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ON RATIONALLY CONNECTED VARIETIES OVER C1 FIELDS

OF CHARACTERISTIC 0

MARTA PIEROPAN

Abstract. We use birational geometry to show that the existence of rational
points on proper rationally connected varieties over fields of characteristic 0 is
a consequence of the existence of rational points on terminal Fano varieties.
We discuss several consequences of this result, especially in relation to the C1-
conjecture. We also provide evidence that supports the conjecture in dimension
3 for C1 fields of characteristic 0.
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1. Introduction

A field k is called C1 (or quasi algebraically closed) if every hypersurface of
degree at most n in Pn

k has a k-rational point. Quasi algebraically closed fields
were introduced by Artin and first extensively studied by Tsen (see [DKT99]) and
Lang [Lan52]. Smooth hypersurfaces of degree at most n in Pn are Fano and
rationally chain connected [KMM92, Cam92]. In characteristic 0 they are also
rationally connected. Hence, it is natural to study rational points on rationally
(chain) connected varieties over C1 fields. In an unpublished paper of 2000 Lang
formulated the following conjecture, also known as C1-conjecture.

Conjecture 1.1 (Lang, 2000). Every smooth proper separably rationally con-
nected variety over a C1 field has a rational point.

At the time it was known that smooth proper rational curves and surfaces have
points over C1 fields [CT87]. Soon after it was formulated, the conjecture has
been proven to hold for the following C1 fields: finite fields [Esn03], function fields
of curves over algebraically closed fields [CPP02, GHS03, dJS03], fields of formal
power series over algebraically closed fields [CT11]. It is still open for the maximal
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unramified extensions Qnr
p of p-adic fields. Positive evidence in support of the

conjecture for the latter class of fields is given by [DK17], which proves that for
sufficiently large primes p smooth projective rationally connected varieties over
Qnr

p with fixed Hilbert polynomial have a rational point. As a consequence of our
first main result we manage to improve [DK17]: we replace the dependence on
the Hilbert polynomial by dependence only on the dimension, and we remove the
smoothness and properness assumptions.

The goal of this paper is to use birational geometry in characteristic 0 to reduce
the C1-conjecture to the case of Fano varieties and to provide evidence for the exis-
tence of rational points on rationally connected varieties of dimension 3. Along the
way, we also show that for proper rationally connected varieties of fixed dimension
over an arbitrary field of characteristic 0 there is a uniform upper bound for the
degree of the minimal field extensions where the set of rational points becomes
nonempty.

1.1. Birational geometry. The first main result of this paper reduces the C1-
conjecture for C1 fields of characteristic 0 to the following conjecture.

Conjecture 1.2. Every terminal Q-factorial Fano variety of Picard rank 1 over a
C1 field of characteristic 0 has a rational point.

More precisely, birational geometry and induction on dimension are used to prove
the following statement.

Theorem 1.3. Let k be a field of characteristic 0. For every positive integer n the
following statements are equivalent:

(i) Every smooth proper rationally connected k-variety of dimension ≤ n has
a k-point.

(ii) Every terminal Q-factorial Fano variety of dimension ≤ n and Picard rank
1 over k has a k-point.

The proof of Theorem 1.3 rests upon the birational invariance of rational con-
nectedness and the fact that the existence of rational points is a birational invari-
ant among proper smooth varieties [Nis55]. We recall that the use of the Minimal
Model Program in dimension ≥ 3 produces singular birational models in general.
Results on degenerations of rationally connected varieties [HX09] and induction on
dimension are used to transfer the existence of rational points among birationally
equivalent varieties with mild singularities. The restriction on the characteristic is
due to the use of the Minimal Model Program, of resolution of singularities and of
[HX09]. None of these are known to hold in positive characteristic, except for some
results in low dimension.

Boundedness of terminal Fano varieties [Bir21] assures that there are only finitely
many deformation families of terminal Fano varieties in each fixed dimension over
algebraically closed fields of characteristic 0. As an application of this fact we prove
the following corollary of Theorem 1.3, which gives a generalization of [DK17].

Corollary 1.4. For every positive integer n there exists a finite set S(n) of prime
numbers such that for all prime numbers p /∈ S(n), every rationally connected
variety of dimension n over Qnr

p has a Qnr
p -point.

During a workshop in Edinburgh in November 2018, it was brought to the au-
thor’s attention that the strategy of the proof of Theorem 1.3 is similar to the
one used in the paper [PS16], which proves, among other things, a uniform bound
depending only on dimension for the indices of subgroups of finite groups of au-
tomorphisms such that the subgroup acts with fixed points. The corresponding
statement for rational points is the following theorem, which is proven by combin-
ing the proof of Theorem 1.3 with boundedness of terminal Fano varieties.



ON RATIONALLY CONNECTED VARIETIES OVER C1 FIELDS OF CHAR. 0 3

Theorem 1.5. For every positive integer n there exists a positive integer d(n) such
that for every field k of characteristic 0 and every proper rationally connected k-
variety X of dimension n there exists a field extension k′ of k of degree ≤ d(n) such
that X(k′) 6= ∅.

For every positive integer n, let d̃(n) be the smallest positive integer such that
for every field k of characteristic 0 and every proper rationally connected k-variety
X of dimension n there exists a field extension k′ of k of degree ≤ d̃(n) such that
X(k′) 6= ∅. We prove the following effective bounds.

Theorem 1.6. We have d̃(1) = 2, d̃(2) = 6, d̃(3) ≤ 144.

