=(4,4)$ vector multiplets.

Having identified the multiplets from a stack of D2 branes in the same segment let us consider D2 branes in adjacent segments. Strings stretching between D2-branes which are not adjacent are massive, the massless modes are located at the intersection of the two D2-branes with the NS5 brane, but what are these massless modes? From the structure of the ChanPaton factors of the two end-points it is clear that this must be bi-fundamental matter. The two D2-branes must meet on the NS5 brane, this fixes the degrees of freedom moving in the Calabi-Yau directions. What remains is to move in the directions of \mathbb{R}^{3} and following [75] we obtain scalars transforming in the 2 of $\mathrm{SU}(2)_{R}$ which combine into a twisted-hypermultiplet. This hypermultiplet is in fact a $\mathcal{N}=(4,4)$ twisted hypermultiplet as can be seen by studying the supersymmetry parameters of the brane setup.

We have seen that the D2-D2 strings furnish our quiver with two types of matter multiplets. We have gauge nodes containing a $\mathcal{N}=(0,4)$ vector multiplet and a $\mathcal{N}=(0,4)$ hypermultiplet in the adjoint, whilst the nodes are connected to the adjacent ones via bifundamental $\mathcal{N}=(4,4)$ twisted hypermultiplets.

D6-D6 strings

Next consider the D6-D6 strings. This is in fact T-dual (or mirror symmetric) to the case of the D2-D2 strings considered previously. Therefore the spectrum is the same. We have gauge nodes with a $\mathcal{N}=(0,4)$ vector multiplet and $\mathcal{N}=(0,4)$ hypermultiplet in the adjoint, connected to adjacent nodes by bi-fundamental $\mathcal{N}=(4,4)$ twisted hypermultiplets.

D2-D4 strings

For the D2-D4 strings we may again make use of a duality to obtain a well-studied setup. T-dualising along one Calabi-Yau direction one obtains a stack of D3-branes ending on a
the transformation properties of the fields under the R-symmetry of the solution. In the present setup the R-symmetry is $\mathrm{SU}(2)$ which is the double cover of the $\mathrm{SO}(3)$ rotations acting on \mathbb{R}^{3}. We see then that the fluctuations along the Calabi-Yau directions should be singlets under the $\mathrm{SU}(2)$ and therefore neutral under the R-symmetry and consequently hypermultiplets. Conversely the fluctuations arising from the KKreduction of the gauge field and the fluctuations in \mathbb{R}^{3} are charged under the R -symmetry and are therefore twisted hypermultiplets.

D5-brane whose world-volume contains the \mathbb{R}^{3} factor. This is precisely the setup in [75] and the massless modes are the position of the D3-branes inside the D5 brane. This gives rise to a bi-fundamental $\mathcal{N}=(4,4)$ twisted hypermultiplet.

D6-D4 strings

For the D6-D4 strings note that the massless modes arise from the fluctuations of the string end-points stretching between the two branes. Since all bosonic degrees of freedom are fixed in order that the two branes intersect there are no fluctuations and therefore no bosonic zero modes. Instead we obtain a Fermi multiplet. We may see this more concretely by noting that the setup is T-dual to the D0-D8 system. Using [76] we see that the strings give rise to a bifundamental $\mathcal{N}=(0,2)$ Fermi multiplet.

D2-D6 strings

The final fundamental strings that we must consider are the D2-D6 strings. We have two cases to consider. When the two branes are in the same interval the setup is T-dual to the D0-D4 where the D4 is wrapped on the Calabi-Yau two-fold. This gives rise to a $\mathcal{N}=(0,4)$ hypermultiplet, parametrising the location of the instanton within the D 4 brane world-volume.

Finally, when strings stretch between a D2 and D6 brane in adjacent intervals we may T-dualise to a D1-D5 system where we view the D1 as ending on the D5 which is wrapped on the Calabi-Yau two-fold. This gives rise to a $\mathcal{N}=(0,2)$ Fermi multiplet.

B Massive quivers

In the main text we have emphasised that the quivers we propose to be dual to the geometries studied in section 3 differ from those studied in similar setups in [39]. In this appendix we will apply the knowledge learnt in studying our setup to correct the massive quivers first studied in that reference. We will set the fractional branes to vanish and reinstate the non-trivial Romans mass which leads to new flavour D8-branes. ${ }^{22}$ As in the previous section, let us study the massless multiplets arising from the strings stretching between the various branes of the

[^14]setup. We may use the previous analysis and supplement it with the new multiplets arising from strings stretching between the D8-branes to the D2-, D4-, and D6-branes.

