
CLASSIFICATION OF MOMENTUM PROPER EXACT HAMILTONIAN
GROUP ACTIONS AND THE EQUIVARIANT ELIASHBERG

COTANGENT BUNDLE CONJECTURE

FABIAN ZILTENER

Abstract. Let G be a compact and connected Lie group. The Hamiltonian G-model
functor maps the category of symplectic representations of closed subgroups of G to the
category of exact Hamiltonian G-actions. Based on previous joint work with Y. Karshon,
the restriction of this functor to the momentum proper subcategory on either side induces
a bijection between the sets of isomorphism classes. This classifies all momentum proper
exact Hamiltonian G-actions (of arbitrary complexity).

As an extreme case, we obtain a version of the Eliashberg cotangent bundle conjecture
for transitive smooth actions. As another extreme case, the momentum proper Hamiltonian
G-actions on contractible manifolds are exactly the symplectic G-representations, up to
isomorphism.
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1. The main result and applications

Let G be a compact and connected Lie group. In order to define the Hamiltonian G-model
functor, we need the following. For every g ∈ G we denote by

cg : G→ G, cg(a) := gag−1,

the conjugation by g. We define SympRep≤G to be the following category:

• Its objects are the tuples (H, ρ) =
(
H, V, σ, ρ

)
, where H is a closed subgroup of

G, (V, σ) is a (finite dimensional) symplectic vector space and ρ is a symplectic H-
representation.
• Its morphisms between two objects (H, ρ) and (H ′, ρ′) are pairs (g, T ), where g ∈ G

and T : V → V ′ is a linear symplectic map, such that

cg(H) = H ′,(1.1)

Tρh = ρ′cg(h)T, ∀h ∈ H.(1.2)
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(The dimension of V ′ may be bigger than the dimension of V . In this case T is not
surjective.) The composition of two morphisms is defined by

(1.3) (g′, T ′) ◦ (g, T ) :=
(
g′g, T ′T

)
.

Remark. A morphism (g, T ) is an isomorphism in the sense of category theory if and only if
T is surjective (and hence bijective). In this case the inverse of (g, T ) is given by (g−1, T−1).

Let ψ =
(
M,ω, ψ

)
be a Hamiltonian G-action. We call ψ exact if there exists a ψ-invariant

primitive of ω.1 We call ψ momentum proper iff every momentum map for ψ is proper.2

We define Hamex
G to be the following category:

• Its objects are the exact Hamiltonian G-actions
(
M,ω, ψ

)
with M connected (and

without boundary3).
• Its morphisms between two objects (M,ω, ψ) and (M ′, ω′, ψ′) are proper symplectic

embeddings Φ from M to M ′ that intertwine ψ with ψ′. (The dimension of M ′ may
be bigger than the dimension of M .) Composition is the composition of maps.

Remark. The isomorphisms between two objects are equivariant symplectomorphisms.

We define the Hamiltonian G-model functor

ModelG : SympRep≤G → Hamex
G

as follows:

• For every object (H, ρ) we define

ModelG(H, ρ) =
(
Yρ, ωρ, ψρ)

to be the centred Hamiltonian G-model action induced by (H, ρ). This action is
defined as follows. (For details see [KZ18, Section 3].) We define ψDρ to be the
diagonal H-action on T ∗G× V induced by the right translation on G and by ρ. We
denote by g, h the Lie algebras of G,H and by

(1.4) νρ : V → h∗

the unique momentum map for ρ that vanishes at 0. For a ∈ G and ϕ ∈ g∗ we denote
by aϕ ∈ T ∗aG the image ϕ under the derivative of the left translation by a. We define

(1.5) µDH,ρ := µDρ : T ∗G× V → h∗, µDρ
(
a, aϕ, v

)
:= −ϕ|h + νρ(v).

This is a momentum map for ψDρ . The pair (Yρ, ωρ) is defined to be the symplectic

quotient of ψDρ at 0 w.r.t. µDρ . This means that

(1.6) YH,ρ := Yρ = (µDρ )−1(0)/ψDρ .

(The subgroup H is compact, since it is closed and G is compact. Therefore, the
restriction of ψDρ to (µDρ )−1(0) is proper. Since it is also free, the symplectic quotient
is well-defined.) The left translation by G on G induces a G-action on T ∗G and hence
on T ∗G×V . Since left and right translation commute, this action preserves (µDρ )−1(0)

and descends to a G-action ψρ on Yρ. This defines ModelG(H, ρ) =
(
Yρ, ωρ, ψρ).

1This condition is satisfied if ω is exact, because we assume that G is compact. (We obtain a ψ-invariant
primitive from an arbitrary primitive by averaging w.r.t. the Haar measure on G.)

2By definition every momentum map is equivariant w.r.t. ψ and the coadjoint action.
3In this article every manifold is assumed to have empty boundary.
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• For every g ∈ G we denote by Rg : G → G, Rg(a) := ag, the right translation by
g, and by Rg

∗ : T ∗G → T ∗G the induced map. The map ModelG assigns to every
morphism (g, T ) : (H, ρ)→ (H ′, ρ′) the morphism ModelG(g, T ) given by

(1.7) ModelG(g, T )(y) :=
[
Rg−1

∗ (a, aϕ), T v
]
,

where (a, aϕ, v) is an arbitrary representative of y. (Here on the right hand side we
denote by

[
a′, a′ϕ′, v′

]
the equivalence class of

(
a′, a′ϕ′, v′

)
.)

The main result is the following. (As always, we assume that G is compact and connected.)

1.8. Theorem (Hamiltonian G-model functor). (i) (well-definedness on objects) The map
ModelG is well-defined on objects, i.e., ψρ is indeed an exact Hamiltonian G-action.

(ii) (well-definedness on morphisms) The map ModelG is well-defined on morphisms, i.e.,

(1.9)
(
Rg−1

∗ × T
) (

(µDρ )−1(0)
)
⊆ (µDρ′)

−1(0),

the right hand side of (1.7) does not depend on the choice of a representative (a, aϕ, v),
and ModelG(g, T ) is a morphism of Hamex

G .
(iii) (functoriality) The map ModelG is a covariant functor.
(iv) (essential injectivity) The map between the sets of isomorphism classes induced by

ModelG is injective.

(v) (morphisms) Let (H, ρ) and (H ′, ρ′) be objects of SympRep≤G, and (g, T ), (ĝ, T̂ ) be
morphisms between these objects. ModelG maps these morphisms to the same morphism
if and only if

(1.10) h′ := ĝg−1 ∈ H ′, T̂ = ρ′h′T.

(vi) (momentum properness and morphisms) Let A and A′ be objects of SympRep≤G or
Hamex

G , such that A′ is momentum proper and there exists a morphism from A to A′.
Then A is momentum proper.

(vii) (momentum properness and model functor) An object of SympRep≤G is momentum
proper if and only if its image under ModelG is momentum proper.

(viii) (essential surjectivity) Every momentum proper object of Hamex
G is isomorphic to an

object in the image of ModelG.

