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Detection of many compact binary coalescences (CBCs) is one of the primary goals of the present
and future ground-based gravitational-wave (GW) detectors. While increasing the detectors’ sen-
sitivities will be crucial in achieving this, efficient data analysis strategies can play a vital role.
With given computational power in hand, efficient data analysis techniques can expand the size
and dimensionality of the parameter space to search for a variety of GW sources. Matched filtering
based analyses that depend on modeled signals to produce adequate signal-to-noise ratios for signal
detection may miss them if the parameter space is too restrained. Specifically, the CBC search
is currently limited to non-precessing binaries only, where the spins of the components are either
aligned or anti-aligned to the orbital angular momentum. A hierarchical search for CBCs is thus well
motivated. The first stage of this search is performed by matched filtering coarsely sampled data
with a coarse template bank to look for candidate events. These candidates are then followed up for
a finer search around the vicinity of an event’s parameter space found in the first stage. Performing
such a search leads to enormous savings in the computational cost without losing sensitivity. Here we
report the first successful implementation of the hierarchical search as a PyCBC-based production
pipeline to perform a complete analysis of LIGO observing runs. With this, we analyze Advanced
LIGO’s first and second observing run data. We recover all the events detected by the PyCBC (flat)
search in the first GW catalog, GWTC-1, published by the LIGO-Virgo collaboration, with nearly
the same significance using a scaled background. In the analysis, we get an impressive factor of 20
speed-up in computation compared to the flat search. With a standard injection study, we show
that the sensitivity of the hierarchical search remains comparable to the flat search within the error

bars.

I. INTRODUCTION

Gravitational-wave (GW) astronomy began with the
detection of GW signal from a binary black hole (BBH)
merger, GW150914 [1], using the Advanced LIGO [2, 3]
observatories. With the latest advancements in the sen-
sitivities of detectors and search techniques like cWB [4],
GstLAL [5], PyCBC [6], LIGO-Virgo (LV) collaboration
detected GW signals from ten BBHs and one binary neu-
tron star (BNS) coalescence in the first two, Ol and
02, observing runs [7]. During this period, several in-
dependent searches [8-10] over publicly available data
detected a few additional BBH events. A paradigm shift
in the number of detections occurred with the improve-
ment in the sensitivities of Advanced LIGO [11] and Ad-
vanced Virgo [12] detectors in the third observing run.
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At present, the LV collaboration has detected 39 GW
events [13] including GW190425 [14], the second BNS
event, GW190412 [15] and GW190814 [16] the first two
highly asymmetric CBCs that emit a significant amount
of gravitational radiation beyond the quadrupole mo-
ment, and GW190521 [17], the first binary merging to
form an intermediate-mass black hole.

Matched filtering [18], a primary and most sensitive
algorithm, is used to detect signals that can be well mod-
eled. Since the GW signals from merging binaries in cir-
cular orbits can be modeled using their intrinsic! and
extrinsic? parameters, the matched filtering method is
employed for their detection. The method involves corre-
lating an interferometer’s output, time-series data, with
the modeled waveforms (templates) for each detector in

I Component masses (m1, mz) and individual spins (5%, 52) vectors
of the coalescing binary.

2 Sky location (¢, ¢), luminosity distance (dy,), orbital inclination
(¢), polarization angle (¢), and time and phase of coalescence
(te, dc) of the coalescing binary with respect to the detector.
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the network. If a GW signal is present in the detec-
tor’s output, the correlation results in a peak (trigger)
in the signal-to-noise ratio (SNR) corresponding to the
best matching template. Since the prior knowledge of the
source parameters, like its component masses, spins, and
location in the sky, remains unknown to the observers,
the search is required to be performed over a wide range
of several source parameters using a “bank of templates”.
The templates in the bank are closely placed to ensure
that the search does not miss any signal. Since the data
contain non-Gaussian noise, a coincidence search over the
time of arrival, phase, and other source parameters is
performed between different detectors to eliminate the
false triggers. The resultant candidates obtained are then
assigned significance based on the noise background es-
timated by counting coincident triggers for unphysical
time delays.

The above procedure for detecting GW signals from
CBCs is followed by the search pipelines like Gst-
LAL [5, 19, 20], MBTA |21, 22], PyCBC [6, 8, 9, 23], and
SPIIR [24]. These pipelines perform a one-step search®
for the non-precessing coalescing binaries in circular or-
bits.

One of the challenges that template-based search
pipelines face is the high computational cost of matched
filtering, typically a year’s worth of data over ~ 10°
templates. Since this process, especially in the PyCBC
(or flat) search, involves Fast Fourier Transform (FFT)
of the product of a uniformly sampled time-series data
and a template, the number of floating-point operations
scales as N logy N, where NN is the number of data points.
These operations repeat over ~ 10° templates, even in
the restricted parameter space of non-precessing bina-
ries, which amounts to sizable computational cost. The
cost further increases when a search is envisaged for pre-
cessing binaries where the orbital plane precesses due to
the misalignment of spins with the orbital angular mo-
mentum. In such cases, the number of templates and
the matched filtering operations increases at least ten-
fold [25], making the search unfeasible with the current
capabilities.

With the advancements in current detectors and up-
coming new detectors, e.g., KAGRA [26] and LIGO-
India [27], the CBC detection rate is bound to increase,
and finer details of the detected sources would be sought
to unravel their exact dynamics, their formation, and
evolution scenarios. However, this would significantly in-
crease the volume of the search parameter space. The
increment in volume would happen in two ways; first,
the number of parameters (dimension of the parameter
space) of different CBC sources would increase, and sec-
ondly, their ranges may increase. Nevertheless, a com-
prehensive search of this type is important because one

3 Search involving match filtering data, sampled at a fixed rate
using a bank of templates

would like to capture the non-trivial dynamics of interest-
ing astrophysical sources. We, therefore, argue that to fa-
cilitate this quest, a matched filter-based search pipeline
needs speeding up by orders of magnitude.