The proof of Theorem 1.5 gives a bound

d̃(n) ≤ d̃(n− 1)max{d′(n), max
1≤m≤n−1

d̃(m)d̃(n−m)},

where d′(n) is an upper bound for the degree of the minimal field extensions where
terminal Fano varieties of dimension n acquire rational points. The existence of
d′(n) is a consequence of boundedness of terminal Fano varieties. The effective
computability of d′(n) depends on the classification of the Fano varieties that appear
in Theorem 1.3(ii). In dimension 4 or higher, the classification is not complete. In

dimension 2 the inequality only gives an upper bound d̃(2) ≤ 12. The sharp bound

d̃(2) = 6 is obtained in Section 4 using the Enriques–Iskovskih–Manin classification
of surfaces over nonclosed fields [Isk79]. In Section 5 we recall the classification
of the terminal Fano threefolds that appear in Theorem 1.3(ii), and we prove that

d′(3) ≤ 24. We do not expect the bound for d̃(3) to be sharp.

1.2. Classification of Fano varieties. Further evidence for Conjecture 1.1 that
can be found in the literature is given by the fact that the following rationally
connected varieties have rational points over C1 fields that admit normic forms of
arbitrary degree: complete intersections in weighted projective spaces (see [Kol96]
for example) and hypersurfaces of split toric varieties [Gui14]. We refer to [Lan52]
for the condition about normic forms and we recall that it is satisfied by fields that
admit finite extensions of every degree. In Section 7 we prove similar results for
varieties that after extension of the base field to the algebraic closure belong to the
following classes: toric varieties, complete intersections in products of weighted pro-
jective spaces, some Fano cyclic coverings, some special Fano varieties of dimension
3.

As a consequence of Theorem 1.3 combined with boundedness of terminal Fano
varieties [Bir21], the verification of Conjecture 1.1 is reduced to finding rational
points on finitely many geometric families of Fano varieties in each given dimension.
In general, the Q-factoriality and the Picard rank 1 conditions in Conjecture 1.2 and
in Theorem 1.3 are not preserved under base field extensions. So in order to verify
Conjecture 1.2 one needs to find rational points also on some Fano varieties that
are not geometrically Q-factorial and on some Fano varieties of geometric Picard
rank > 1.

We recall that the Gorenstein index of a log terminal Fano variety X is the
smallest positive integer I(X) such that I(X)KX is Cartier. TheQ-Fano index ofX
is then the largest positive integer q(X) such that −I(X)KX is linearly equivalent
to q(X)H for some Cartier divisor H on X . We write r(X) = q(X)/I(X). In
general these indices do not need to be invariant under field extension. In Section
5 we show that r(X) = r(Xk) for X defined over a C1 field of characteristic 0 with

algebraic closure k. In Section 8, we use Fujita’s and Sano’s classification results
[Fuj82, San96] to find rational points on Fano varieties of large index.
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Theorem 1.7. If X is a terminal Fano variety of dimension n ≥ 2 and index
r(X) > n − 2 over a C1 field k of characteristic 0 that admits normic forms of
arbitrary degree, then X(k) 6= ∅.

The classification of terminal Fano varieties is far from known. However, the
current literature on terminal Gorenstein Fano threefolds [Muk02, Pro13b] makes
the following result possible.

Theorem 1.8. Let X be a Gorenstein terminal Q-factorial Fano threefold over a
C1 field k of characteristic 0 that admits normic forms of arbitrary degree. Assume
that rkPic(X) = 1. Let g(X) = 1

2 (−KX)3 + 1. Let k be an algebraic closure of k.
Then X(k) 6= ∅ except, possibly, in the following cases:

(i) r(X) = 1, rkPic(Xk) = 1 and g(X) ∈ {6, 7, 8, 9, 10};
(ii) r(X) = 1, rkPic(Xk) = 1 and | −KX

k
| has a movable decomposition.

The varieties in part (i) of the theorem are complete intersections of sections
of certain vector bundles on some Grassmannians. To the best of the author’s
knowledge, Fano varieties as in (ii) are not classified. At the beginning of Section
5.1.5 we recall the definition of movable decomposition from [Muk02].

To date there is no complete classification of non-Gorenstein terminal Fano three-
folds of index r ≤ 1. There is, however, a classification of the possible configurations
of non-Gorenstein singularities for geometrically Q-factorial non-Gorenstein termi-
nal Fano threefolds of geometric Picard rank 1. See the Graded Ring Database
[B+]. Such Fano varieties X are studied using a Fano index defined as the largest
positive integer f(X) such that −KX is linearly equivalent to f(X)A for some Weil
divisor A on X [Suz04]. In Section 9.2 we prove that if f(Xk) ≥ 5 the variety has
a rational points over C1 fields of characteristic 0. We also discuss to what extent
the same proof applies to varieties of lower Fano index.

To the author’s knowledge there is no classification of non-Gorenstein terminal
Fano threefolds of geometric Picard rank > 1 except for [San95]. The varieties in
[San95] have rational points over C1 fields of characteristic 0 by Theorem 9.1.

We recall that the condition about the existence of normic forms of arbitrary
degree is satisfied by the fields Qnr

p , as they admit finite extensions of every degree.
Their algebraic extensions, however, do not need to satisfy the condition on normic
forms, but if Conjecture 1.1 holds for Qnr

p , then it holds also for all its algebraic ex-
tensions, as Weil restriction under finite separable field extensions preserves rational
connectedness, smoothness and properness, and the Weil restriction of a variety X
from a finite extension k to Qnr

p has a Qnr
p -point if and only if X has a k-point.

Theorem 1.3 and Corollary 1.4 are proven in Section 3, Theorems 1.5 and 1.6
are proven in Section 6, Theorem 1.7 is proven in Section 8, Theorem 1.8 is proven
in Section 9.