Remarks. • Theorem 1.8(v) characterizes the extent to which the functor ModelG is
faithful.
• In (vi,vii) an object (H, ρ) of SympRep≤G is called momentum proper iff ρ is mo-

mentum proper, i.e., if every momentum map for ρ is proper.

Part (viii) of Theorem (1.8) was proved in joint work [KZ18, 1.5. Theorem] with Y. Karshon.
The other parts will be proved in the next section. The proof of (iv) (essential injectivity)
is based on Lemma 2.19, which provides criteria under which the symplectic quotient rep-
resentation of the model action ModelG(H, ρ) at a given point is isomorphic to (H, ρ). We
also use the fact that if two compact subgroups of a Lie group are conjugate to subgroups
of each other then they are conjugate to each other. (See Lemma 2.8 below.)

Remark. Naively, in the definition of a morphism of SympRep≤G, one could try to weaken the
condition (1.1) to either the condition cg(H) ⊆ H ′ or cg(H) ⊇ H ′. With this modification
the model functor would no longer be well-defined on morphisms. (“⊇” is needed in order
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for (1.9) to hold and “⊆” is needed for the right hand side of (1.7) not to depend on the
choice of a representative. See the proof of Theorem 1.8(ii) below.)

We denote by
SympRepprop

≤G , Hamex,prop
G

the full subcategories of SympRep≤G and Hamex
G consisting of momentum proper objects.

Theorem 1.8 has the following application.

1.11. Corollary (classification of momentum proper exact Hamiltonian actions). The functor
ModelG induces a bijection

(1.12)
{

isomorphism class of SympRepprop
≤G

}
→
{

isomorphism class of Hamex,prop
G

}
.

Remarks. • It follows from Theorem 1.8(vi) that the isomorphism class of any object of
SympRepprop

≤G is its isomorphism class in the bigger category SympRep≤G. A similar
remark applies to Hamex,prop

G .
• Corollary 1.11 classifies all momentum proper exact Hamiltonian G-actions up to

isomorphism.
• The inverse of the classifying map (1.12) is induced by assigning to a Hamiltonian

action its symplectic quotient representation at any suitable point, see Proposition
4.1 below.
• In contrast with Corollary 1.11 the map induced by ModelG between the sets of

isomorphism classes of SympRep≤G and Hamex
G is not surjective. To see this, let

Q be a connected compact manifold of positive dimension, without boundary. We
define ω to be the canonical symplectic form on T ∗Q and ψ to be the trivial G-action
on T ∗Q.

We claim that the isomorphism class of (T ∗Q,ω, ψ) does not lie in the image of
ModelG. To see this, assume that

(
H,V, σ, ρ

)
is an object of SympRep≤G for which

ψρ is trivial. Then H = G and therefore, Yρ is canonically diffeomorphic to V . If(
Yρ, ωρ, ψρ

)
is isomorphic to

(
T ∗Q,ω, ψ

)
then it follows that Q is a singleton. This

proves the claim.
• Many classification results are known for Hamiltonian group actions whose complexity

is low. (By definition, the complexity is half the dimension of a generic non-empty
reduced space. For references see [KZ18].) What makes Corollary 1.11 special is that
it classifies Hamiltonian actions of arbitrary complexity.

Proof of Corollary 1.11. By Theorem 1.8(i,ii,vii“⇒”,iii) the map (1.12) is well-defined. By
Theorem 1.8(iv,viii,vii“⇐”) the map (1.12) is bijective. This proves Corollary 1.11. �

By considering the extreme case of the full subgroup H = G, this corollary implies that
the momentum proper Hamiltonian G-actions on contractible manifolds are exactly the
momentum proper symplectic G-representations, up to isomorphism. See Corollary 1.17
below. On the other hand, by considering the extreme case in which the vector space V is
trivial, using Corollary 1.11, we can classify the critical momentum proper exact Hamiltonian
G-actions in terms of transitive G-actions on manifolds.

To explain the latter application, we define Acttrans
G to be the category whose objects are

the transitive smooth G-actions on connected closed4 manifolds and whose morphisms are

4This means compact and without boundary.
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the G-equivariant diffeomorphisms. We call an object (M,ω, ψ) of Hamex,prop
G critical iff M

is homotopy equivalent to some closed manifold of dimension equal to dim(M)/2.

1.13. Remark (criticality). By Corollary 1.11 there exists an object (H, ρ) =
(
H, V, σ, ρ

)
of SympRepprop

≤G , such that ModelG(H, ρ) is isomorphic to (M,ω, ψ). The manifold part
of ModelG(H, ρ) is homotopy equivalent to the closed manifold G/H and has dimension
2(dimG − dimH) + dimV . It follows that M is not homotopy equivalent to any closed
manifold of dimension bigger than dim(M)/2. This justifies the terminology critical.

We denote

Hamcrit
G := full subcategory of Hamex,prop

G consisting of critical objects.

For every manifold Q we denote by ωQ the canonical symplectic form on T ∗Q. We define
the G-cotangent functor T ∗G to be the canonical functor from the category of G-actions on
manifolds and G-equivariant diffeomorphisms to the category of Hamiltonian G-actions and
G-equivariant symplectomorphisms. It takes an object (Q, θ) to (T ∗Q,ωQ) together with
lifted G-action θ∗, and a morphism f : Q→ Q′ to the lifted map f∗ : T ∗Q→ T ∗Q′.

1.14. Corollary (classification of critical momentum proper exact Hamiltonian actions).
The functor T ∗G induces a bijection

(1.15)
{

isomorphism class of Acttrans
G

}
→
{

isomorphism class of Hamcrit
G

}
.

Remarks (classification of critical actions, Eliashberg cotangent bundle conjecture). •
Part of the statement is that T ∗G maps Acttrans

G to Hamcrit
G .

• The isomorphism class of any object of Hamcrit
G in Hamcrit

G is its isomorphism class in
the bigger category Hamex,prop

G (or in Hamex
G ).

• Corollary 1.14 classifies the critical momentum proper exact Hamiltonian G-actions
in terms of transitive G-actions on manifolds.
• The cotangent functor T ∗ is the canonical functor from the category of connected

closed smooth manifolds and diffeomorphisms to the category of symplectic manifolds
and symplectomorphisms. It agrees with T ∗{e}. The Eliashberg cotangent bundle
conjecture states that T ∗ is essentially injective, i.e., it induces an injective map
between the sets of isomorphism classes. See [MS17, Problem 31, p. 561]. Very little
is known about this conjecture. See [Abo12, EKS16, ES16] for some results.
• By Corollary 1.14 the restriction of the functor T ∗G to the category Acttrans

G of transitive
G-actions is essentially injective. This proves an equivariant version of the Eliashberg
cotangent bundle conjecture. In fact, Corollary 1.14 provides more information,
namely it also specifies the image of the class of objects of Acttrans

G under T ∗G, up to
isomorphism.
• The philosophy behind this application is that symmetry makes problems more ac-

cessible. In the present situation it allows for a classification of the structures at hand
(transitive G-actions and critical Hamiltonian G-actions). The same philosophy was
for example used recently in [FPP18], where the authors used Delzant’s classification
of symplectic toric manifolds to prove that certain equivariant symplectic capacities
are (dis-)continuous. (Without symmetry the question whether a given symplectic
capacity is continuous is hard in general.)
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We will prove Corollary 1.14 in Section 3.