One way to speed up the search is by performing
matched filtering hierarchically using multiple banks of
varying densities. The idea of performing matched filter-
ing in hierarchical steps was formally introduced in Mo-
hanty and Dhurandhar [28], where hierarchy was per-
formed over the chirp mass of binaries using Newto-
nian waveforms. This work was later extended to the
post-Newtonian waveforms [29], where hierarchy was per-
formed over the component masses of a binary system. A
further improvement was realized by reducing the sam-
pling rate in the first stage of the hierarchy. In the recent
work of Gadre et al. [30] hierarchy was performed over all
the three intrinsic parameters, including the effective spin
of the binary. This algorithm had used multi-detector
coincidence analysis and had provided an order of mag-
nitude speed-up compared to the flat analysis.

In this paper, we revisit the hierarchical search formu-
lated in Gadre et al. [30], and for the first time, imple-
ment it as a working PyCBC-based pipeline to analyze the
data from an entire LIGO observing run. We describe an
efficient two-stage hierarchical search pipeline to search
for GW signals from CBCs in the two detectors. This
pipeline improves the search sensitivity by incorporat-
ing better detection statistics for the single-detector and
coincident triggers, as used by the flat analysis in Ab-
bott et al. [13]. For this work, we construct two tem-
plate banks— coarse and neighbourhood (nbhd) bank, to
target GW signals from non-precessing coalescing BBH,
BNS, and neutron star-black holes (NSBH) sources that
have quasi-circular orbits. Using the former bank in the
first stage and a dynamical subset of the latter bank in
the second stage of the hierarchical search, we test the po-
tency of the pipeline by applying it to the data from the
first two observing runs of Advanced LIGO. Our pipeline
recovers all the GW events observed by the flat search
from the first gravitational wave catalog (GWTC-1) [7].

In our work, we assign the significance to the detected
events using a scaled background [30], constructed by
scaling the background obtained in the first stage by
time-sliding the filtered output across detectors using the
coarse bank. To justify the accuracy of this background,
we perform simulations that involve the injection of the
GW signals into the data and compare their recoveries
with the hierarchical and flat search separately. Further-
more, we compare the sensitivities of the two searches
through ‘volume-time’ (V'T) ratio curves. Lastly, we con-
clude our findings from the injection study by discussing
the two searches’ computational cost.

The paper is organised as follows:

e In Section II we state the prerequisites and describe
the search methodology for the hierarchical search.
The section segregates into sub-parts. In ITA, we
describe the generation of template banks. Sec-
tion II B elaborates on the matched filtering process



and the selection criteria for the generated triggers
in two stages. The strategy to collect coincident
triggers is described in II C. The final step in the
pipeline is to assign significance to the coincident
candidates. We describe this process in IID.

e In Section III, we implement the hierarchical search
pipeline over the first two observing runs of Ad-
vanced LIGO and present our findings.

e In Section IV, we compare the sensitivities of the
hierarchical search with flat search. We also discuss
the computational advantages of the former search
with the latter.

e In Section V, we summarize our findings and point
out the directions of future research.

II. PREREQUISITES AND SEARCH
METHODOLOGY

The idea of the hierarchical search is straightforward;
the flat search algorithm is divided into two stages, Stage-
1 and Stage-2, such that the number of matched filter
operations reduce successively. Stage-1 ensures matched
filtering of the data sampled at the lower sampling rate
(512 Hz) using a sparsely sampled bank called the coarse
bank. Having fewer templates in a coarse bank signifi-
cantly reduces the contribution to the computational cost
of matched filtering. Further reduction in computation is
achieved by sampling the data at a lower sampling rate
than the rate at the Nyquist frequency. The coarse bank
can reduce the SNRs for a good fraction of events be-
cause of the sparsely placed templates. To compensate
for the loss in SNRs, we identify triggers in each detector
above coarse thresholds, set at lower values than those
used in the flat search. We then perform a coincidence
test on these identified triggers, using an optimal detec-
tion statistics and obtain the zero-lag (or foreground)
candidates. The foreground candidates are then followed
up in stage-2 to ascertain whether they are signals or
false alarms.

In stage-2, we again perform matched filtering over the
data segments that contain the followed-up foreground
candidates. These data segments are sampled at a flat
search sampling rate (2048 Hz) and filtered using a dy-
namic union of nbhds of mismatch extending up to 0.75
around the followed-up stage-1 trigger templates. We
refer to this union of nbhds triggered from stage-1 as
the stage-2 bank in this paper. The triggers generated
for each detector in this stage are identified above fine
thresholds, equal to the thresholds set for SNRs in the
flat search. These triggers are then subjected to the coin-
cidence test before generating the final list of foreground
candidates.

Our two-stage hierarchical search pipeline is described
through the flowchart in Fig. 1.

H1 Strain L1 Strain

| Generate Flat |
{ bank (MM= 0.97) /

FIG. 1. A flowchart depicting the working of a two-stage
hierarchical search pipeline. The choice of color describes the
stage: yellow for stage-1, and blue for stage-2. The first step
generates the harmonic power spectral density (PSD) using
the data strains from the two detectors. The generated PSD
is used to create flat (in dotted box) and coarse banks. Using
these two banks, a nbhd bank s thus constructed. Stage-1
search begins with matched filtering of the data strains from
the two detectors using the coarse bank. The triggers are
identified above SNRs and re-weighted SNRs of 3.5. Next, a
coincidence test is made to collect foreground candidates (in
diamond box) over which stage-2 matched filtering is again
performed. Stage-2 search uses a subset of nbhd bank, stage-
2 bank, for filtering data and generates single-detector triggers
above SNR and re-weighted of 4. The selected triggers then
undergo the coincidence test to obtain foreground candidates
of the second stage.

A. Template banks

One of the most crucial steps in a template-based
search is to adequately grid up the parameter space.
A pragmatic approach suggests densely populating the
search space to minimize the loss in SNR. However, such
dense placement of templates increases the computa-
tional cost and limits the volume and dimensionality of
the parameter space that can be covered, given a fixed
amount of computation power. Generally, the templates
are placed such that the match does not fall below a cer-
tain minimum value called the minimal match (MM).
For instance, if MM is chosen as 0.97, it means that
the expected SNR for a signal does not fall more than
3% (1 — MM = 0.03), corresponding to a loss of ~ 10%



(=1 — MM?) in the astrophysical events.
The ‘match’ (M) between two normalised templates is
their scalar product. A scalar product of two data trains

z(t) and y(t) is defined as:
g (f)
Aat W

(z,y) = 4 R{ / f a:(:z;) {

where R denotes the real part of a complex quantity and
the frequencies fiow t0 fhign represent the sensitive band
of the detector. The tilde represents Fourier transform of
the quantity in question, e.g., Z(f) is the Fourier trans-
form of z(t) and is given by:

i(f) = / x(t)e 2t gt (2)
—0oQ

The one-sided power spectral density (PSD), S, (f), of

the detector’s noise is defined via the equation:

) = 5Su (DI~ £, 3)

when the data contains only the noise n(t). Here, an-
gular brackets denote the ensemble average of the noise
realizations. B .