Acknowledgements. This work was partially supported by grant ES 60/10-1
of the Deutsche Forschungsgemeinschaft. The author is grateful to H. Esnault
for introducting her to the C1-conjecture. The author wishes to thank J. Blanc,
Y. Gongyo, A. Höring, Z. Patakfalvi, Y. Prokhorov, R. Svaldi for useful discussions,
J.-L. Colliot-Thélène and the anonymous referee for their remarks that led to sig-
nificant improvements of the paper, and K. Shramov for informing her about the
paper [PS16] and for suggesting the topic of Theorem 1.5. The author acquainted
herself to the Minimal Model Program at the Introductory Workshop on MMP held
in Hannover in February 2016.

2. Notation and basic properties

Let k be a field of characteristic 0, and k an algebraic closure of k. We denote
by Br(k) the Brauer group of k.
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For us a k-variety is a separated scheme of finite type over k. We use the words
curve, surface, threefold to denote a variety of dimension 1, 2, 3, respectively.

We say that a k-variety X is rationally connected if Xk is integral and rationally
connected in the sense of [Kol96, §IV.3]. We recall that if X is rationally connected,
X 99K Y is a dominant rational map and Y is proper, then Y is rationally connected.
In particular, being rationally connected is a birational invariant of proper varieties.

Weil divisors on an integral normal variety X correspond to Cartier divisors on
its smooth locus U . The reflexive sheaf OX(D) associated to a Weil divisor D on
X is the push-forward of OU (D|U ) under the inclusion U ⊆ X . A canonical divisor
KX on X is the Weil divisor corresponding to a canonical divisor on U . We say that
X is Gorenstein if its canonical divisor KX is Cartier, Q-Gorenstein if a positive
multiple of KX is Cartier. We say that X is Q-factorial if every Weil divisor on X
has a positive multiple that is Cartier. We recall that Q-factoriality is not invariant
under field extension (see [GNT19, Remark 2.7]).

We refer to [Kol13] for the singularities of the minimal model program. We recall
that (log) terminal varieties are normal and Q-Gorenstein by definition. We also
recall that the notion of (log) terminal singularities is invariant under separable
field extension.

A (log) terminal variety X is Fano if −KX has a positive multiple which is
Cartier and ample. We refer to [IP99] for the theory of Fano varieties.

We recall that, given a field k and an algebraic closure k of k, the k-forms of a
k-variety Y are k-varieties Y ′ such that Y ′

k
is isomoprhic to Yk, the k-models of a

k-variety Z are k-varieties Z ′ such that Zk is isomorphic to Z.

3. Reformulation of the C1-conjecture

In this section we prove that over a C1 field of characteristic 0 the C1-conjecture
is equivalent to Conjecture 1.2. We start by observing that in characteristic 0
the C1-conjecture is equivalent to both the stronger version obtained by removing
the smoothness assumption and to the weaker version obtained by replacing the
properness assumption by projectivity, as the following lemma shows.

Lemma 3.1. Let k be a field of characteristic 0 and n a positive integer. If all
smooth projective rationally connected k-varieties of dimension n have k-points,
then every proper rationally connected k-variety of dimension n has a k-point.

Proof. Let X be a proper rationally connected k-variety of dimension n. Since X
is of finite type over k, there exists an open subset U of X which is isomorphic
to an affine k-variety. Since resolutions of singularities exist for all varieties in
characteristic 0 by [Hir64], we can find a smooth projective compactification U of
U over k. Then U is rationally connected because it is birationally equivalent to
X . So U(k) 6= ∅ by assumption, and we conclude that X(k) 6= ∅ by [Nis55]. �

If the base field is large in the sense of [Pop96, Proposition 1.1] we can remove
also the properness assumption.

Lemma 3.2. Let k be a large field of characteristic 0 and n a positive integer. If
all smooth projective rationally connected k-varieties of dimension n have k-points,
then every rationally connected k-variety of dimension n has a k-point.

Proof. For every rationally connected k-variety X we can find a smooth projective
compactification X ′ of a smooth affine open subset of X as in the proof of Lemma
3.1. Since X ′(k) 6= ∅ by assumption, the set X ′(k) is dense in X ′ as k is large,
hence X(k) 6= ∅. �
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In the proof of Theorem 1.3 we use the following form of the Minimal Model Pro-
gram, which is a consequence of [BCHM10, Corollary 1.3.3]. See [Pro13c, Proposi-
tion 2.3] for a proof.

Proposition 3.3. Let k be a field of characteristic 0. Let X be a smooth projective
rationally connected k-variety. Then there exist a birational map X 99K X ′ and
a projective dominant morphism f : X ′ → Y such that X ′ is a projective Q-
factorial terminal k-variety, Y is a projective Q-factorial log terminal k-variety,
dimY < dimX ′, rkPic(Y ) = rkPic(X ′)−1, and the generic fiber of f is a terminal
Fano variety.

We can now prove the main theorem of this section.

Proof of Theorem 1.3. For every positive integer n, the implication (i) ⇒ (ii) holds
by Lemma 3.1 because every terminal Fano variety is rationally connected by
[Zha06].

To prove the reverse implication, we fix a positive integer n and assume that (ii)
holds. Let X be a smooth proper rationally connected k-variety of dimension ≤ n.
We prove that X has a k-rational point by induction on the dimension of X . If
dimX = 0, X = Spec k. Assume that dimX ≥ 1 and that every smooth proper
rationally connected k-variety of dimension < dimX has a k-point. By Lemma 3.1
we can assume, without loss of generality, that X is projective. Let f : X ′ → Y be
the fibration with X ′ birationally equivalent to X provided by Proposition 3.3.