As another application of Corollary 1.11, we now classify the momentum proper Hamil-
tonian G-actions on contractible manifolds. Here we consider another extreme case, in which
the subgroup H equals G. We denote by SympRepG the category whose objects are sym-
plectic G-representations and whose morphisms are G-equivariant linear symplectic maps
(possibly not surjective), and by

SympRepprop
G

the full subcategory consisting of momentum proper objects. We denote by Hamcontr
G the full

subcategory of Hamex
G consisting of those objects (M,ω, ψ) for which M is contractible, and

by
Hamcontr,prop

G

the full subcategory consisting of momentum proper objects. We denote by

ιG : SympRepG → Hamcontr
G , ιG,prop : SympRepprop

G → Hamcontr,prop
G

the inclusion functor and its restriction to the momentum proper subcategories. We denote
by ιG∗ , ι

G,prop
∗ the maps between the sets of isomorphism classes induced by ιG, ιG,prop.

1.16. Remarks. (i) The isomorphism class of any object in SympRepprop
G is its isomorphism

class in the bigger category SympRepG. This follows from Remark 2.18(ii) below.
Similar remarks apply to the subcategory Hamcontr,prop

G of Hamcontr
G and the subcategory

Hamcontr
G of Hamex

G .
(ii) The map ιG∗ extends the map ιG,prop

∗ . By (i) this statement makes sense.

1.17. Corollary (classification of momentum proper Hamiltonian actions on contractible manifolds). (i)
The map ιG∗ is injective.

(ii) The map ιG,prop
∗ is surjective.

Remarks. • It follows from (i) and Remark 1.16(ii) that ιG,prop
∗ is injective. Using (ii),

this map is bijective.
• Part (ii) means that every momentum proper Hamiltonian G-action on a contractible

symplectic manifold is symplectically linearizable.
• The statement of Corollary 1.17 means that the momentum proper Hamiltonian
G-actions on contractible symplectic manifolds agree with the momentum proper
symplectic G-representations, up to isomorphism. This classifies these actions.
• Assume that G is non-abelian. In contrast with part (ii) the map ιG∗ is not surjective.

This follows from [KZ18, Corollary 8.4].

For the proof of Corollary 1.17(ii) we need the following.

1.18. Remark. For every symplectic G-representation (V, σ, ρ) the map

(1.19) IρG : V → Yρ, IρG(v) := [e, 0, v],

is a G-equivariant symplectomorphism, i.e., an isomorphism from ιG(ρ) = ρ to ModelG(G, ρ)
in Hamex

G . This follows from a straight-forward argument.

Proof of Corollary 1.17. (i): Let R and R′ be isomorphism classes of SympRepG that are
mapped to the same class under ιG∗ . We choose representatives (V, σ, ρ), (V ′, σ′, ρ′) of R,R′

and an isomorphism Φ in Hamcontr
G from ιG(ρ) to ιG(ρ′). The differential dΦ(0) : T0V →
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TΦ(0)V
′ is an isomorphism from dρ(0) to dρ′(Φ(0)) in SympRepG. Since ρ is linear, the

canonical identification between V and T0V is an isomorphism from ρ to dρ(0) in SympRepG.
Similarly, ρ′ is isomorphic to dρ′(Φ(0)). Combining these three isomorphisms, it follows that
ρ and ρ′ are isomorphic in SympRepG, i.e., R = R′. Hence the map ιG∗ is injective. This
proves (i).

(ii): Let Ψ be an isomorphism class of objects of Hamcontr,prop
G . We choose a representative

(M,ω, ψ) of Ψ. By Theorem 1.8(viii) there exists an object (H, ρ) of SympRep≤G, such that
ψρ := ModelG(H, ρ) is isomorphic to ψ in Hamex

G . By Theorem 1.8(vi) ψρ is momentum
proper. Hence by Theorem 1.8(vii)“⇐” (H, ρ) is momentum proper. Since M is contractible,
the same holds for Yρ. Therefore, by the proof of [KZ18, 7.6 Lemma] we have H = G. Hence
by Remark 1.18 ιG(ρ) and ψρ are isomorphic in Hamex

G and hence in Hamcontr,prop
G . It follows

that ιG(ρ) and ψ are isomorphic in Hamcontr,prop
G . Hence ιG∗ ([ρ]) = Ψ. Thus ιG∗ is surjective.

This proves (ii) and completes the proof of Corollary 1.17. �

Remarks. • (This remark will be used in the next one.) We define ˜SympRepG to be
the category with objects the symplectic G-representations and morphisms between
ρ, ρ′ given by pairs (g, T ), where g ∈ G and T : V → V ′ is a linear symplectic map,
such that (1.2) holds. The composition is defined by (1.3). We define the functor

iG : ˜SympRepG → SympRep≤G, iG(ρ) := (G, ρ), iG = identity on morphisms.

We may view ˜SympRepG as a full subcategory of SympRep≤G via this functor. We
define the map

FG : ˜SympRepG → SympRepG, FG = identity on objects, FG(g, T ) := ρ′g−1T.

A straight-forward argument shows that this map is a covariant functor.
• Part (i) of Corollary 1.17 can alternatively be deduced from Theorem 1.8(iv) as fol-

lows. Let R,R′ be isomorphism classes of SympRepG that are mapped to the same
class under ιG∗ . We choose representatives ρ, ρ′ of R,R′. Then ιG(ρ) and ιG(ρ′) are
isomorphic. Using Remark 1.18, it follows that ModelG ◦iG(ρ) and ModelG ◦iG(ρ′)
are isomorphic. Hence by Theorem 1.8(iv) there exists an isomorphism (g, T ) in
SympRep≤G from iG(ρ) = (G, ρ) to iG(ρ′) = (G, ρ′). It follows that (g, T ) is an iso-

morphism in ˜SympRepG from ρ to ρ′. Therefore, FG(g, T ) = ρ′g−1T is an isomorphism

in SympRepG from FG(ρ) = ρ to FG(ρ′) = ρ′. It follows that R = [ρ] = [ρ′] = R′.
This shows that ιG∗ is injective, i.e., part (i) of Corollary 1.17.
• A straight-forward argument shows that the map IG : ρ 7→ IρG is a natural isomorphism

between the functors ιG ◦ FG and ModelG ◦iG,

ιG ◦ FG
IG−→
'

ModelG ◦iG.
7



This means that for every morphism (g, T ) : ρ→ ρ′ of ˜SympRepG the diagram

ιG ◦ FG(ρ)
ιG◦FG(g,T )−−−−−−−→ ιG ◦ FG(ρ′)

IρG

y yIρ
′
G

ModelG ◦iG(ρ)
ModelG ◦iG(g,T )−−−−−−−−−→ ModelG ◦iG(ρ′).

commutes, and that IρG is an isomorphism for every object ρ of ˜SympRepG. In other
words the map ModelG(g, T ) is given by

ModelG(g, T ) = FG(g, T ) = ρ′g−1T : Yρ → Yρ′

via the natural identifications IρG : V
∼=→ Yρ and Iρ

′

G : V ′
∼=→ Yρ′ .