First, the D2-D8 system is T-dual to the D6-D4 system studied above and we conclude that the D2-D8 strings give rise to a bifundamental $\mathcal{N}=(0,2)$ Fermi multiplet. Similarly the D6-D8 system is T-dual to the D2-D4 system studied above and therefore we have a $\mathcal{N}=(4,4)$ twisted hypermultiplet. Finally, strings stretching between the D4 and D8-branes do not contribute massless multiplets to the quiver. Having identified the massless modes we can construct the quiver, which is given in figure 3.

Figure 3. The $2 \mathrm{~d} \mathcal{N}=(0,4)$ quiver dual to the massive Type IIA solutions. As before, the blue lines denote $\mathcal{N}=(4,4)$ twisted hypermultiplets, the red lines denote $\mathcal{N}=(0,4)$ hypermultiplets and green dashed lines are $\mathcal{N}=(0,2)$ Fermi multiplets. The round nodes are $\mathcal{N}=(0,4)$ vector multiplets plus $\mathcal{N}=(0,4)$ adjoint hypermultiplets, whilst the rectangular nodes are flavour symmetries.

Let us now check that our proposal is firstly anomaly free and secondly that the central charge matches the gravitational result obtained in [39]. Using similar arguments to the case considered in the main text, and the relations

$$
\begin{equation*}
\beta_{k}=\alpha_{k+1}-\alpha_{k}, \quad \nu_{k}=\mu_{k+1}-\mu_{k} \tag{B.1}
\end{equation*}
$$

it follows that the quiver is anomaly free.

The Brown-Henneaux formula for the central charge gives the simple result

$$
\begin{equation*}
c_{B H}=\sum_{k=0}^{P}\left(6 \alpha_{k} \mu_{k}+3\left(\mu_{k} \beta_{k}+\alpha_{k} \nu_{k}\right)+2 \beta_{k} \nu_{k}\right) . \tag{B.2}
\end{equation*}
$$

The first thing to note is that only the first term is generically an integer multiple of 6 , despite being dual to a $\mathcal{N}=(0,4)$ SCFT. As we pointed out earlier this is not necessarily a contradiction since Brown-Henneaux does not give c_{R} but the sum [77]

$$
\begin{equation*}
c_{B H}=\frac{c_{L}+c_{R}}{2}, \tag{B.3}
\end{equation*}
$$

and furthermore higher derivative corrections may still contribute to the subleading terms. Using the constraints (B.1) we may write

$$
\begin{equation*}
c_{B H}=\sum_{k=0}^{P}\left(6 \alpha_{k} \mu_{k}+\alpha_{k} \mu_{k+1}+\alpha_{k+1} \mu_{k}-2 \alpha_{k} \mu_{k}\right) . \tag{B.4}
\end{equation*}
$$

We now want to compare this with the field theory result, keeping in mind that this is not the c_{R} that one computes in field theory. Following our earlier discussion, the contribution to the central charge from the field theory is given by 6 times the number of isolated $\mathcal{N}=(0,4)$ hypermultiplets. For the quiver at hand this is

$$
\begin{equation*}
c_{R}=6 \sum_{k=1}^{P} \alpha_{k} \mu_{k} . \tag{B.5}
\end{equation*}
$$

We can also compute the gravitational anomaly using (4.6). We find

$$
\begin{align*}
c_{L}-c_{R} & =\sum_{k=1}^{P}\left(\alpha_{k}\left(\mu_{k+1}-\mu_{k}\right)+\mu_{k}\left(\alpha_{k+1}-\alpha_{k}\right)\right) \\
& =\sum_{k=1}^{P}\left(\alpha_{k} \mu_{k+1}+\alpha_{k+1} \mu_{k}-2 \alpha_{k} \mu_{k}\right) . \tag{B.6}
\end{align*}
$$