We first prove that X ′(k) 6= ∅. If dimY = 0, then X ′ is a Q-factorial terminal
Fano variety of Picard rank 1. So X ′(k) 6= ∅ by (ii). If dimY > 0, then Y is
rationally connected and has dimension< dimX . Hence, Y (k) 6= ∅ by the induction
hypothesis combined with Lemma 3.1. Let y ∈ Y (k). By [HX09, Theorem 1.2] the
fiber of f over y contains a projective rationally connected k-subvariety Z. Since
dimY > 0, dimZ < dimX ′ = dimX . So Z(k) 6= ∅ by the induction hypothesis
combined with Lemma 3.1. Then X ′(k) 6= ∅.

Let x ∈ X ′(k). Let h : X ′′ → X ′ be a resolution of singularities. By [HX09,
Theorem 1.3], the fiber of h over x contains a rationally connected k-subvariety
W . Since h is a proper birational morphism, W is a proper rationally connected
k-variety with dimW < dimX ′′ = dimX . Thus W (k) 6= ∅ by the induction
hypothesis combined with Lemma 3.1. Hence, X ′′(k) 6= ∅, and X(k) 6= ∅ by
[Nis55]. �

3.1. A consequence of boundedness of Fano varieties. We show that Birkar’s
boundedness of Fano varieties [Bir21] implies boundedness of Hilbert polynomials
for terminal Fano varieties over nonclosed fields of characteristic 0.

Proposition 3.4. Let k be a field of characteristic 0 and n a positive integer. Then
there exist a positive integer N and finitely many polynomials f1, . . . , fs ∈ Q[t] such
that for every terminal Fano variety X of dimension n there exists an embedding
X ⊆ PN

k such that X has Hilbert polynomial fi for some i ∈ {1, . . . , s}.

Proof. Let k be an algebraic closure of k. By [Bir21, Theorem 1.1] there are finitely

many projective morphisms of k-varieties, say {V i → T i}i∈I for a finite set I, such
that for every terminal Fano k-variety X of dimension n there exists i ∈ I, a point
t ∈ T i(k) and an isomorphism V i

t
∼= Xk of k-varieties. Up to replacing each T i by

a suitable finite stratification, we can assume that T i is smooth, V i → T i is flat,
KV i |V i

t
= KV i

t
for all t ∈ T i(k) and there exists m ∈ Z>0 such that −mKV i is

Cartier and relatively very ample over T i for all i ∈ I. We can use the complete
linear system | − mKV i | to embed V i into a projective space P

Ni

T i over T i for all
i ∈ I, where Ni is the projective dimension of the linear system | −mKV i | for all
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i ∈ I. Then for every i ∈ I the Hilbert polynomial fi of V i
t with respect to the

projective embedding given by | −mKV i
t
| is independent of the choice of t ∈ T i by

[Har77, Corollary III.9.13]. Let s be the cardinality of I and write I = {1, . . . , s}.
Let N = max1≤i≤sNi. Then for every terminal Fano variety X of dimension n
over k, there exists i ∈ {1, . . . , s} such that X has Hilbert polynomial fi under the

embedding X ⊆ P
Ni

k defined by the complete linear system | −mKX |. Choose a

linear embedding P
Ni

k ⊆ PN
k . Then X has Hilbert polynomial fi under the induced

embedding X ⊆ PN
k . �

3.2. Application to rationally connected varieties over Qnr
p . We apply the

previous results to prove Corollary 1.4.

Proposition 3.5. Let f ∈ Q[t] and N ∈ N. Then there exists a finite set S(f,N)
of prime numbers such that for every prime number p /∈ S(f,N), every projective
rationally connected variety X ⊆ PN

Qnr
p

with Hilbert polynomial f has a Qnr
p -point.

Proof. Replace [Kol96, Theorem IV.3.11] by [dFF13, Proposition 2.6] in the proof
of [DK17, Theorem 1.3]. �

Proof of Corollary 1.4. Let n be a positive integer. Combining Propositions 3.4
and 3.5 we obtain a finite set S(n) of prime numbers such that for every prime
number p /∈ S(n) every terminal Fano variety of dimension n over Qnr

p has a Qnr
p -

point. Then by Theorem 1.3 every smooth proper rationally connected variety of
dimension n over Qnr

p with p /∈ S(n) has a Qnr
p -point. We conclude by Lemma 3.2

as Qp and Qnr
p are large fields by the Implicit Function Theorem over local fields

[Ser06, p.73] and [Pop96, Proposition 1.2], respectively. �

4. Del Pezzo surfaces

In this section we collect some properties related to the existence of rational
points on rationally connected curves and surfaces. We recall that terminal vari-
eties of dimension ≤ 2 are smooth [KM98, Corollary 5.18], and that the birational
classification of smooth rationally connected curves and surfaces is well understood.

Remark 4.1. We recall that isomorphism classes of Severi-Brauer varieties of di-
mension n over k are in bijection with (n+1)-torsion elements of Br(k) [GS06, The-
orem 5.2.1], and the projective space corresponds to the neutral element. Moreover,
a Severi-Brauer variety over k is a projective space if and only if it has a k-rational
point [GS06, Theorem 5.1.3]. In particular, a Severi-Brauer variety of dimension n
acquires a rational point over a base field extension of degree at most n+ 1.

Smooth curves are rationally connected if and only if they are Fano. Hence,
terminal rationally connected curves are precisely the smooth conics.

Lemma 4.2 ([GS06, §1.3, Example 5.2.4]). For a field k, the following are equiv-
alent:

(1) Br(k) has nontrivial 2-torsion;
(2) there is a conic C over k with C(k) = ∅.
Smooth surfaces are rationally connected if and only if they are rational. Hence,

terminal rationally connected surfaces are rational conic bundles or del Pezzo sur-
faces [Isk79].

Lemma 4.3. Let X be a rational conic bundle surface over a field k. Then

(i) there exists a finite extension k′ of k of degree at most 4 such that X has a
k′-point.
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(ii) There exists a rational conic bundle over Q that has no rational points on
any finite extension of Q of degree at most 3.