2. Proof of Theorem 1.8(i-vii) (Hamiltonian G-model functor)

For the proof of Theorem 1.8(i) we need the following. We denote by Ad and Ad∗ the
adjoint and coadjoint representations of G. We define the map

µL : T ∗G→ g∗, µL(a, aϕ) = Ad∗(a)ϕ.

This is a momentum map for the lifted left-translation action of G on T ∗G. We denote by
pr1 : T ∗G× V → T ∗G the canonical projection. Since left and right translations commute,
µL is preserved by the lifted right translation action of H on T ∗G. Hence the map µL ◦ pr1

descends to a map
µρ : Yρ → g∗.

Proof of Theorem 1.8(i). The map µρ is a momentum map for ψρ. Hence ψρ is a Hamiltonian
action, and therefore ModelG is well-defined on objects, as claimed. �

For the proof of Theorem 1.8(ii) we need the following.

2.1. Remark (product of proper maps). Let X, Y,X ′, Y ′ be topological spaces, with Y and
Y ′ Hausdorff. Let f : X → Y and f ′ : X ′ → Y ′ be proper continuous maps. Then the
Cartesian product map f×f ′ : X×X ′ → Y ×Y ′ is proper. This follows from an elementary
argument. (Hausdorffness ensures that every compact subset of Y × Y ′ is closed.)

Proof of Theorem 1.8(ii). Let
(
H, V, σ, ρ

)
and

(
H ′, V ′, σ′, ρ′

)
be objects of SympRep≤G and

(g, T ) a morphism between them. We denote by h and h′ the Lie algebras of H and H ′. By
(1.1) we have cg−1(H ′) = H. It follows that Adg−1(h′) = h. Hence Ad∗(g) = Ad∗g−1 induces
a map from h∗ to h′∗, which we again denote by Ad∗(g). We have

(2.2) Ad∗(g)(ϕ)|h′ = Ad∗(g)(ϕ|h), ∀(a, aϕ) ∈ T ∗G.
The map

ρ′ ◦ cg : H →
{

isomorphisms of (V ′, σ′)
}

is a Hamiltonian action with momentum map

c∗g ◦ νρ′ = Ad∗g ◦νρ′ : V ′ → h∗,

where νρ′ is as in (1.4). By (1.2) ρ′ leaves the image T (V ) invariant and T is a symplectic
embedding that is equivariant w.r.t. ρ and ρ′ ◦ cg. It follows that

(2.3) Ad∗g ◦νρ′ ◦ T = νρ.
8



(Here we use that both sides vanish at v = 0 ∈ V .) For every (a, aϕ, v) ∈ T ∗G× V we have

µDρ′ ◦
(
Rg−1

∗ × T
)

(a, aϕ, v) = µDρ′
(
ag−1, ag−1 Ad∗(g)(ϕ), T v

)
= −Ad∗(g)(ϕ)|h′ + νρ′(Tv)

= Ad∗(g)
(
− ϕ|h + νρ(v)

)
(using (2.2,2.3))

= Ad∗(g) ◦ µDρ (a, aϕ, v).

The claimed inclusion (1.9) follows. We define

Φ̃ := Rg−1

∗ × T : (µDρ )−1(0)→ (µDρ′)
−1(0).

Let h ∈ H. By (1.1) we have h′ := cg(h) ∈ H ′. By (1.2) the map Φ̃ intertwines the diagonal
action of h on T ∗G×V with the diagonal action of h′ on T ∗G×V ′. It follows that the right
hand side of (1.7) does not depend on the choice of the representative (a, aϕ, v), as claimed.
We denote by

Φ := ModelG(g, T ) : Yρ → Yρ′ ,

the map induced by Φ̃. We show that Φ is a morphism of Hamex
G . The map Φ̃ is smooth,

presymplectic, and equivariant w.r.t. the G-actions induced by the left translations on G. It
follows that Φ is smooth, symplectic, and equivariant w.r.t. to the G-actions ψρ and ψρ′ .

2.4. Claim. The maps T and Φ are proper.

Proof of Claim 2.4. The map T : V → V ′ is linear symplectic and hence injective. Since V
is finite-dimensional, it follows that

sup
0 6=v∈V

‖v‖
‖Tv‖′

<∞,

where ‖ · ‖, ‖ · ‖′ are arbitrary norms on V, V ′. This implies that T is proper, as claimed.
We denote by

(2.5) πρ : (µDρ )−1(0)→ Yρ = (µDρ )−1(0)/ψDρ

the canonical projection. Let K ′ ⊆ Yρ′ be a compact subset. Since Φ ◦ πρ = πρ′ ◦ Φ̃, we have

(2.6) π−1
ρ ◦ Φ−1(K ′) = Φ̃−1 ◦ π−1

ρ′ (K ′).

The projection πρ′ is proper, since H ′ is compact. It follows that π−1
ρ′ (K ′) is compact. The

map Rg−1

∗ : T ∗G → T ∗G is proper, since it is invertible with continuous inverse. Using
Remark 2.1 and properness of T , it follows that the Cartesian product map Rg−1

∗ × T :

T ∗G×V → T ∗G×V ′ is proper. Since this map restricts to Φ̃ on (µDρ )−1(0), it follows that Φ̃

is proper. Since π−1
ρ′ (K ′) is compact, it follows that the right hand side of (2.6) is compact,

hence also the left hand side. Since πρ maps this set to Φ−1(K ′), it follows that Φ−1(K ′) is
compact. This proves Claim 2.4. �

Using Claim 2.4, it follows that Φ is a G-equivariant proper symplectic embedding, i.e., a
morphism of Hamex

G . This proves that the map ModelG is well-defined on morphisms. This
completes the proof of Theorem 1.8(ii). �
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Proof of Theorem 1.8(iii). It follows from a straight forward argument that ModelG maps
the unit morphisms to unit morphisms and intertwines the compositions. Hence it is a
covariant functor. This proves Theorem 1.8(iii). �

For the proof of Theorem 1.8(iv) we need the following. Let G be a group, X a set, ψ an
action of G on X, and x ∈ X. We denote by

Gx := Stabψx :=
{
g ∈ G

∣∣ψg(x) = x
}

the stabilizer of x under ψ.