Consider two neighboring templates h(f) and h(6 +
Ag) given by parameters g and (5 + Ag), where § =
{my, ma, 81, S2.}. If the template are normalised, that
is, || h(6) ||=|| (6 + Af) ||= 1, then the match is given
by,

—

M(0, A0) = (h(0), h(6 + AD)). (4)

Geometrically, the match is the cosine of the angle be-
tween the two normalised templates.

Assuming a slowly varying metric gnn(f) around the
targeted templates h(8) and h(+ Af), we Taylor expand
the match to the lowest order of Af as:

— —

(h(0), h(6 + AG)) % 1 — g (D)AG"AG™ . (5)
where template space-time metric is defined as:

— 2 —
o == (WO, i @) )

Therefore by varying the source parameters g and cal-
culating the metric g,,,, templates could be effectually
placed in the bank. However, generally, the metric does
not have a closed-form form for aligned-spin waveforms
having inspiral, merger, and ringdown (IMR) phases for a
wide range of source parameters, e.g., SEOBNR [31]. More-
over, in some cases, metric changes rapidly across the pa-
rameter space, making the sphere-covering problem [32]
highly non-trivial. Therefore, techniques like stochastic
placement [33] are used to construct the bank, where a
direct match is computed between templates for vary-
ing source parameters. This technique efficiently places

the templates in a bank. However, if the volume of
the parameter space (as defined via the metric) is large,
then the template bank also becomes large and conse-
quently increases the computational cost for bank gener-
ation. In such a case, techniques like hybrid geometric-
random placements [34, 35] efficiently generate a full non-
precessing bank.

The density of templates in a bank relies on the noise
PSD of the detectors in the network. Since the search
pipelines use a common template bank for each detector,
it is necessary to compute the time-averaged noise PSD
for each detector for a bank’s construction. For estimat-
ing this effective PSD, the PSDs for the detectors are
combined as a harmonic mean [36-38].

In this work, we construct a coarse and nbhd bank for
targeting GW signals from non-precessing sources with
quasi-circular orbits, using Advanced LIGO-Virgo noise
PSD as used in GWTC-2 [13]. The density of templates
in these two banks varies depending on the mismatch
value used for their construction. The banks are con-
structed over the parameter space described in GWTC-
1 [7]. We describe the construction of banks for the pa-
rameter ranges (see Table ITA) and their effectualness in
the following subsections.

Bank MM Mo (Me) XBH XNS  fmin (Hz)
Coarse 0.90 3-500 -0.998-0.998 -0.05-0.05 15
Flat & 0.97 3-500 -0.998-0.998 -0.05-0.05 15
nbhd

TABLE I. Table summarizing minimal match values and
ranges of the source parameters for the coarse, nbhd, and
flat banks. The xpmn and xns are the dimensionless effective
spins for a black hole and a neutron star, respectively.

1. Coarse bank

We construct a coarse bank with a mismatch of 10% (or
MM = 0.9) following Gadre et al. [30], using the hybrid
geometric-random method [34, 35]. The templates in the
bank are generated at a minimum frequency of 15 Hz.
We discard the templates with a duration of less than
0.15 seconds to avoid artifacts in the matched filtering
steps. The bank is designed to search for non-precessing
CBC sources with the total mass (Miy) of the binary
in the range [3 Mg, 500 Mg]. We restrict the secondary
mass (mg) of the binary components [1 Mg, 120 Mg].
The ranges for individual dimensionless spins of the bi-
naries comprising a black hole (xpy) and a neutron star
(xns) are provided in Table IT A. Thus, we construct an
effectual non-precessing bank (see Fig. 2) consisting of
85080 templates.
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FIG. 2. The distribution of coarse bank templates in mi —ma
mass-plane. Each point (or a template) in the plane has a
match M > 0.90 with the neighbouring template.

2. Neighbourhood bank

A nbhd of a stage-1 coincident trigger template is the
region in parameter space where mismatch with neigh-
boring templates can be up to 25%, as described in sec-
tion IIIB2 of Gadre et al. [30]. To sample these nbhds,
we use a pre-generated flat bank with M M = 0.97 cover-
ing a similar search parameter space (see Table ITA). We
include flat bank’s templates having MM > MMpnq =
0.75 with the trigger template. We calculate nbhds for
all the coarse templates. This pre-computed bank with
assigned nbhds is referred to as a nbhd bank, and a dy-
namic subset of it is a stage-2 bank. The stage-2 bank
is dynamic because it changes depending on the noise
realisation.

To identify nbhds of coarse templates, we adopt the
following strategy. For coarse templates with M, > 12
Mg, we perform an exact match calculation with all
the flat bank templates. For templates with M;,; < 12
Mg [39], we first shortlist a set of templates that may be
able to satisfy the nbhd criteria. For that, we define a
minimal match ellipsoid with MM = MM,p1q in the fol-
lowing way: Consider a coarse template of My, < 12 Mg
for which nbhd has to be calculated. We first construct
a minimal-match ellipsoid centered at this template in a
coordinate system where the metric varies slowly over the
parameter space, i.e., the metric is almost constant, and
the signal manifold is almost flat. Therefore we choose
chirp-time coordinates {79, 73, T3s}, collectively labeled
as 7. These coordinates are given by scaling {6y, 03,
035}, described in the Ref. [34], with (27 f,)~! at f, = 20
Hz. In these coordinates, we estimate the metric compo-
nents using TaylorF2RedSpin [39] waveform model.