Finally combining (B.5) and (B.6) we should compare the gravity result to

$$
\begin{align*}
c_{B H}^{\mathrm{CFT}}=c_{R}+\frac{1}{2}\left(c_{L}-c_{R}\right) & =\sum_{k=1}^{P}\left(6 \alpha_{k} \mu_{k}+\frac{1}{2}\left(\alpha_{k} \mu_{k+1}+\alpha_{k+1} \mu_{k}-2 \alpha_{k} \mu_{k}\right)\right) \\
& =\sum_{k=1}^{P}\left(6 \alpha_{k} \mu_{k}+\frac{1}{2}\left(\alpha_{k}\left(\mu_{k+1}-\mu_{k}\right)+\mu_{k}\left(\alpha_{k+1}-\alpha_{k}\right)\right)\right) . \tag{B.7}
\end{align*}
$$

We note that the leading order terms match exactly without the need for any scaling argument as used in the literature previously. We believe that once higher order corrections to the gravity computation are taken into account one will obtain a match even at subleading order. One curiosity of our results is that the central charge as computed from gravity, (B.4), is exactly c_{L}. We leave understanding this and the higher derivative corrections to future work.

References

[1] Y. Lozano, N. T. Macpherson, C. Nunez and A. Ramirez, $A d S_{3}$ solutions in Massive IIA with small $\mathcal{N}=(4,0)$ supersymmetry, JHEP 01 (2020) 129, [1908.09851].
[2] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99-104, [hep-th/9601029].
[3] J. M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M theory, JHEP 12 (1997) 002, [hep-th/9711053].
[4] C. Vafa, Black holes and Calabi-Yau threefolds, Adv. Theor. Math. Phys. 2 (1998) 207-218, [hep-th/9711067].
[5] R. Minasian, G. W. Moore and D. Tsimpis, Calabi-Yau black holes and (0,4) sigma models, Commun. Math. Phys. 209 (2000) 325-352, [hep-th/9904217].
[6] A. Castro, J. L. Davis, P. Kraus and F. Larsen, String Theory Effects on Five-Dimensional Black Hole Physics, Int. J. Mod. Phys. A 23 (2008) 613-691, [0801.1863].
[7] B. Haghighat, C. Kozcaz, G. Lockhart and C. Vafa, Orbifolds of M-strings, Phys. Rev. D 89 (2014) 046003, [1310.1185].
[8] A. Gadde, B. Haghighat, J. Kim, S. Kim, G. Lockhart and C. Vafa, 6d String Chains, JHEP 02 (2018) 143, [1504.04614].
[9] B. Haghighat, S. Murthy, C. Vafa and S. Vandoren, F-Theory, Spinning Black Holes and Multi-string Branches, JHEP 01 (2016) 009, [1509.00455].
[10] C. Lawrie, S. Schafer-Nameki and T. Weigand, Chiral 2d theories from N $=4$ SYM with varying coupling, JHEP 04 (2017) 111, [1612.05640].
[11] C. Couzens, C. Lawrie, D. Martelli, S. Schafer-Nameki and J.-M. Wong, F-theory and $A d S_{3} / C F T_{2}$, JHEP 08 (2017) 043, [1705.04679].
[12] C. Couzens, H. het Lam, K. Mayer and S. Vandoren, Black Holes and (0,4) SCFTs from Type IIB on K3, JHEP 08 (2019) 043, [1904.05361].
[13] I. Bena, D.-E. Diaconescu and B. Florea, Black string entropy and Fourier-Mukai transform, JHEP 04 (2007) 045, [hep-th/0610068].
[14] C. Couzens, H. het Lam, K. Mayer and S. Vandoren, Anomalies of $(0,4)$ SCFTs from F-theory, JHEP 08 (2020) 060, [2006.07380].
[15] B. Haghighat, A. Iqbal, C. Kozçaz, G. Lockhart and C. Vafa, M-Strings, Commun. Math. Phys. 334 (2015) 779-842, [1305.6322].
[16] G. Lockhart and C. Vafa, Superconformal Partition Functions and Non-perturbative Topological Strings, JHEP 10 (2018) 051, [1210.5909].
[17] H.-C. Kim, J. Kim and S. Kim, Instantons on the 5-sphere and M5-branes, 1211.0144.
[18] D. Martelli and J. Sparks, G structures, fluxes and calibrations in M theory, Phys. Rev. D 68 (2003) 085014, [hep-th/0306225].
[19] D. Tsimpis, M-theory on eight-manifolds revisited: $N=1$ supersymmetry and generalized spin(7) structures, JHEP 04 (2006) 027, [hep-th/0511047].
[20] N. Kim, $A d S(3)$ solutions of IIB supergravity from D3-branes, JHEP 01 (2006) 094, [hep-th/0511029].
[21] H. Kim, K. K. Kim and N. Kim, 1/4-BPS M-theory bubbles with $S O$ (3) x $S O$ (4) symmetry, JHEP 08 (2007) 050, [0706.2042].
[22] P. Figueras, O. A. P. Mac Conamhna and E. O Colgain, Global geometry of the supersymmetric AdS(3)/CFT(2) correspondence in M-theory, Phys. Rev. D 76 (2007) 046007, [hep-th/0703275].