2.7. Remark. Let G be a Lie group, (ρ,H) an object of SympRep≤G, and y = [a, aϕ, v] ∈ Yρ.
Then

Gy =
{
ca(h)

∣∣h ∈ H : ρhv = v
}
.

2.8. Lemma. Let G be a topological (finite-dimensional) manifold with a continuous group
structure, N,N ′ compact submanifolds of G, and g ∈ G, such that

(2.9) cg(N) ⊆ N ′,

and N ′ is conjugate to some subset of N . Then we have

cg(N) = N ′.

In the proof of this lemma we will use the following.

2.10. Remark (invariance of domain). Let M and N be topological manifolds of the same
finite dimension, without boundary. Then every continuous injective map from M to N is
open. In the case M = N = Rn this is the statement of the Invariance of Domain Theorem,
see [Hat02, Theorem 2B.3, p. 172]. The general situation can be reduced to this case.

Proof of Lemma 2.8. We choose g′ ∈ G, such that

(2.11) cg′(N
′) ⊆ N,

and define ψ := cg′g : G→ G. We have

ψ(N) = cg′ ◦ cg(N) ⊆ N.

Let A be a connected component of N . Since N is a submanifold of G, the set A is open in
N . The map ψ is bijective and continuous. Hence by Remark 2.10 the restriction ψ : N → N
is open. Thus ψ(A) is open in N .

Since A is a connected component of N , it is closed in N . Since N is compact, it follows
that A is compact. Therefore, ψ(A) is compact and hence a closed subset of N . It follows
that ψ(A) is a connected component of N . Hence the map

(2.12)
{

connected component of N
}
3 A 7→ ψ(A) ∈

{
connected component of N

}
is well-defined. This map is injective. Since N is compact, the number of its connected
components is finite. It follows that the map (2.12) is surjective. It follows that N ⊆ ψ(N),
and therefore, c−1

g′ (N) ⊆ cg(N). By (2.11) we have N ′ ⊆ c−1
g′ (N). It follows that N ′ ⊆ cg(N).

Combining this with (2.9), it follows that cg(N) = N ′. This proves Lemma 2.8. �

Let G be a Lie group, (M,ω, ψ) a symplectic G-action, and x ∈M .
10



Remark. The isotropy representation of ψ at x is by definition the map

ρψ,x : Stabψx ×TxM → TxM, (g, v) 7→ dψg(x)v.

This is a symplectic representation of the isotropy group Stabψx .

In order to define the symplectic quotient representation of ψ at x, we need the following
remarks.

2.13. Remarks (symplectic quotient representation). (i) Let G be a Lie group, (M,ψ) a
G-action on a manifold, and x ∈M . We denote by g the Lie algebra of G and by

(2.14) Lx := Lψx : g→ TxM

the infinitesimal action at x. The equality

dψg(x)(imLx) = imLψg(x)

holds.
(ii) Let (V, σ) be a symplectic vector space and W ⊆ V a linear space. We denote by

W σ :=
{
v ∈ V

∣∣σ(v, w) = 0, ∀w ∈ W
}

the symplectic complement of W . Let (M,ω, ψ) be a symplectic G-action and x ∈M .
The form ωx induces a linear symplectic form ωx on the quotient space

(2.15) V ψ
x := (imLx)

ωx/
(
imLx ∩ (imLx)

ωx
)
.

It follows from (i) that dψg(x) ((imLx)
ωx) = (imLψg(x))

ωψg(x) . Therefore, using (i) again,
dψg(x) induces a map

(2.16) V ψ
x → V ψ

ψg(x).

This map is a linear symplectic isomorphism w.r.t. ωx and ωψg(x).

We define the symplectic quotient representation of ψ at x to be the map

(2.17) ρψ,x : Stabψx ×V ψ
x → V ψ

x ,

where ρψ,x(g, ·) is given by the map (2.16). By Remark 2.13(ii) this is a well-defined sym-
plectic representation of Stabψx on the linear symplectic quotient V ψ

x of (imLx)
ωx .5

2.18. Remarks (equivariant symplectomorphism, symplectic quotient representations). Let
G be a Lie group, (M,ω, ψ), (M ′, ω′, ψ′) symplectic G-actions, Φ : M →M ′ a G-equivariant
symplectomorphism, x ∈M , and x′ := Φ(x).

(i) Since Φ is G-equivariant and injective, we have

Stabψx = Stabψ
′

x′ .

Furthermore, we have dΦ(x)Lψx = Lψ
′

x′ , and therefore, dΦ(x)
(
imLψx

)
= imLψ

′

x′ . Since Φ
is symplectic, it follows that dΦ(x) induces a map

V ψ
x → V ψ′

x′ .

This map is a linear symplectic isomorphism that intertwines ρψ,x and ρψ
′,x′ .

(ii) If ψ′ is Hamiltonian with momentum map µ′ then µ′ ◦ Φ is a momentum map for ψ.

5In the literature ρψ,x is called “symplectic slice representation”. This terminology seems misleading,
since ρψ,x does not involve any choice of a local slice.
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2.19. Lemma (symplectic quotient representation for model action). Let G be a compact
Lie group and (H,V, σ, ρ) an object of SympRep≤G. We denote(

Yρ, ωρ, ψρ
)

:= ModelG(H, ρ).

Let y ∈ Yρ be a point for which µρ(y) is central and Stabψρy = ca(H), for some representative

(a, aϕ, v) of y. Then ρ = (H, ρ) is isomorphic to ρψρ,y.

Remark. The subgroup ca(H) does not depend on the choice of the representative (a, aϕ, v)
of y.

In the proof of this lemma we will use the following.

2.20. Remark (momentum map). Let (M,ω, ψ) be a Hamiltonian G-action, µ a momentum
map for ψ, and x ∈M . Then

ker dµ(x) = (imLψx )ωx .

Proof of Lemma 2.19. We choose a representative ỹ := (a, aϕ, v) of y. We define

ιa,ϕ : V → T ∗G× V, ιa,ϕ(w) := (a, aϕ,w).

2.21. Claim.

(2.22) im
(
dιa,ϕ(v)

)
⊆ ker dµDρ (ỹ).

Proof of Claim 2.21. By our hypothesis µρ(y) = µL(ỹ) = Ad∗(a)ϕ is a central element of g∗.
Hence, for every g ∈ G, we have

Ad∗(a)ϕ = Ad∗(ca(g)) Ad∗(a)ϕ = Ad∗(a) Ad∗(g)ϕ,

and therefore ϕ = Ad∗(g)ϕ. Hence ϕ is a central element of g∗. For every h ∈ H, we have

[a, aϕ, v] = y

= ψρ(ca(h), y) (since Stabψρy = ca(H))

=
[
ca(h)a, ca(h)aϕ, v

]
=
[
ah, aϕh, v

]
(using that ϕ is central)

=
[
a, aϕ, ρhv

]
,

and therefore ρhv = v. Hence v is a fixed point of ρ. It follows that dνρ(v) = 0. Since
µDρ (a, aϕ,w) = −ϕ|h + νρ(w), it follows that

d(µDρ ◦ ιa,ϕ)(v) = dνρ(v) = 0.