Following [34], we diagonalise the metric by an orthog-
onal transformation O and obtain the eigenvalues v, with
new coordinates £* = OgTB . The metric in these coor-

dinates is in a diagonal form and is given by:

3

ds® = 7a(dE")?. (7)

a=1

This is just a principal axis transformation to an orthog-
onal basis. Along the eigen-directions, the lengths of the
semi-axes (ro(MM)) of the ellipsoid for a given value of
MM are given by:

1 - MM
a(MM) = [ === (8)

As MM reduces from its maximum value of unity, the
ellipsoid increases in size. In the % coordinates, let the
coarse and flat templates be labelled by £ and &%, re-
spectively. Let AE* = £* — £, and define the distance
d(&™,&8) by the equation:

3
d* (£, €5) Z (Ag™)? (9)

Then the relation d(£%,£5) < v/1 — MMypha defines the
ellipsoid in £ coordinates. We use this ellipsoid to guide
our selection of flat templates. Note that the metric ap-
proximation is extrapolated beyond its validity regime,
and so the ellipsoid is only a crude estimate of the nbhd.
In any case, since we have made a generous choice of
MM = MMp1g4, we do not expect to miss out on any sig-
nals. We choose templates accordingly in this region and
compute the match between a flat template and a given
coarse template. If the match is above the stipulated
MM, pha, we retain the template in the nbhd. Thus, the
final list of templates in the nbhd is obtained by the actual
computation of the match between coarse and fine tem-
plates inside the ellipsoid. In general, we find that a sin-
gle nbhd around a coarse template contains ~ 100 — 150
templates (see Fig. 3).

B. Matched-filter

The model-dependent search for GWs from CBCs
using templates in the LIGO-Virgo data exploits the
matched filtering [18] technique rigorously. This tech-
nique correlates discretely sampled time-series data (s(t))
with the normalized templates (h(6)) for the source pa-
rameters (6) within the detectors’ sensitive band. The
correlation generates matched filter SNR (p) maximized
over phase, which is defined as:

p(68) =| (s, +0n@)| . (10)

Generally, the data obtained from the detectors is non-
stationary and non-Gaussian due to the presence of high-
power noise transients. Pre-processing steps involving
data-quality checks and application of vetoes flag most
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FIG. 3. The distribution of nbhd bank templates in m1 — ma2
mass-plane. The color bar represents the number of templates
in the nbhd of each coarse template with masses mi and ma.
The density of templates in each nbhd is large for lighter-mass
binaries. The nbhd shrinks for high-mass coarse templates.
Typically, there are ~ 100 — 150 flat templates in a nbhd.

of the artifacts present in the data [40]. Nevertheless, the
short-duration glitches or long-duration correlations, as
described in Venumadhav et al. [10], still remain in it.
Matched filtering over these noise transients often leads
to high SNRs. These high-SNR triggers generated are
removed from the standard search pipelines by nullify-
ing noise contributions in the time series data via gat-
ing [6]. We, therefore, apply a similar gating priory to
the matched filtering for each detector to remove the non-
stationary transients from the data strain in our analysis.

Matched filtering the data produces several triggers
with varying SNRs for each template in the bank. These
triggers are first clustered within a time window of 0.5
seconds to retain only the ones with high SNRs [41]. In
the second step, the SNRs of triggers due to loud noise
artifacts are suppressed using signal consistency tests like
the standard chi-square (x2) [6, 42], and sine-Gaussian
(x3,) [43].

Like in flat search, the trigger SNRs (p) generated
in both the stages of the hierarchical search are down-
weighted with their reduced chi-square values using
X2 [6, 42] veto defined as:

if x2>1, (11)

____p
p = [AF0*)/2e
p otherwise.
Usually, x2 veto is ineffective in the region where signals
are too short. In such cases, the short-duration templates
ring with ‘blip’ glitches present in the data. Therefore,
we further down-weight p for the templates with M, >
30 M, using x?, [43] veto defined as:
- -1/2 .
b= {p (X7,s9) if X7 49 > 6,

: (12)
p otherwise.

In each stage of the hierarchical search, the triggers that
surpass the two tests above certain values of p and p (see

Sec. III) are then used for estimating the coincidences
and significance of the real GW signals. Finally, the co-
incidences are obtained based on the optimal detection
statistics, which we elaborate on in the following section.

C. Ranking statistics

A pair of triggers from the two detectors is coincident
if it simultaneously occurs within the light travel time be-
tween the detectors and is recovered with identical tem-
plate parameters. The coincidence is evaluated based on
optimal detection or ranking statistics (Agp:), which is
defined as the ratio of the likelihood for data containing
signal to the likelihood for data having noise [44]. These
likelihoods are the functions of the template parameters
(0) and p, X7

In the recent works [7-9, 23|, the optimal detection
statistics were improvised by taking the ratio of coin-
cident event rate densities due to signal (p(£|S)) and
noise (p(R|N)). Therefore, for an unknown coincident
with template parameters & = {pw, AL, X%, X2, 0t, 8¢, 0}
where 6t, d¢ is the time and phase difference in between
two detectors, Aoy is given as:

K|S K|S
p, — 2EIS) P(FIS)

K
P(RIN) = rHL (G, 6t, 56| N)

. (13)

For the statistics, we expect p(dt,d¢|N) to be uniform
over (6, 6t, 6¢) [44], thereby it is marginalized and treated
as a constant. If we assume the noise to be uncorre-
lated between detectors, then we can safely write p(K|N)

(= rH1) as a product of single-detector noise rate densi-

0
ties [23] given by:

rit =2 ur(rg y(pu) g (PL)) (14)
where, T, is the allowed time window for a coincidence
of trigger in twin LIGO detectors.

Thus, by estimating réf L and p(%|S) through accurate
modeling [23, 43], we can obtain A,,; for the coincident
triggers in the flat and hierarchical search stages. We
describe the modeling procedure in the following sections.

1. Signal model

To model p(K|S), we require the probable astrophysical
distribution of the binary sources that Advanced LIGO
detectors can detect. In reality, the exact distribution
is unknown to the observers. Nevertheless, the source
population can be approximated as uniform in volume
and isotropic in the sky location and orientation of the
binary. Assuming these distributions for sources, we can
estimate how their detection parameters like signal am-
plitudes, time, and phase differences vary with respect to
the pair of the LIGO detectors.