[23] A. Donos, J. P. Gauntlett and J. Sparks, $\operatorname{AdS(3)} x\left(S^{* *} 3 x S^{* *} 3 x S^{* *} 1\right)$ Solutions of Type IIB String Theory, Class. Quant. Grav. 26 (2009) 065009, [0810.1379].
[24] E. O Colgain, J.-B. Wu and H. Yavartanoo, Supersymmetric AdS3 X S2 M-theory geometries with fluxes, JHEP 08 (2010) 114, [1005.4527].
[25] E. D'Hoker, J. Estes, M. Gutperle and D. Krym, Exact Half-BPS Flux Solutions in M-theory. I: Local Solutions, JHEP 08 (2008) 028, [0806.0605].
[26] J. Estes, R. Feldman and D. Krym, Exact half-BPS flux solutions in M theory with $D\left(2,1 ; c^{\prime} ; 0\right)^{2}$ symmetry: Local solutions, Phys. Rev. D 87 (2013) 046008, [1209.1845].
[27] C. Bachas, E. D'Hoker, J. Estes and D. Krym, M-theory Solutions Invariant under $D(2,1 ; \gamma) \oplus D(2,1 ; \gamma)$, Fortsch. Phys. 62 (2014) 207-254, [1312.5477].
[28] F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005, [1302.4451].
[29] J. Jeong, E. Ó Colgáin and K. Yoshida, SUSY properties of warped $A d S_{3}$, JHEP 06 (2014) 036, [1402.3807].
[30] Y. Lozano, N. T. Macpherson, J. Montero and E. O. Colgáin, New AdS $S_{3} \times S^{2} T$-duals with $\mathcal{N}=(0,4)$ supersymmetry, JHEP 08 (2015) 121, [1507.02659].
[31] F. Benini, N. Bobev and P. M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP 07 (2016) 020, [1511.09462].
[32] O. Kelekci, Y. Lozano, J. Montero, E. O. Colgáin and M. Park, Large superconformal near-horizons from M-theory, Phys. Rev. D 93 (2016) 086010, [1602.02802].
[33] L. Eberhardt, Supersymmetric $A d S_{3}$ supergravity backgrounds and holography, JHEP 02 (2018) 087, [1710.09826].
[34] G. Dibitetto and N. Petri, Surface defects in the D4 - D8 brane system, JHEP 01 (2019) 193, [1807.07768].
[35] G. Dibitetto, G. Lo Monaco, A. Passias, N. Petri and A. Tomasiello, AdS S_{3} Solutions with Exceptional Supersymmetry, Fortsch. Phys. 66 (2018) 1800060, [1807.06602].
[36] N. T. Macpherson, Type II solutions on $A d S_{3} \times S^{3} \times S^{3}$ with large superconformal symmetry, JHEP 05 (2019) 089, [1812.10172].
[37] A. Legramandi and N. T. Macpherson, $A d S_{3}$ solutions with from $\mathcal{N}=(3,0)$ from $S^{3} \times S^{3}$ fibrations, Fortsch. Phys. 68 (2020) 2000014, [1912.10509].
[38] Y. Lozano, N. T. Macpherson, C. Nunez and A. Ramirez, 1/4 BPS solutions and the $A d S_{3} / C F T_{2}$ correspondence, Phys. Rev. D 101 (2020) 026014, [1909.09636].
[39] Y. Lozano, N. T. Macpherson, C. Nunez and A. Ramirez, Two dimensional $\mathcal{N}=(0,4)$ quivers dual to $A d S_{3}$ solutions in massive IIA, JHEP 01 (2020) 140, [1909.10510].
[40] Y. Lozano, N. T. Macpherson, C. Nunez and A. Ramirez, AdS S_{3} solutions in massive IIA, defect CFTs and T-duality, JHEP 12 (2019) 013, [1909.11669].
[41] C. Couzens, H. het Lam and K. Mayer, Twisted $\mathcal{N}=1$ SCFTs and their AdS S_{3} duals, JHEP 03 (2020) 032, [1912.07605].
[42] C. Couzens, $\mathcal{N}=(0,2)$ AdS S_{3} Solutions of Type IIB and F-theory with Generic Fluxes, 1911.04439.
[43] A. Passias and D. Prins, On $A d S_{3}$ solutions of Type IIB, 1910.06326.
[44] K. Filippas, Non-integrability on $A d S_{3}$ supergravity backgrounds, JHEP 02 (2020) 027, [1910.12981].
[45] S. Speziali, Spin 2 fluctuations in $1 / 4 B P S A d S_{3} / C F T_{2}$, JHEP 03 (2020) 079, [1910.14390].
[46] Y. Lozano, C. Nunez, A. Ramirez and S. Speziali, M-strings and AdS solutions to M-theory with small $\mathcal{N}=(0,4)$ supersymmetry, JHEP 08 (2020) 118, [2005.06561].
[47] F. Farakos, G. Tringas and T. Van Riet, No-scale and scale-separated flux vacua from IIA on G2 orientifolds, Eur. Phys. J. C 80 (2020) 659, [2005.05246].
[48] K. S. Rigatos, Non-integrability in $A d S_{3}$ vacua, JHEP 02 (2021) 032, [2011.08224].