The inclusion (2.22) follows. This proves Claim 2.21. �

We define πρ as in (2.5), and

Aρỹ := dπρ(ỹ)dιa,ϕ(v) : V → TyYρ.

By Claim 2.21 this map is well-defined.

2.23. Claim. The pair
(
a,Aρỹ

)
is a morphism from ρ to ρψρ,y (the isotropy representation of

ψρ at y).
12



Proof of Claim 2.23. The map ιa,ϕ is a symplectic embedding. It follows that Aρỹ is linear

symplectic. We denote by ψL : G × T ∗G × V → T ∗G × V the action induced by the
left-translation on G. Let h ∈ H. For all w ∈ V , we have

ιa,ϕ ◦ ρh(w) =
(
a, aϕ, ρhw

)
=
(
ah, aϕh,w

)
= (ψLρ )ca(h) ◦ ιa,ϕ(w) (using that ϕ is central)

Using that ρh is linear, it follows that

dιa,ϕ(v)ρh = dιa,ϕ(v)dρh(v)

= d
(
(ψLρ )ca(h)

)
(ỹ)dιa,ϕ(v).

Since πρ ◦ (ψLρ )g = (ψρ)g ◦ πρ, it follows that

Aρỹρh = dπρ(ỹ)dιa,ϕ(v)ρh

= d(ψρ)ca(h)(y)dπρ(ỹ)dιa,ϕ(v)

= d(ψρ)ca(h)(y)Aρỹ.

The statement of Claim 2.23 follows. �

Let y ∈ Yρ. Recall that

Ly = Lψρy : g→ TyYρ

denotes the infinitesimal ψρ-action.

2.24. Claim.

imLy is isotropic,(2.25)

imAρỹ ⊆
(
imLy

)(ωρ)y
.(2.26)

Proof of Claim 2.24. (2.25): Our hypothesis that µρ(y) is central implies that

imLy ⊆ ker dµρ(y).

By Remark 2.20 we have

(2.27) ker dµρ(y) = (imLy)
(ωρ)y .

Statement (2.25) follows.
(2.26): Since µρ ◦ πρ = µL ◦ pr1, we have

dµρ(y)Aρỹ = dµρ(y)dπρ(ỹ)dιa,ϕ(v)

= d
(
µρ ◦ πρ ◦ ιa,ϕ

)
(v)

= d
(
µL ◦ pr1 ◦ιa,ϕ

)
(v)

= 0.

Here in the last step we used that the map pr1 ◦ιa,ϕ is constantly equal to (a, aϕ). It follows
that

imAρỹ ⊆ ker dµρ(y).

Using (2.27), the claimed inclusion (2.26) follows. This completes the proof of Claim 2.24. �
13



By part (2.25) of this claim there is a canonical projection

prρy :
(
imLy

)(ωρ)y → V ψρ
y =

(
imLy

)(ωρ)y
/imLy.

By part (2.26) the restriction

prρy
∣∣imAρỹ

is well-defined. It follows from Claim 2.23 and the equality Stabψρy = ca(H) that imAρỹ is

invariant under ρψρ,y.

2.28. Claim. The pair
(
e, prρy

∣∣imAρỹ) is an isomorphism between the restriction of ρψρ,y to

imAρỹ and ρψρ,y.

Proof of Claim 2.28. The projection prρy is presymplectic. Since imAρỹ is symplectic, the

restriction prρy
∣∣imAρỹ is linear symplectic and therefore injective. We have

dim
(
V ψρ
y =

(
imLy

)(ωρ)y
/imLy

)
= dim(Yρ)− 2 dim imLy

= dim(T ∗G× V )− 2 dimH − 2 dim imLy

= 2 dimG+ dimV − 2 dimH − 2 dimG+ 2 dim Stabψρy

= dimV (since Stabψρy = ca(H))

= dim imAρỹ (since Aρỹ is linear symplectic, hence injective)

= dim
(

prρy

(
imAρỹ

))
(since prρy

∣∣imAρỹ is injective).

It follows that V
ψρ
y = prρy

(
imAρỹ

)
, hence prρy

∣∣imAρỹ is surjective. Hence this map is a linear

symplectic isomorphism. It is Stabψρy -equivariant. The statement of Claim 2.28 follows. �

It follows from Claims 2.23 and 2.28 that ρ and ρψρ,y are isomorphic. This proves Lemma
2.19. �

Proof of Theorem 1.8(iv). Let (H, ρ) and (H ′, ρ′) be two objects of SympRep≤G whose im-
ages under ModelG are isomorphic. We choose an isomorphism Φ between these images. We
define

y := [e, 0, 0] ∈ Yρ, [a′, a′ϕ′, v′] := y′ := Φ(y).

By Remark 2.7 we have

Stabψρy = H,(2.29)

Stab
ψρ′

y′ ⊆ ca′(H
′).

Since Φ is G-equivariant, we have

(2.30) Stabψρy = Stab
ψρ′

y′ .

It follows that H ⊆ ca′(H
′). By considering Φ−1, an analogous argument shows that H ′ is

conjugate to a subgroup of H. Since G is compact and H and H ′ are closed, these subgroups
are compact. Therefore, applying Lemma 2.8, it follows that

(2.31) H = ca′(H
′).
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Since µρ(y) = µLρ (e, 0, 0) = 0 and Stabψρy = H, the hypotheses of Lemma 2.19 are satisfied.

Applying this lemma, it follows that ρ is isomorphic to ρψρ,y.
By Remark 2.18(i) ρψρ,y is isomorphic to ρψρ′ ,y

′
.

2.32. Claim. ρψρ′ ,y
′

is isomorphic to ρ′.

Proof of Claim 2.32. By (2.30,2.29,2.31) we have Stab
ψρ′

y′ = ca′(H
′). By Remark 2.18(ii) the

map µρ′ ◦ Φ is a momentum map for ψρ. Since G is connected, the same holds for Yρ. It
follows that µρ′ ◦Φ−µρ is constantly equal to a central element of g∗. At y this map attains
the value

µρ′(y
′)− µρ(y) = µρ′(y

′)− 0,

which is thus a central element of g∗. Hence the hypotheses of Lemma 2.19 are satisfied.
Applying this lemma, the statement of Claim 2.32 follows. �

Combining this claim with what we already showed, it follows that ρ is isomorphic to ρ′.
Hence ModelG induces an injective map between the sets of isomorphism classes. This

proves Theorem 1.8(iv). �

Proof of Theorem 1.8(v,vi,vii). (v) follows from a straight-forward argument.

(vi): Let ρ and ρ′ be objects of SympRep≤G, such that ρ′ is momentum proper and there
exists a morphism (g, T ) from ρ to ρ′. Let Q ⊆ h be compact. Equality (2.3) implies that

(2.33) ν−1
ρ (Q) = (νρ′ ◦ T )−1 (Ad∗(g)(Q)) .