To begin with the calculation for p(£|S), Monte Carlo
simulations are performed for each coincident trigger
with parameter & [45]. A histogram is generated in this
process and used as a look-up table for the distribution.
We use the above recipe to generate p(£|S) in flat and
both stages of the hierarchical search.

2. Noise model for flat and stage-1

To obtain rZL

G we first estimate single-detector noise
rate densities (15 ;). To calculate this quantity, we model
the tail of the trigger distribution for each detector (d)

and template with a falling exponential function [23] as:

75 q(pas N) = u(0) p(pald, N), (15)
given,
- a(0) exp[—a(0)(pa — pen.a)] if pa > penas
0,N) = ’ ’
P(palf, N) {0 otherwise,
(16)

— —

where p(6) and «(f) denotes trigger count above the
threshold (p¢s,q4) and exponential decay rate, respectively.

—

The fit parameter «(6) is obtained by maximum log-
arithmic likelihood fitting method. For discrete samples
of pg of kt" trigger, we maximize:

Inp(pgla,n) =nlna —« Z(ﬁk,d — Pthd), (17)
k

at a fixed pip.a (= 6) to obtain amazr = (Pa — Prh.d) -
Here, pg is the mean of pg and the variance (o4) in fit
parameter is given by 1/4/n, where n denotes the number
triggers generated for a particular template.

In the flat and stage-1 search, we calculate a4, and
n for each coarse template. Generally, not all the tem-
plates have a sufficient number of triggers above 6 to fit
the trigger distribution’s exponential tail. In such cases,
the low number of triggers gives a high variance to the
fit parameter values. To avoid such problems, we take
the moving average of the fit parameters [23]. We also
smooth the counts above the threshold by taking mean
over nearby templates with similar values of effective spin
(Xefs), template duration, and symmetric mass ratio (7).

Noise model for Stage-2

In principle, the procedure for obtaining single-
detector noise rate densities described previously can be
applied in stage-2. However, it cannot be implemented,
as this stage possesses insufficient triggers above p¢p 4 to
obtain meaningful fit parameters. The reason is, we fol-
low only foreground candidates from stage-1 that have
Aope = 7. Matched filtering over these followed-up trig-
gers utilizes fewer nbhds and corresponding templates to

generate fewer triggers. Having an inadequate number
of triggers for a template can give a large variance in the
values fit parameters, leading to overestimating single-
detector noise rates. We, therefore, do not explicitly cal-
culate the fit parameters in stage-2. Instead, we reuse the
fit-values of the ‘closest’ coarse template to the stage-2
trigger template. The ‘closeness’ relies on the highest
match value between the coarse and stage-2 bank tem-
plates. This approximation is justified as the noise trigger
rate fits represent the region’s response of the template
parameter space to the strain data.

To verify the applicability of the above procedure, we
perform a flat and hierarchical search on 14 days and ob-
tain fit parameters. Figure 4 compares the fit parameters
obtained in both the searches. The scatter points in the
diagonal signifies that the values are comparable for the
two searches in both the detectors. A few templates in
the Handford (H1) detector show low « indicating small
fluctuations in their values due to noise. These small fluc-
tuations can appear at different periods of observational
time. However, these variations in « negligibly affect the
modeling of single-detector noise rate density, as can be
seen later in IV.
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FIG. 4. Comparison plot for the fit coefficients, «, and pu,
obtained from a flat and hierarchical search for (a) Handford
(H1) and (b) Livingston (L1) detectors.

D. Assigning significance

The significance of any event is evaluated based on
their FAR estimate above a fixed statistic A* as:

FAR(A*) = / A7 rHLO(Agpy(R) — A*),  (18)

where ’I“g L = pHL by construction. FAR signifies the
odds of finding a non-astrophysical coincident candidate
with a similar or higher A,y (see Eq.( 13) in the ob-
serving period. FAR is estimated in the flat and stage-1
search with respect to a noise background constructed
by time-sliding data by a minimum of 15 milliseconds
across the detectors. Such a procedure omits all the pos-
sibilities to have a coincidence due to a real GW sig-
nal. At each time-shift, A,y is re-computed to rank the



candidates above a certain threshold (A*). Performing
several time shifts generates many plausible candidates
and unnecessarily adds to the background computation
cost. To overcome this problem, the computation of co-
incidences is optimized. At first, a clustering over time is
performed such that candidates with the highest statis-
tic, falling within 10 seconds, are kept. In the next step,
we selectively choose the candidates with all or few time-
slides falling in the ranking statistic value’s bin. For in-
stance, we collect the candidates with all possible time-
slides for ranking statistics greater than 9 but only select
time slides of 30 seconds for those with a statistic value
between 8 and 8.5.

In principle, a similar strategy can be implemented
to assign FARs to the detected candidates in stage-2 of
the hierarchical search. However, the background con-
structed by time-sliding stage-2 triggers across detectors
using a stage-2 bank can lead to biases in the FAR es-
timates of detected candidates, as shown in Gadre et al.
[30]. Therefore we avoid such biases by constructing an
approximate background that would mimic a background
constructed in the flat search. As proposed in Gadre et al.
[30], we construct a scaled stage-1 background for assign-
ing significance to the final list of coincident triggers.
First, we construct stage-1 background by performing
several time-slides of stage-1 foreground triggers across
the detectors as done in a flat search. We then scale this
background by a factor equal to the ratio of the number
of templates times the sampling frequency used in a flat
search to that used in stage-1. This number is close to
the computational gain and comes out to be 20.1.

To justify our argument on mimicking a flat back-
ground, we compare the foreground and background ob-
tained from a flat and hierarchical search performed over
14 days of data around the first BBH, GW150914 [1]
event. In Fig. 5, the foregrounds due to noise candi-
dates match their respective backgrounds for both the
searches. We observe that the noise background is higher
in the lower ranking statistic region than that of flat.
This observation is expected as the scaling factor lin-
early increases the number density of noise triggers in
a particular ranking statistic bin. We also notice that
the scaled stage-1 background roughly matches the flat
background above ranking statistic value 8. Therefore,
the reliability of the FARs will be limited to the ranking
statistic value 2 8. This method reasonably mimics the
flat search background and produces approximate FARs,
which may provide reasonable reliability to expand the
size and dimensionality of the parameter space, without
which we may miss out on some of the interesting sources.