Proof. The conic bundle structure is given by a morphism f : X → C where C
and the fibers of f are conics. Then C acquires a rational point over a suitable
quadratic extension of k and the fiber of f over that point acquires a rational point
over a suitable further quadratic extension. Moreover, given two conics C1 and
C2 without rational points over Q and with distinct splitting fields, for example,
C1 = {x2 + y2 + z2 = 0} and C2 = {x2 + 2y2 + 5z2 = 0} by [Lam05, Example
III.2.13], then C1 ×C2 has no rational points on any finite extension of Q of degree
≤ 3. �

Del Pezzo surfaces are the Fano varieties of dimension 2, and they are classified
according their degree, i.e., the self intersection number of the canonical class, which
is an integer between 1 and 9.

Lemma 4.4. Let X be a del Pezzo surface of degree d over a field k. Then

(i) X acquires a rational point over a suitable finite extension of k of degree at
most d.

(ii) If d = 9, then X acquires rational points over a suitable finite extension of
k of degree at most 3.

(iii) If Xk
∼= P1

k
× P1

k
, then X acquires rational points over a suitable finite

extension of k of degree at most 4.
(iv) If d = 5, or d = 7, or d = 8 and Xk 6∼= P1

k
× P1

k
, then X is k-rational and

X(k) 6= ∅.
(v) There exists a del Pezzo surface of degree 6 over Q that has no rational

points on any finite extension of Q of degree smaller than 6.

Proof. Part (i) is a consequence of the fact that the base locus of the anticanonical
linear system has dimension at most 0. In (ii) X is a Severi-Brauer surface, and we
conclude by Remark 4.1. Part (iii) follows from Lemma 4.3 if rk Pic(X) = 2 and
from Lemma 5.10 if rkPic(X) = 1. Part (iv) follows from [SD72, Sko93] for d = 5,
and from [Man66, Theorem (3.7)] together with [VA13, §1.4] for the other cases.

For (v), let K = Q(
√
29) and L = Q(ζ7 + ζ−1

7 ), where ζ7 is a primitive 7th
root of unity. Let E be the smallest number field containing both K and L. Then
K, L and E are cyclic Galois extensions of Q of degree 2, 3 and 6, respectively.
Let b = (

√
29 − 5)/2 and q = (ζ7 + ζ−1

7 )2 − 2. For F ∈ {K,L,Q} we denote
by NE/F the norm of E over F and by Br(E/F ) the Brauer group of F rela-
tive to E. Since the extensions are cyclic, by [GS06, Corollary 4.4.10] we can
write Br(E/F ) = F×/NE/F (E

×). Under this identification, the corestriction maps
Br(E/K) → Br(E/Q) and Br(E/L) → Br(E/Q) are induced by the norms NK/Q

and NL/Q, respectively, see [EKM08, Example 99.6]. Let B ∈ Br(E/K) be the
class of b and Q ∈ Br(E/L) be the class of q. Computations (e.g., via the software
Sage [The19]) show that

b /∈ NE/K(E×), q /∈ NE/L(E
×), NK/Q(b), NL/Q(q) ∈ NE/Q(E

×).

Let X be the del Pezzo surface of degree 6 associated to (B,Q,E) by [Blu10,
Theorem 3.4]. By [Blu10, Corollary 3.5] X has a rational point on an extension
k′ of Q if and only if both B and Q are split over k′. This happens if and only if
E ⊆ k′, which implies [k′ : Q] ≥ 6. �

5. Fano threefolds

We recall the classification of terminal Fano threefolds that are mentioned in
Conjecture 1.2 and in Theorem 1.3(ii), and we investigate some of their properties
related to the existence of rational points for the proof of Theorem 1.6.
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Unless stated otherwise, in this section X denotes a terminal Fano threefold
over a field k of characteristic 0. We distinguish between Gorenstein (for example,
smooth) and non-Gorenstein varieties. We recall from §1.2 that Fano varieties are
classified according to the index r(Xk), which is a positive rational number up to
dimX + 1, see [IP99, Corollary 2.1.13]. In the Gorenstein case r(Xk) is a positive
integer. We denote by H a fundamental divisor of Xk, i.e., H ∈ Pic(Xk) such that
−KX

k
= r(Xk)H .

The classification of Fano threefolds uses the following invariants:

• the geometric Picard rank rk(Pic(Xk));
• the index r(Xk);
• the degree H3, i.e., the top self intersection of the fundamental divisor H .

We recall that (−KX
k
)3 = r(Xk)

3H3.
We consider first Gorenstein Fano threefolds, which are well studied and mostly

classified, while the classification of the non-Gorenstein ones is very far from being
complete.

Lemma 5.1. Let X be a Gorenstein terminal Fano threefold over a field k of
characteristic 0.

(i) If the base locus of | −KX | is nonempty, then r(Xk) = 1 and X acquires a
rational point over a suitable base field extension of degree at most 2.

(ii) If |−KX | is base point free, then X acquires a rational point over a suitable
base field extension of degree at most (−KX)3.

Proof. Part (i) follows from the fact that if nonempty, the base locus of | − KX |
either consists of one k-point or it is a smooth conic by [Shi89, Theorem 0.5]. Part
(ii) is a consequence of Bertini’s theorem. �

The rest of the section is devoted to improve the bound in Lemma 5.1(ii). We
start by collecting a few facts about indices of Fano varieties.

Lemma 5.2. Let X be a log terminal Fano variety over a field k of characteristic
0. Let k be a separable closure of k. Let H ∈ Pic(Xk) such that −KX

k
= r(Xk)H.