The set Ad∗(g)(Q) is compact. By hypothesis νρ′ is proper, and by Claim 2.4 the same holds
for T . It follows that νρ′ ◦T is proper, and therefore, using (2.33), the set ν−1

ρ (Q) is compact.
Hence νρ is proper, i.e., ρ is momentum proper, as claimed.

Let now (M,ω, ψ) and (M ′, ω′, ψ′) be objects of Hamex
G , such that ψ′ is momentum proper

and there exists a morphism Φ from ψ to ψ′. We choose a momentum map µ′ for ψ′. By
definition, Φ is a proper G-equivariant symplectic embedding. It follows that µ′ ◦ Φ is a
proper momentum map for ψ. Hence ψ is momentum proper. This proves (vi).

(vii): We prove “⇒”: Assume that (H, ρ) is momentum proper, i.e., that νρ is proper. Let
K ⊆ g∗ be compact. We denote by i : H → G the inclusion and by i∗ : g∗ → h∗ the induced
map. We define

(2.34) A :=
{

(a, aϕ, v) ∈ T ∗G× V
∣∣ Ad∗(a)(ϕ) ∈ K, i∗ϕ = νρ(v)

}
⊆ (µDρ )−1(0).

We denote by L∗ : G×T ∗G→ T ∗G the map induced by left translation. A is a closed subset
of

B := L∗
(
G× Ad∗(G)(K)

)
× ν−1

ρ

(
i∗Ad∗(G)(K)

)
.

Since G is compact and Ad∗ is continuous, the set Ad∗(G)(K) is compact. Since i∗ is
continuous and νρ is proper, it follows that ν−1

ρ

(
i∗Ad∗(G)(K)

)
is compact. Using that

L∗ is continuous, it follows that B is compact. It follows that A is compact, and hence
µ−1
ρ (K) = πρ(A) is compact. Hence µρ is proper. This proves “⇒”.

“⇐”: Assume that µρ is proper. Let Q ⊆ h∗ be compact. We choose a compact set K ⊆ g∗

such that i∗(K) = Q. (We may e.g. choose a linear complement W ⊆ g∗ of ker i∗ and define
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K := (i∗)−1(Q) ∩W .) Since H is compact, the map πρ : (µDρ )−1(0) → Yρ is proper. It
follows that µρ ◦ πρ is proper. Hence the set(

µρ ◦ πρ
)−1

(K)

is compact. This set agrees with A, defined as in (2.34). We denote by pr2 : T ∗G× V → V
the canonical projection. The set

C :=
{

(e, ϕ, v)
∣∣ϕ ∈ K, i∗ϕ = νρ(v)

}
is a closed subset of A, hence compact. It follows that pr2(C) is compact. Since i∗(K) = Q,
we have pr2(C) = ν−1

ρ (Q). It follows that νρ is proper. This proves “⇐”, and completes
the proof of (vii) and therefore of Theorem 1.8 (except for (viii), which is proved in [KZ18,
1.5. Theorem]). �

3. Proof of Corollary 1.14 (classification of critical Hamiltonian actions)

The well-definedness part of Corollary 1.14 follows from the next lemma.

3.1. Lemma. (i) The functor T ∗G maps objects of Acttrans
G to objects of Hamcrit

G .
(ii) It maps morphisms of Acttrans

G to morphisms of Hamcrit
G .

Proof of Lemma 3.1. (i): Let (Q, θ) be an object of Acttrans
G . Then T ∗G(Q, θ) is an object of

Hamex
G . To see that is an object of Hamex,prop

G , we denote by g the Lie algebra of G. We
choose a Finsler norm ‖ · ‖ on T ∗Q and a norm | · | on g∗. We define Lθq as in (2.14) and

(3.2) µ : T ∗Q→ g∗, µ(q, p) := pLθq.

This is a momentum map for the lifted G-action θ∗. Since θ is transitive, the map Lθq is
surjective. Therefore, an elementary argument using (3.2) and that Q is compact, shows
that

sup
{
‖p‖

∣∣ (q, p) ∈ T ∗Q : |µ(q, p)| ≤ C
}
<∞, ∀C ∈ R.

It follows that µ is proper. Therefore, T ∗G(Q, θ) is an object of Hamex,prop
G . Since Q is closed

and T ∗Q deformation retracts onto Q, it follows that T ∗G(Q, θ) is an object of Hamcrit
G . This

proves (i).
(ii): Let f : Q→ Q′ be a morphisms of Acttrans

G , i.e., a G-equivariant diffeomorphism. The
induced map f∗ : T ∗Q→ T ∗Q′ is a G-equivariant symplectomorphism, hence a morphism of
Hamex

G , and therefore of Hamcrit
G . This proves (ii) and therefore Lemma 3.1. �

By Lemma 3.1 the restriction

T ∗G : Acttrans
G → Hamcrit

G

is well-defined. The Chain Rule implies that it is functorial. In order to show that the map
(1.15) is a bijection, we need the following lemma. We define Subcl

G to be the category whose
objects are the closed subgroups of G and whose morphisms between H and H ′ are those
elements g of G, satisfying cg(H) = H ′.6 We define the functor

G/ : Subcl
G → Acttrans

G

6The composition of morphisms is given by the composition in G.
16



as follows. It maps an object H to the quotient G/H, equipped with the canonical left G-
action. Let (H,H ′, g) be a morphism of Subcl

G. We denote by prH : G→ G/H the canonical
projection and define G/(H,H ′, g) : G/H → G/H ′ to be the unique map satisfying

(3.3) G/(H,H ′, g) ◦ prH = prH′ ◦Rg−1

.

This is a well-defined morphism of Acttrans
G . This construction is functorial. This defines

the functor G/.
We define the functor

iG : Subcl
G → SympRep≤G, iG(H) :=

(
H, {0}, 0, 0

)
, iG(g) := (g, 0).

3.4. Lemma. The target-restricted functor ModelG ◦iG : Subcl
G → Hamcrit

G is well-defined and
naturally isomorphic to T ∗G ◦G/ : Subcl

G → Hamcrit
G .

Proof of Lemma 3.4. By Corollary 1.11 the functor ModelG ◦iG takes values in Hamex,prop
G .

Let H be an object of Subcl
G. The manifold part of ModelG ◦iG(H) is homotopy equivalent to

the closed manifold G/H and has dimension 2(dimG− dimH). Therefore, ModelG ◦iG(H)
is critical. Hence ModelG ◦iG takes values in Hamcrit

G , as claimed.
Let H ∈ Subcl

G. We define µDH,ρ, YH,ρ as in (1.5,1.6) and denote by πH,ρ : (µDH,ρ)
−1(0)→ YH,ρ

the canonical projection. We canonically identify YH,0 with the symplectic quotient of the
Hamiltonian H-action on T ∗G induced by the right H-action on G. We define the map

(3.5) ΦH : T ∗(G/H)→ YH,0, ΦH(q, p) := πH,0
(
q, pd prH(q)

)
,

where q ∈ q is an arbitrary representative. This map is a symplectomorphism, see [AM78,
4.3.3 Theorem]. The map ΦH is G-equivariant, and therefore an isomorphism of Hamcrit

G .