[49] F. Faedo, Y. Lozano and N. Petri, Searching for surface defect CFTs within AdS S_{3}, JHEP 11 (2020) 052, [2007.16167].
[50] G. Dibitetto and N. Petri, AdS S_{3} from M-branes at conical singularities, JHEP 01 (2021) 129, [2010.12323].
[51] K. Filippas, Holography for $2 D \mathcal{N}=(0,4)$ quantum field theory, Phys. Rev. $D 103$ (2021) 086003, [2008.00314].
[52] A. Passias and D. Prins, On supersymmetric $A d S_{3}$ solutions of Type II, 2011.00008.
[53] F. Faedo, Y. Lozano and N. Petri, New $\mathcal{N}=(0,4) A d S_{3}$ near-horizons in Type IIB, JHEP 04 (2021) 028, [2012.07148].
[54] C. Eloy, Kaluza-Klein spectrometry for AdS_{3} vacua, SciPost Phys. 10 (2021) 131, [2011.11658].
[55] A. Legramandi, G. Lo Monaco and N. T. Macpherson, All $\mathcal{N}=(8,0)$ AdS S_{3} solutions in 10 and 11 dimensions, JHEP 05 (2021) 263, [2012.10507].
[56] S. Zacarias, Marginal deformations of a class of $\operatorname{AdS} S_{3} \mathcal{N}=(0,4)$ holographic backgrounds, JHEP 06 (2021) 017, [2102.05681].
[57] M. Emelin, F. Farakos and G. Tringas, Three-dimensional flux vacua from IIB on co-calibrated G2 orientifolds, Eur. Phys. J. C 81 (2021) 456, [2103.03282].
[58] C. Couzens, N. T. Macpherson and A. Passias, $\mathcal{N}=(2,2)$ AdS S_{3} from D3-branes wrapped on Riemann surfaces, 2107.13562.
[59] M. Suh, D3-branes and M5-branes wrapped on a topological disc, 2108.01105.
[60] A. Boido, J. M. P. Ipiña and J. Sparks, Twisted D3-brane and M5-brane compactifications from multi-charge spindles, JHEP 07 (2021) 222, [2104.13287].
[61] P. Ferrero, J. P. Gauntlett, J. M. Pérez Ipiña, D. Martelli and J. Sparks, D3-Branes Wrapped on a Spindle, Phys. Rev. Lett. 126 (2021) 111601, [2011.10579].
[62] S. M. Hosseini, K. Hristov and A. Zaffaroni, Rotating multi-charge spindles and their microstates, JHEP 07 (2021) 182, [2104.11249].
[63] A. Bernamonti, M. M. Caldarelli, D. Klemm, R. Olea, C. Sieg and E. Zorzan, Black strings in $A d S(5)$, JHEP 01 (2008) 061, [0708.2402].
[64] S. M. Hosseini, A. Nedelin and A. Zaffaroni, The Cardy limit of the topologically twisted index and black strings in $A d S_{5}$, JHEP 04 (2017) 014, [1611.09374].
[65] M. Azzola, D. Klemm and M. Rabbiosi, AdS S_{5} black strings in the stu model of FI-gauged $N=2$ supergravity, JHEP 10 (2018) 080, [1803.03570].
[66] S. M. Hosseini, K. Hristov and A. Zaffaroni, Microstates of rotating AdS strings, JHEP 11 (2019) 090, [1909.08000].
[67] S. M. Hosseini, K. Hristov, Y. Tachikawa and A. Zaffaroni, Anomalies, Black strings and the charged Cardy formula, JHEP 09 (2020) 167, [2006.08629].
[68] M. Cvetic, H. Lu and C. Pope, Brane resolution through transgression, Nucl. Phys. B 600 (2001) 103-132, [hep-th/0011023].
[69] J. D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207-226.
[70] Y. Lozano, C. Nunez, A. Ramirez and S. Speziali, New AdS S_{2} backgrounds and $\mathcal{N}=4$ conformal quantum mechanics, JHEP 03 (2021) 277, [2011.00005].
[71] Y. Lozano, C. Nunez, A. Ramirez and S. Speziali, AdS ${ }_{2}$ duals to ADHM quivers with Wilson lines, JHEP 03 (2021) 145, [2011.13932].
[72] Y. Lozano, C. Nunez and A. Ramirez, $A d S_{2} \times S^{2} \times C Y_{2}$ solutions in Type IIB with 8 supersymmetries, JHEP 04 (2021) 110, [2101.04682].
[73] Y. Lozano, N. Petri and C. Risco, New AdS S_{2} supergravity duals of $4 d$ SCFTs with defects, 2107. 12277.
[74] D. Tong, The holographic dual of $A d S_{3} \times S^{3} \times S^{3} \times S^{1}$, JHEP 04 (2014) 193, [1402.5135].
[75] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152-190, [hep-th/9611230].
[76] T. Banks, N. Seiberg and E. Silverstein, Zero and one-dimensional probes with $N=8$ supersymmetry, Phys. Lett. B 401 (1997) 30-37, [hep-th/9703052].
[77] P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP 01 (2006) 022, [hep-th/0508218].