III. SEARCH FOR CBC IN O1 AND O2 DATA

We search for CBCs using the two-stage hierarchical
search [46] over the data from the first (O1) and second
(02) observing runs of twin LIGO detectors. We use
21.39 days of coincident data from O1 and 31.4 days from
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FIG. 5. Plot showing FAR vs. ranking statistic curves for
the foreground candidates (foreground) and the time-shifted
candidates (background) from a flat and hierarchical search.
The foreground (in a triangle) overlays the background (in
a circle) in each search. The loudest event, GW150814, is
hierarchically removed from the background in both searches.
Note that the scaled stage-1 background (in black) roughly
matches the flat background (black) above ranking statistic
value 8.

02.

The periods of poor quality data are marked and
removed from the analysis using data-quality flags,
Category-1 (CAT-1) and Category-2 (CAT-2) [40]. CAT-
1 vetoes remove the times during which at least one of
the key components of a detector was not operational
in the nominal configuration due to critical issues. The
duration over which excessive noise is observed due to
instrumental artifacts is marked and removed by CAT-2
flags.

As described in Sec. IIB, the data undergo pre-
processing before entering the matched filtering step. In
both stages, we use 512 seconds of overlapping data seg-
ments for matched-filter computation. We pad data seg-
ments with zeros 144 seconds at the beginning and 16
seconds in the end to avoid the artifacts generated from
the FFT algorithm. Once the data segment is prepared,
we perform a hierarchical search in two stages.

We begin the search by matched filtering data seg-
ments sampled at 512 Hz with a coarse bank, as de-
scribed in Sec. II A1 and obtain a list of stage-1 triggers
above coarse thresholds on p and p. For triggers with
p > 3.5 that pass the x?2 test with j > 3.5, gets further
re-weighted by ng veto. The choice of coarse thresh-
olds for stage-1 search may seem arbitrary. However, we
tested out different values for p and p and found that set-
ting both values at 3.5 gives the optimal computational
cost of handling bulk triggers.

The surviving single-detector triggers then undergo a
coincidence test (see Sec. IIC) to obtain foreground can-
didates. These foreground candidates are then followed
up in stage-2.

The stage-2, or hierarchical search, begins with
matched filtering data segments sampled at 2048 Hz that



contains foreground candidates with A,y > 7 [30] from
stage-1. These segments are filtered using a stage-2 bank
constructed from the dynamic union of nbhds around
each followed-up trigger template (see Sec. I A 2). The
SNRs generated in this process are then re-weighted with
fine thresholds on p and p of 4. The resultant triggers
are then subjected to a coincidence test, as described in
Sec. I C, to obtain the second stage’s foreground candi-
dates.

The final step in the search involves assigning signifi-
cance to the potential foreground candidates (Aqp: > 8)
obtained in stage-2. We assign FARs to these candi-
dates using a scaled stage-1 background, as described in
Sec. IID. Based on this background, we present the re-
sults from the analysis in the next section.

We report the recovery of all ten confirmed GW events
with FAR below 1 per year in stage-2 of the hierarchical
search. These events were previously detected by the flat
analysis in GWTC-1. Although the detection statistics
used in both the stages of hierarchical search are more
recent than those used in the flat analysis of GWTC-1,
we still detect these events with nearly similar detection
confidence levels in stage-2 but with a computational gain
in the matched filtering by a factor of ~ 20. A compar-
ison of the recovered events’ FARs and network SNRs
(pr = \/p% + p2) from the flat search in GWTC-1 and
both the stages of the hierarchical search, is given in Ta-
ble II.

In our analysis, we recover the loudest events—
GW150914, GWI151226, GW170104, GW170608,
GW170814, GW170817, and GW170823, with compara-
ble FARs in both the stages of the hierarchical search.
However, the network SNRs of these events improve
in stage-2. The remaining events, like GW151012,
GW170729, and GW170809, see improvements in their
FARs and network SNRs in the stage-2 search. This
result signifies that conducting a stage-2 search over
the potential stage-1 foreground candidates is essential
for improving the SNRs and the significance of the
candidates.

IV. COMPARISON WITH THE FLAT SEARCH

The sensitivity of any search pipeline depends on the
number of astrophysical signals detected at a given FAR
threshold. Thus, in general, the FAR estimates of the de-
tected signals can primarily give insight into its efficiency.
However, to accurately assess the search pipeline’s sen-
sitivity, simulated injection studies are generally found
beneficial.

In this part, we highlight the computational advan-
tages of hierarchical search over flat search while com-
paring their search sensitivities using similar detection
statistics, as defined in Sec. ITC.

A. Comparison of Sensitivities

For a population of binary mergers, uniformly dis-
tributed over comoving volume (V'), one can compute
the sensitive reach of the detectors in terms of the vol-
ume covered in the given observable time. Suppose that
a binary’s merger rate is defined by p,,, then the num-
ber of detection that one can make above a certain FAR
threshold in T,,s observation time is the product of vol-
ume, time, and merger rate (p,, (VT)) [47]. The sensitive
volume-time ((V'T)) over here is defined as:

V) =T [ HODGE s (19

where, p(z|{f}) is the probability of recovering a signal
with parameters § at a redshift z. VT in Eq. (19) is
computed by Monte Carlo integration for the detected
sources. If we assume p.,, to be constant for all the search
pipelines, the ratio of VT can be exploited to compare
the sensitivities of any two search pipelines [7, 23].

To compute the VT ratio, we inject simulated GW sig-
nals from non-precessing CBCs into the real data. For
BNS-like sources, we use SpinTaylorT4 [48], and for
BBH and NSBH like sources we use SEOBNRv4_opt [31]
waveform models. Since we lack prior information on
the binary merger population, we distribute the signals
obtained from the models uniformly over the chirp dis-
tance between 50 Mpc and 400 Mpc. We uniformly
distribute the logarithms of component mass of BBH
and NSBH-like sources in the ranges [2 Mg,5 Mg] and
[3.5 Mg,100 Mg), respectively. For BNS injections,
we uniformly distribute the component masses between
2 M@ and 5 M@.