3.6. Claim. The map H 7→ ΦH is a natural isomorphism between the functors T ∗G ◦G/ and
ModelG ◦iG.

Proof of Claim 3.6: Let (H,H ′, g) be a morphism of Subcl
G. We show that

(3.7) ΦH′ ◦
(
(T ∗G ◦G/)(H,H ′, g)

)
=
(

ModelG ◦iG
)
(H,H ′, g) ◦ ΦH .

Let (q, p) ∈ T ∗(G/H). We choose a representative q ∈ q and denote q′ := Rg−1
(q), q′ :=

prH′(q
′), and ϕ := G/(H,H ′, g). We have

(T ∗G ◦G/)(H,H ′, g)(q, p) =
(
ϕ(q), pdϕ(q)−1

)
,

ϕ(q) = q′ (using (3.3)),

and therefore,

ΦH′ ◦
(
(T ∗G ◦G/)(H,H ′, g)

)
(q, p) = πH′,0

(
q′, pdϕ(q)−1d prH′(q

′)
)

(using (3.5))

= πH′,0
(
q′, pd prH(q)dRg−1

(q)−1
)

(using (3.3), Chain Rule)

= ModelG(g, 0) ◦ πH,0
(
q, pd prH(q)

)
(using (1.7))

=
(

ModelG ◦iG
)
(H,H ′, g) ◦ ΦH(q, p) (using (3.5)).

Hence equality (3.7) holds. This proves Claim 3.6 and therefore Lemma 3.4. �
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Proof of Corollary 1.14. We show that the functor ModelG ◦iG is essentially bijective. By
Corollary 1.11 the inverse of the map (1.12) is well-defined. The image of the set of iso-
morphism classes of Hamcrit

G under this inverse map is contained in the image of the map
between isomorphism classes induced by iG. This follows from the fact that the manifold part
of ModelG

(
H,V, σ, ρ

)
is homotopy equivalent to the closed manifold G/H and has dimen-

sion 2(dimG− dimH) + dimV . It follows that ModelG ◦iG : Subcl
G → Hamcrit

G is essentially
surjective, i.e., it induces a surjective map between the sets of isomorphism classes.

Since iG is essentially injective, Corollary 1.11 implies that the functor ModelG ◦iG :
Subcl

G → Hamcrit
G is also essentially injective, and therefore essentially bijective, as claimed.

Using Lemma 3.4, it follows that T ∗G ◦ G/ : Subcl
G → Hamcrit

G is essentially bijective.
Therefore, T ∗G : Acttrans

G → Hamcrit
G is essentially surjective. The functor G/ : Subcl

G →
Acttrans

G is essentially surjective. This follows from the orbit-stabilizer theorem for G-actions
on manifolds. Since T ∗G ◦ G/ : Subcl

G → Hamcrit
G is essentially injective, it follows that

T ∗G : Acttrans
G → Hamcrit

G is essentially injective, and therefore essentially bijective. This
means that the map (1.15) is bijective. This proves Corollary 1.14. �

4. Inverse of the classifying map

The next result states that the inverse of the classifying map (1.12) is induced by assigning
to a Hamiltonian action its symplectic quotient representation at any suitable point. To state
the result, let G be a group, X a set, ψ a G-action on X, and x ∈ X. Recall that Stabψx
denotes the stabilizer of ψ at x. We call x ψ-maximal iff for every y ∈ X, Stabψx contains
some conjugate of Stabψy .

Let G be a compact and connected Lie group, (M,ω) a symplectic manifold, ψ a symplectic
G-action on M , and x ∈M . Recall that ρψ,x denotes the symplectic quotient representation
of ψ at x, see (2.17). The latter is a symplectic representation of Stabψx . Hence the pair(

Stabψx , ρ
ψ,x
)

is an object of SympRep≤G.
Assume now that ψ is Hamiltonian. We call x ψ-central iff µ(x) is a central value of g∗

for every momentum map µ for ψ. (If M is connected then equivalently, there exists such a
µ.)

4.1. Proposition. Assume that ψ is an object of Hamex,prop
G .

(i) There exists a ψ-maximal and -central point.
(ii) Let ψ and ψ′ be isomorphic objects of Hamex,prop

G , x be ψ-maximal and -central point,
and x′ be a ψ′-maximal and -central point. Then ρψ,x and ρψ

′,x′ are isomorphic.
(iii) The inverse map of (1.12) is given by{

isomorphism class of Hamex,prop
G

}
→
{

isomorphism class of SympRepprop
≤G

}
,

Ψ 7→ [ρψ,x],(4.2)

where ψ is an arbitrary representative of Ψ, and x is an arbitrary ψ-maximal and
-central point.

Remark. It follows from (i,ii) that the map (4.2) is well-defined.

In the proof of Proposition 4.1 we will use the following.

4.3. Remark. Let ρ be an object of SympRep≤G and y ∈ Yρ a ψρ-maximal and -central point.

Then ρ and ρψρ,y are isomorphic. To see this, we write y =: [a, aϕ, v]. By Remark 2.7 we have
18



Stabψρy ⊆ ca(H). Since y is ψρ-maximal, Stabψρy contains some conjugate of Stab
ψρ
[e,0,0] = H.

Using Lemma 2.8, it follows that
Stabψρy = ca(H).

Using that y is ψρ-central, the hypotheses of Lemma 2.19 are therefore satisfied. Applying
this lemma, it follows that ρ and ρψρ,y are isomorphic, as claimed.

Proof of Proposition 4.1. (i): Consider first the case in which there exists ρ ∈ SympRepprop
≤G ,

such that ψ = ModelG(ρ). By Remark 2.7 the point [e, 0, 0] is ψ-maximal. Since µρ([e, 0, 0]) =
0, this point is also ψ-central. This proves the statement in the special case.

The general situation can be reduced to this case, by using Theorem 1.8(viii) (essential
surjectivity), the fact that stabilizers are preserved under equivariant injections, and Remark
2.18(ii). This proves (i).

(ii): Consider first the case in which there exists an isomorphism from ψ to ψ′ that maps
x to x′. Then it follows from Remark 2.18(i) that ρψ,x and ρψ

′,x′ are isomorphic.
In the general situation, using Theorem 1.8(viii) and what we just proved, we may assume

w.l.o.g. that ψ = ψ′ = ψρ = ModelG(H, ρ) for some object ρ of SympRep≤G. By Remark 4.3

we have ρψρ,x ∼= ρ ∼= ρψρ,x
′
. This proves (ii).

(iii): Remark 4.3 implies that (4.2) is a left-inverse for (1.12). Since (1.12) is surjective,
it follows that (4.2) is also a right-inverse. This proves (iii) and completes the proof of
Proposition 4.1. �
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