[^0]: ${ }^{1}$ See also $[11,12,14,18-62]$ for other examples of AdS_{3} solutions in various supergravity theories.
 ${ }^{2}$ Recently there has been much interest in black string solutions which are asymptotically AdS, see for example [60-67]. In contrast the black strings that we consider here are asymptotically flat.
 ${ }^{3}$ In [1] a second class of solutions where the CY_{2} is replaced by a general Kähler manifold was also constructed.
 ${ }^{4}$ In [49] brane solutions were constructed leading to this type of backgrounds with the compact Calabi-Yau

[^1]: ${ }^{5}$ Note that since h_{8} is constant here we have redefined the two-form H_{2}, this accounts for the difference with the results in [1] which will become manifest when we take the near-horizon limit in the next subsection.

[^2]: ${ }^{6}$ More specifically, the sub-class of $\mathcal{N}=(0,4) \mathrm{AdS}_{3}$ solutions with $u^{\prime}=0$ is reproduced. See [50] for brane solutions leading to AdS_{3} near horizons with $u^{\prime} \neq 0$.

[^3]: ${ }^{7}$ One typically normalises a Poincaré dual pair such that the integral over the curve of the form is unity. Our normalisation will require additional factors of π to appear, in particular the pair (ω, C) is such that

 $$
 \int_{C} \alpha=\frac{1}{2 \pi} \int_{\mathrm{CY}_{2}} \alpha \wedge \omega,
 $$

[^4]: ${ }^{8}$ The definition includes a normalisation factor of $\left(2 \pi \ell_{\mathrm{s}}\right)^{-2}$.
 ${ }^{9}$ We will set the string length, ℓ_{s} to 1 from now on, however one can reintroduce it by dimensional analysis.