Then H ∈ Pic(Xk)
Gal(k/k). Moreover,

(i) I(X) = I(Xk) and q(X) | q(Xk);
(ii) if Br(k) = 0 or if X(k) 6= ∅, then r(X) = r(Xk).

Proof. Let q := q(Xk) and I := I(Xk), so that r(Xk) = q/I. Since the canonical
divisor class is invariant under field extension, IKX is a Cartier divisor class on
X . Thus I(X) = I and qH = −IKX ∈ Pic(X). Let g ∈ Gal(k/k). Since
qH = gqH = qgH , the element H − gH of Pic(Xk) is torsion. But Pic(Xk) is
free by [IP99, Proposition 2.1.2]. Hence, gH = H . Thus H is invariant under the
action of Gal(k/k) on Pic(Xk). The divisibility condition q(X) | q comes from the
definition of q(X) and q(Xk) and the fact that Pic(Xk) is free. If Br(k) = 0 or

X(k) 6= ∅, the exact sequence [CTS87, (1.5.0)] gives Pic(X) = Pic(Xk)
Gal(k/k). �

Lemma 5.3. Let X be a proiective geometrically integral variety over a field k. Let

k be a separable closure of k. Let H ∈ Pic(Xk)
Gal(k/k). Then there exists a field

extension k′/k of degree at most dimkH
0(Xk,OX

k
(H)) such that H ∈ Pic(Xk′).

Proof. By [Kol16, (7.4), Aside 32], the exact sequence [Kol16, Proposition 69] as-
sociates to H a Severi-Brauer k-variety P of dimension dimkH

0(Xk,OX
k
(H))− 1

such that P splits over a finite extension k′ of k contained in k if and only if
H ∈ Pic(Xk′). Then we conclude by Remark 4.1. �
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5.1. Gorenstein of geometric Picard rank 1. In this subsection let X be a
Gorenstein terminal Fano threefold of geometric Picard rank 1 over a field k of
characteristic 0.

5.1.1. Index 4. If r(Xk) = 4, then H3 = 1, (−KX
k
)3 = 64, and X is a Severi

Brauer variety of dimension 3. Hence, X is smooth and acquires a rational point
over a suitable field extension of degree at most 4 by Remark 4.1.

5.1.2. Index 3. If r(Xk) = 3, then H3 = 2 and (−KX
k
)3 = 54.

Lemma 5.4. Let X be a Gorenstein terminal Fano threefold over a field k of
characteristic 0. Assume that rk(Pic(Xk)) = 1 and r(Xk) = 3. Then X is a quadric
hypersurface in P4

k. In particular, X acquires a rational point over a suitable base
field extension of degree at most 2.

Proof. By [Fuj82, Theorem 0] (cf. [IP99, Theorem 3.1.14]) we know that Xk

|H|−֒→ P4
k

is a quadric hypersurface. By Lemma 5.2, H is invariant under the Gal(k/k) action
on Pic(Xk). Hence, by [Lie17, Theorem 3.4] there is a Severi-Brauer k-variety P of
dimension 4 and a morphism X → P that is a k-model of the inclusion Xk ⊆ P4

k
.

Let αH be the image of H in Br(k) under the morphism α from [Kol16, (69.1)].
Since Xk is a quadric in P4

k
, we see that 2αH = 0, but also 5αH = 0 (e.g., by [Kol16,

Proposition 44]), from which we conclude that αH = 0 and P ∼= P4
k. Then X is a

quadric hypersurface in P4
k. �

5.1.3. Index 2. If r(Xk) = 2, thenH3 is an integer between 1 and 5, and (−KX
k
)3 =

8H3. We recall the classification from [Shi89, Corollary 0.8] (cf. [IP99, Theorems
3.2.5 and 3.3.1] and [Pro13a, Theorem 1.7]).

• If H3 = 1, Xk is a sextic hypersurface in the weighted projective space
Pk(3, 2, 1, 1, 1).

• If H3 = 2, Xk

|H|−→ P3
k
is a double cover ramified along a smooth quartic

surface.

• If H3 = 3, Xk

|H|−֒→ P4
k
is a smooth cubic hypersurface.

• If H3 = 4, Xk

|H|−֒→ P5
k
is a smooth complete intersection of two quadrics.

• If H3 = 5, Xk

|H|−֒→ P6
k
is an intersection of five quadrics. If X is smooth,

Xk is a section of the Grassmannian Gr(2, 5) ⊆ P9
k
by a linear space of

codimension 3 under the Plücker embedding.

Lemma 5.5. Let X be a Gorenstein terminal Fano threefold over a field k of
characteristic 0. Assume that rk(Pic(Xk)) = 1 and r(Xk) = 2. Then X acquires a
rational point over a suitable field extension of degree at most d1(H

3), for

(H3, d1(H
3)) ∈ {(1, 1), (2, 8), (3, 3), (4, 16), (5, 1)}.

Proof. By [IP99, Remarks 3.2.2(ii)] we know that dimkH
0(Xk, H) = H3 + 2.

Hence, by Lemmas 5.2 and 5.3 there exists a finite extension k′ of k of degree
at most H3 + 2 such that H ∈ Pic(Xk′). By [IP99, Proposition 3.2.3] the general
member of |H | is a del Pezzo surface of degree H3 over k′, and hence acquires a
rational point over a further extension of degree H3 by Lemma 4.4(i). If H3 = 5,
then Xk′ has a k′-point by Lemma 4.4(iv).