In our study, we inject 12203 simulated BNS, and
16271 BBH and NSBH signals in five days of coincident
data in O1 from September 12, 2015, to September 26,
2015. We analyze the data using the flat and hierarchi-
cal search pipelines separately. The matched filtering and
coincidence studies in the hierarchical search are carried
out as per Sec. III. In the case of flat search, we perform
matched filtering over data segments sampled at 2048
Hz and identify triggers with p and p above 4 in each
detector. With the appropriate clustering in time as de-
fined in II B, we run a coincidence test over the collected
single-detector triggers. Here, triggers observed within
15 milliseconds of a time window in two detectors are
identified and ranked according to their statistic values
(see Sec. I1C).

The foreground candidates obtained in both the
searches are assigned FARs based on their respective
noise backgrounds using similar ranking statistics de-
scribed in Sec. II C. In the flat search, we estimate the
background by time-sliding triggers across the detectors.
Here, each trigger is shifted by 0.1 seconds in time, and
then again, the statistic is estimated. A time slide of 0.1
seconds can generate a large number of triggers. There-
fore, we first cluster the candidates within a time window
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Sl. no. Event UTC Flat Hierarchical
Stage-1 Stage-2

FAR R M FAR R M FAR R M

Gr'H) T (M) ) T (Mo) orh) T (Mo)
1 GW150914 09:50:45.4 < 1.53x107° 23.6 32.75 1.526x107° 23.30 29.71 1.526x107° 24.0 31.96
2  GW151012 09:54:43.4 0.17 9.5 1847 0.422 8.98 18.68 0.059 9.8 18.3
3 GW151226 03:38:53.6 < 1.70x107°% 13.1 9.7 1.692x107° 11.91 9.89 1.692x107° 13.1 9.72
4 GW170104 10:11:58.6 < 1.39x107° 13.0 20.19 1.374x107° 12.26 18.37 1.374x107° 129 29.17
5 GW170608 02:01:16.5 < 3.09x107* 154 8.61 3.08x107% 8.90 8.65 3.08x10™*% 14.83 9.03
6 GWI170729 18:56:29.3 1.36 9.8 40.27 1.689 9.36 54.41 0.054 10.6 475
7 GW170809 08:28:21.8 1.45x107*  12.2 23.53 0.561 11.32 29.71 0.0017 12.1 23.65
8 GW170814 10:30:43.5 < 1.25x107° 16.3 25.2 1.253x107° 16.04 25.09 1.253x107° 17.2 26.58
9 GW170817 12:41:04.4 < 1.25x107° 309 1.2 2.506x107° 28.67 1.2 1.253x107° 31.5 1.2
10 GW170823 13:13:58.5 < 3.29x107° 11.1 23.61 3.301x107° 11.29 32.32 3.301x10° 11.1 46.85

TABLE II. List of GW events detected via hierarchical search. The events are arranged in the ascending order of their event
time. We report and compare detected event’s FAR, network SNR (p7), and chirp mass (M) in the stage-1 and stage-2 search
with the events reported by the flat search in Abbott et al. [7]. We see an improvement in the FAR and network SNR values
for the events with network SNR varying between 9 to 12 from stage-1 to stage-2.

of 10 seconds and select candidates with time shifts with
a statistic greater than pre-defined cutoffs. In the case
of hierarchical search, we assign FARs to the detected
candidates after scaling the stage-1 background, as de-
scribed in Sec. IID. The recovered candidates via clus-
tering over statistic values are then sorted with respect
to their FARs. A highly ranked candidate with a FAR
value below 1 per year [7] and falling within 1 second of
merger time is marked as a detected injection.
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FIG. 6. Scatter plot of FARs for injections recovered from the
hierarchical search vs. FARs found by the flat search. The
injections that are found by both searches are represented by
circular points (in black). The concentration of these points
near the diagonal implies that the estimated FAR by both
the searches are reasonably close. The other markers show
the injections that are found by one search pipeline.

In Fig 6 we compare FARs of the recovered injections
from the hierarchical and flat search. We see that most
of the injections are recovered with comparable FARs be-

tween both the searches. This can be viewed from the
high density of scattered points lying near the diagonal
of the plot. Some of the events are recovered by either of
the searches. However, these standalone events are seen
with low astrophysical significance. Notice that three in-
jections are recovered with higher false alarms by only
the flat search. A follow-up study showed that these in-
jections were made at very low SNRs and were likely re-
covered due to coincidence with noise fluctuation around
the injection time. We miss these injections in the hier-
archical search because we failed to recover them in the
stage-1 search.

The FAR comparison in Fig 6 shows that both flat and
hierarchical search performs similarly for loud CBC injec-
tion. However, the sensitivity towards detecting fainter
injections varies for both searches. This conclusion is
further supported by the VT comparison in Fig 7. The
VT ratio comparison plot between stage-1 search and flat
search in the top panel of Fig. 7, shows a sharp decline
in the sensitivity across all the chirp mass, and IFAR *
bins. This result is expected as the loss in matched filter
SNRs is bound to happen in stage-1 due to low sampling
rates and the use of a coarse bank. However, perform-
ing nbhd search on the potential foreground candidates
from stage-1 retains the overall sensitivity of the search
pipeline, which can be viewed in the bottom panel of
Fig. 7. In this plot, we see that the sensitivity of hi-
erarchical search remains consistent with the flat search
with VT ratio varying between a factor of 14 1.042 and
1+£0.08 for IFAR of 10 years depending on the chirp mass
bins.

4 _ 1
Inverse False Alarm Rate (IFAR = m)



® IFAR=0yr © IFAR=1yr © IFAR=2yr @ IFAR=5yr O IFAR=10yr
1.2
11
10 —
709
£F os
0.7
06
0.5
0.80, 2.001M 12.00,5.001M [5.00,10.00M¢  [10.00,20.00Mo  [20.00,40.00]Mo [40.00,160.001M o
Mehirp
® IFAR=0yr © IFAR=1yr © IFAR=2yr & IFAR=5yr O IFAR=10yr

Vr(Fa
-
o

VT

Ly H—j%

[0.80,2.00]M ¢

[2.00,5.00M o [5.00,10.00]M ¢

Menirp

[10.00,20.00]M,  [20.00,40.00]M¢ [40.00,160.00]M o

FIG. 7. Comparison of Volume x time (VT) ratio of (a)
stage-1, and (b) stage-2 (hierarchical) with flat search. The
sensitivity of stage-1 search drops for higher chirp mass bins
across all IFAR bins in (a). In (b), the sensitivity of hier-
archical search improves, maintaining the overall sensitivity
of hierarchical search comparable to flat, across entire chirp
mass and IFAR bins.