[^5]: ${ }^{10}$ Note that h_{8} is necessarily positive in order for the metric to be of correct signature. Despite such a constraint not existing for γ we may without loss of generality take it to be positive by a judicious choice of orientation of the two-cycle.

[^6]: ${ }^{11}$ As we will see shortly the discontinuities give rise to sources for branes and have interesting physics.

[^7]: ${ }^{12}$ Note that in [39] when computing the Bianchi identities the discontinuities in the contributions from the large gauge transformations have been neglected. Taking these into account gives rise to a non-trivial contribution to \hat{f}_{6}.

[^8]: ${ }^{13}$ We note that the quivers proposed here differ with the ones in [39], which were conjectured to be the dual of the gravity solutions without fractional branes if we take the $\gamma \rightarrow 0$ limit. We believe that our proposal here is the correct one for both cases and we will explain this using our stringy analysis and by showing that the unnatural scaling argument used in [39] to find a match between both sides of the duality is not needed for our quiver. We will comment more on this in appendix B where we present the corrected quiver for the theory studied in [39].

[^9]: ${ }^{14}$ Recall we set $\ell_{\mathrm{s}}=1$.

[^10]: ${ }^{15}$ Note that we find a different result to that in [1] and subsequent follow ups. The reason for this mismatch is because we have taken into account the non-trivial large gauge transformations one must perform in going between segments. The effect of these was neglected in the earlier works and our expressions trivially extend to the $\gamma=0$ case.
 ${ }^{16}$ Concretely the projection condition that the supersymmetry parameters satisfy for a Dp-brane are $\epsilon_{L}=$ $\Gamma_{0 \ldots p} \epsilon_{R}$, with the condition for an anti-Dp-brane being $\epsilon_{L}=-\Gamma_{0 \ldots p} \epsilon_{R}$. Clearly these are incompatible when the branes are parallel.

[^11]: ${ }^{17}$ We use the shorthand $\hat{\mu}_{\bullet}=2 \kappa_{10}^{2} \mu_{\bullet}$
 ${ }^{18}$ If we had performed this in the full brane solution we would have obtained delta function sources placing these branes at the tip of \mathbb{R}^{3}. In taking the near-horizon limit we have washed out this in the computation of the Bianchi identities. Since our goal is to understand the physics of the line interval we shall ignore such contributions in the following.

[^12]: ${ }^{19}$ Note that the formula agrees with the standard $\mathcal{N}=(0,4)$ central charge relation $c=6\left(n_{H}-n_{V}\right)$. Since each $\mathcal{N}=(0,4)$ vector multiplet is accompanied by a $\mathcal{N}=(0,4)$ adjoint hypermultiplet their contributions to the anomaly cancel. Consequently, the only contributions are from the isolated (by isolated we mean that they do not appear in the completion of a larger multiplet) bifundamental $\mathcal{N}=(0,4)$ hypermultiplets.

[^13]: ${ }^{20}$ To see this use that the preserved supersymmetry parameters of a D2 brane lying along 012 satisfy $\epsilon_{L}=\Gamma_{012} \epsilon_{R}$ whilst for an NS5 brane lying along 013456 and localised at fixed points in 2, the preserved supersymmetry parameters satisfy $\epsilon_{L}=\Gamma_{013456} \epsilon_{L}$ and $\epsilon_{R}=-\Gamma_{013456} \epsilon_{R}$. Here 3456 span the directions of the Calabi-Yau and 2 is the direction of the interval.
 ${ }^{21}$ To distinguish between the scalars forming hypermultiplets or twisted hypermultiplets one should consider

[^14]: ${ }^{22}$ Due to the different completions of the solutions there is no limit in which one can recover the massless case without fractional branes from the massive case studied in this appendix. The issue arises because the quiver in the massive case studied here is the one obtained when there are both D 4 and D 8 branes ending the space and there is no consistent way of removing these D 8 branes in trying to take a massless limit. One may instead consider a massive quiver where the space does not end with D8 branes, that is, the function h_{8} does not vanish at the end-points in the dual gravity solution. However this modifies the quiver studied in [39] which is the quiver we will discuss here.