Let αH be the image of H in Br(k) under the morphism α from [Kol16, (69.1)].
Since 2H = −KX ∈ Pic(X), we have 2αH = 0 in Br(k). But we have also (H3 +
2)αH = 0 (e.g., by [Kol16, Proposition 44]). Hence, if H3 ∈ {1, 3, 5}, we conclude
that αH = 0, and we can choose k′ = k. If H3 = 4, we can choose k′ of degree at
most 4 over k by [Kol16, Theorem 53, Corollary 54]. �
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5.1.4. Smooth of index 1. If X is smooth and r(Xk) = 1, then H = −KX ∈ Pic(X),
and H3 is an even integer between 2 and 22, H3 6= 20. Let g := (−KX)3/2 + 1.
Then g is an integer between 2 and 12, g 6= 11. According to [Muk02], |H | is base
point free and it induces a morphism X → P

g+1
k . We recall the classification from

[Muk02, Theorem 1.10], [IP99, Theorem 5.2.3, or §12.2]. See [Pie19] for the Galois
descent of complete intersections.

• If H3 = 2, then g = 2 and X
|H|−→ P3

k is a double cover ramified along a
sextic surface.

• If H3 = 4, then g = 3 and X
|H|−→ P4

k is either an embedding as quartic
hypersurface, or a double cover of a quadric hypersurface in P4

k.

If g ≥ 4, H is very ample.

• If H3 = 6, then g = 4 and X
|H|−֒→ P5

k is a complete intersection of a quadric
and a cubic.

• If H3 = 8, then g = 5 and X
|H|−֒→ P6

k is a complete intersection of three
quadrics.

• If H3 = 10, then g = 6 and X
|H|−֒→ P7

k is a k-form of a complete intersection
of a cone over the Grassmannian Gr(2, 5) under the Plücker embedding
with a quadric and a linear space of codimension 3 (cf. [IP99, Examples
5.2.2(i)]).

If g ≥ 7, a general hyperplane section of the embedding X
|H|−֒→ P

g+1
k cuts a

smooth K3 surface S in X by [Kol97, §7.7] and [Muk02, Proposition 7.8].

• If H3 = 12, then g = 7. Denote by N ∗
S/P7

k

the dual of the normal bundle of

S ⊆ P7
k. In the proof of [Muk02, Theorem 4.7], the vector bundle N ∗

S/P7

k

⊗
OS(2) determines a Gal(k/k)-equivariant embedding Xk ⊆ Gr(5, 10) whose
image is a linear section of an orthogonal Grassmannian OGr(5, 10, Q) ⊆
P15
k
, where Q is a Gal(k/k)-invariant quadric hypersurface Q in P9

k
by a

version of [Muk95, Corollary 2.5] for S.

If g ≥ 8, a general hyperplane section of S
|H|S |−֒→ P

g
k is a smooth curve of genus g

which determines a Mukai-Lazarsfeld bundle E on S (cf. [Apr13, §1.3]).

• If H3 = 14, then g = 8 and E induces a Gal(k/k)-equivariant embedding
of Xk in Gr(2, 6) such that if Gr(2, 6) ⊂ P14

k
is the Plücker embedding, Xk

is a linear section of Gr(2, 6) by a Gal(k/k)-invariant linear subspace of
codimension 5.

• If H3 = 16, then g = 9 and E induces a Gal(k/k)-equivariant embedding of
Xk in Gr(3, 6) such that if Gr(3, 6) ⊆ P19

k
is the Plücker embedding, Xk is a

complete intersection of Gr(3, 6) with the zero locus of a Gal(k/k)-invariant
global section of the second exterior power of the dual of the tautological
bundle of Gr(3, 6) and a Gal(k/k)-invariant linear subspace of codimension
3 (cf. [Muk02, Example 5.1]).

• IfH3 = 18, then g = 10 andE induces a Gal(k/k)-equivariant embedding of
Xk in Gr(5, 7) such that if Gr(5, 7) ⊆ P20

k
is the Plücker embedding, Xk is a

complete intersection of Gr(5, 7) with the zero locus of a Gal(k/k)-invariant
global section of the fourth exterior power of the dual of the tautological
bundle of Gr(5, 7) and a Gal(k/k)-invariant linear subspace of codimension
2 (cf. [Muk02, Example 5.2]).

• If H3 = 22, then g = 12 and E induces a Gal(k/k)-equivariant embedding
of Xk in Gr(3, 7) such that Xk is the zero locus in Gr(3, 7) of three linearly
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independent Gal(k/k)-invariant global sections of the second exterior power
of the dual of the tautological bundle of Gr(3, 7) (cf. [Muk02, §5, p.15]).

Now we investigate some properties of linear sections of orthogonal Grassman-
nians that we can use to study rational points in the case g = 7.

Given a nonsingular quadric hypersurface Q ⊆ P9, we denote by OGr(5, 10, Q)
the orthogonal Grassmannian of isotropic 4-dimensional linear subspaces of P9. It
is also known as spinor variety in P15. We refer to [RS00] and [Kuz18] for a detailed
description.

Lemma 5.6. Let k be a field of characteristic 0 and let k be a separable closure of
k. Let Q ⊆ P9

k be a nonsingular quadric hypersurface. Let Y ⊆ P15
k be a k-model

of the spinor embedding OGr(5, 10, Q) ⊆ P15
k
. Let L ⊆ P15

k be a linear subspace of
codimension 7 such that X := L ∩ Y is geometrically irreducible of dimension 3.
Then X acquires a rational point over a suitable quadratic extension of k.

Proof. We denote by P15
k

∗
the dual projective space as in [Kuz18, Notation 3.1] and

by Y ∗ ⊆ P15
k

∗
the dual of Y ⊆ P15

k . The dual L∗ of L is a 6-dimensional linear

subspace of P15
k

∗
, hence L∗ 6⊆ Y ∗ by [Kuz18, Theorem 3.2]. Let v be a k-point on

L∗ that is not contained in Y ∗, and let Lv ⊆ P15
k be the corresponding hyperplane.