B. Comparison of computational efficiencies

Now we estimate the computational cost of matched
filtering for the flat and hierarchical search.

The computational cost of matched filtering relies on
the number of FFT operations performed on a segment
using a bank of templates. As defined previously, FFT
operations scale as N log, V. In the case of flat search,
we filter a data segment sampled at 2048 Hz with the
entire flat bank. If the segment is of length 512 sec-
onds, then N in the flat search is 512 x 2048, and the
number of matched filter operations is 512 x 2048 x
428725 x log,(512 x 2048), where 428725 represents the
number of templates in the flat bank.

In the case of hierarchical search, the total number of
matched filter operations is the sum of the number of
FFTs performed in stage-1 and stage-2. Since in stage-
1 search, we matched filter a data segment sampled at
512 Hz using the coarse bank containing 85080 tem-
plates, the number of matched filter operations comes
512 x 512 x 85080 log2(512 x 512). If the same segment
gets followed up for the stage-2 search, then the number
of matched filter operations reduces due to fewer tem-
plates in a stage-2 bank. The number of templates in
this bank can vary for each segment and detector, as can
be seen from Fig. 8. Thus, we compute a total number
of FFT operations for all the segments for the flat and
combined stages of the hierarchical search. To estimate
the over gain in the computational speed, we take the
ratio of the computed FFT operations for the flat to the
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FIG. 8. Histogram depicting the number of templates in
stage-2 bank generated for each segment.

hierarchical search.
We first define the following quantities:

Quantity Description

Nseg Total number of data segments in two detectors

tseg Duration of each segment

faat Sampling rate for flat and stage-2 search

fooarse  Sampling rate for stage-1

Ntﬂe?f,p Number of templates in the flat bank

Ngfagel  Number of templates in the stage-1 bank

Nptoss 2 Total number of templates for all the segments
used in the stage-2 search

Let,

Oﬂat =k fﬂattseg IOgQ(fﬂattseg) )

Ocoarse =k fcoarsetseg IOgQ (fcoarsetseg> ) (20)

where, Ogat and Ogoarse are the number of floating-point
operations required for performing a FFT for a segment
at the flat and coarse sampling rates, respectively. k is a
factor of few which cancels out from the numerator and
denominator. Thus the gain is given by:

flat
Nseg Nte?np Oﬂat

stagel stage2 .
NsegN Ocoarse + N, Oﬂat

temp temp

gain ~

(21)

While the number of templates in flat search and stage-1
are fixed for all segments, it varies for stage-2 as only
specific triggers are followed up with the stage-2 bank.
The total area of the histograms for the two detectors
together shown in Fig. 8 provides us with Ni*?8°%  Since

temp
Nfg;g; ? is much smaller than Ny Ntsetfng: ! the compu-
tation in stage-1 dominates the cost, so the stage-2 cost
does not affect the gain.

Substituting the numerical values, Ngeg = 390 [H1] +

225 [L1] = 615, tsee = 5l2secs, fhat
2048 Hz, feoarse = 512 Hz, N2t = 428725, N8l =



85080, and Nfg;gf = (132036 [H1] + 132134 [L1]) =
264170, the gain becomes 22 for the analysis. We do not
expect this number to change significantly for different
observing runs. Thus, we conclude that with the present
setting, the hierarchical search provides an overall com-

putational speed up by a factor of ~ 20.

V. CONCLUSION AND DISCUSSION

Efficient searches for GWs originating from CBCs can
expand the size and dimensionality of the search param-
eter space to detect interesting sources with present and
future detectors. The hierarchical search is perhaps the
most straightforward approach that brings more than one
order of magnitude enhancement in the efficiency with-
out compromising the robustness of the search. In this
work, we successfully demonstrate the efficiency of hier-
archical search by applying the analysis on the first two
observing runs of Advanced LIGO. By introducing es-
sential modifications to the previously developed codes,
we transform them into a complete analysis pipeline [46].
We improve upon the selection criteria for single detec-
tor triggers using chi-square and sine-Gaussian vetoes
to re-weigh matched filter SNRs. We also implement
a new coincident detection statistics in the hierarchical
search that utilizes phase and time differences between
detectors and detection parameters, significantly reduc-
ing false alarms due to noise events. With our pipeline,
we recover all the events in the LIGO-Virgo collabora-
tion’s official transient catalog, GWTC-1, detected by the
standard PyCBC analysis with nearly the same statisti-
cal confidence and a whopping factor of 20 computational
speed up. This work also demonstrates that hierarchical
search is at hand for production analysis of the present
and upcoming datasets from ground-based detectors.

Following Gadre et al. [30], we estimate the detected
candidates’ significance by scaling the noise background
obtained in stage-1 with a factor close to the speed-up
factor. Although the argument on assigning significance
to detected candidates using this background may not
be so rigorous, our work shows that this prescription
works and can be used to draw astrophysical inferences
and electromagnetic follow-up of the detected events with
sufficient accuracy. While the outcome of this exercise
builds enough confidence for application in production
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runs that are otherwise prohibitive due to computational
cost, we plan to carry out an extensive study focused
on accurate background estimation for the hierarchical
search.

In our opinion, the hierarchical search pipeline can be
used for ambitious searches that are currently deferred
due to computational limitations. For instance, a search
for binaries with non-aligned spins and sub-solar sources
requires an enormous number of templates. With hier-
archical search, we can attempt to carry out their search
at feasible computation cost without compromising the
accuracy of sensitivity of the search. The hierarchical
search can also make it possible to make the low latency
searches more reliable and closer to offline analysis. De-
veloping a comprehensive offline or a low latency search
for such sources is an arduous task ahead, and more so-
phistical techniques will have to be brought in, in the
coming years. Nevertheless, the hierarchical search is a
giant leap forward in this direction that should be ex-
ploited.
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