By [Kuz18, Lemma 5.10] the intersection Lv∩Y contains a quadric Qv of dimension
6 defined over k. Then L ∩ Qv is a nonempty k-subvariety of degree 2 in L, it is
contained in X , and it acquires a rational point over a suitable extension of k of
degree at most 2. �

Lemma 5.7. Let X be a smooth Fano threefold over a field k of characteristic 0.
Assume that rk(Pic(Xk)) = 1, r(Xk) = 1 and H3 = 22. Then X acquires a rational
point over a suitable field extension of degree at most 6.

Proof. The Fano variety of conics of X is a Severi Brauer surface by [KPS18,
Proposition B.4.1]. Hence, X contains smooth conics defined over a cubic extension
of k by Remark 4.1, and has rational points over a further quadratic extension. �

5.1.5. Singular Gorenstein of index 1.

Definition 5.8. The anticanonical linear system | − KX | of a Gorenstein Fano
variety X of index 1 is said to have a movable decomposition if there are Weil
divisors A and B such that the linear systems |A| and |B| have positive dimension
and A+B is linearly equivalent to −KX . If |−KX

k
| has no movable decomposition,

for an algebraic closure k of the base field k, we say that X is indecomposable.
Otherwise, we say that X is decomposable.

Indecomposable Gorenstein terminal Fano threefolds of index 1 and geometric
Picard rank 1 are classified in [Muk02, Theorems 1.10, 6.5] (we remark that [Muk02,
Proposition 7.8] and [Mel99, Theorem 1, Theorem 2.4] show that the classification
is exaustive), and the bounds from Section 5.1.4 apply.

Decomposable terminal Gorenstein Fano threefolds of index 1 and geometric
Picard rank 1 are not completely classified. However, by [IP99, Proposition 4.1.12],
[PCS05, Theorem 1.5] (cf. [PS17, Proposition 6.1.1]) we know that the cases with
g ∈ {2, 3, 4, 5} are completely classified in [Muk02, Theorem 6.5].

Lemma 5.9. Let X be a Gorenstein terminal Q-factorial Fano threefold over a
field k of characteristic 0. Assume that rk(Pic(Xk)) = 1 and r(Xk) = 1. Then X
acquires a rational point over a finite extension of k of degree at most 18.

Proof. By [Nam97, JR11], Xk admits a smoothing that preserves the Picard group
and the degree (−KX

k
)3. Hence, (−KX)3 ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 22}. If

(−KX)3 = 22, the only decomposable cases we are interested in are classified in
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[Pro16, Theorem 1.3], and their singular locus consists of a rational point. We
conclude by Lemmas 5.1 and 5.7. �

5.2. Gorenstein of geometric Picard rank > 1. In this subsection let X be a
Gorenstein terminal Fano threefold of geometric Picard rank > 1 and Picard rank
1 over a field k of characteristic 0.

5.2.1. Products of projective spaces.

Lemma 5.10. Let k be a field of characteristic 0, and let X be a twisted form of∏n
i=1 P

m
k over k such that rk(Pic(X)) = 1. Then there is an extension k̃ of k of

degree at most n!(m+ 1) such that Xk̃
∼=

∏n
i=1 P

m
k̃
.

Proof. Let e1, . . . , en be the standard generators of Pic(Xk). From the exact se-
quence

1 →
n∏

i=1

Aut(Pm
k ) → Aut(

n∏

i=1

Pm
k ) → Sn → 1

and the induced exact sequence in étale cohomology, there exists a unique finite
Galois extension k′ of k of degree between n and n! such that ei is Gal(k/k′)-
invariant for all i ∈ {1, . . . , n}. For every i ∈ {1, . . . , n}, let αi be the image of
ei in Br(k′) under the morphism α from [Kol16, (69.1)]. Then α1, . . . , αn form an
orbit under the conjugation action of Gal(k′/k) (see [GS06, Construction 3.3.12]).

Hence, they split over the same field extension k̃ of k′, which has degree at most
m+1 by Lemma 5.3. In particular, e1, . . . , en ∈ Pic(Xk̃), and the morphism Xk̃ →∏n

i=1 P
m
k̃

induced by the product of the projections corresponding to e1, . . . , en is

an isomorphism. �

5.2.2. Smooth. Let X be a smooth Fano threefolds of geometric Picard rank > 1
and Picard rank 1. We recall the classification from [Pro13b, Theorem 1.2, §2].

If rkPic(Xk) = 2, we have

• [Pro13b, Case 1.2.1 a), p. 421]: r(Xk) = 1, H3 = 12, and Xk is a divisor
of bidegree (2, 2) in P2

k
× P2

k
.

• [Pro13b, Case 1.2.1 b), p. 421]: r(Xk) = 1, H3 = 12, and X is a double
cover π : X → V of a variety V that belongs to Case (1.2.4) with branch
locus a member of | −KV |.

• [Pro13b, (1.2.2)]: r(Xk) = 1, H3 = 20, and Xk is a complete intersection
of three divisors of bidegree (1, 1) in P3

k
× P3

k
.

• [Pro13b, (1.2.3)]: r(Xk) = 1, H3 = 28, and Xk is a blow up of a quadric in
P4
k
along a twisted quartic curve.

If rkPic(Xk) = 3, we have

• [Pro13b, (1.2.4)]: r(Xk) = 2, H3 = 6, and X is a k-model of a divisor of
bidegree (1, 1) in P2

k
× P2

k
.

• [Pro13b, (1.2.5)]: r(Xk) = 1, H3 = 12, and Xk is a double cover of P1
k
×

P1
k
× P1

k
ramified along an element of | −KP1

k
×P1

k
×P1

k

|.
• [Pro13b, (1.2.6)]: r(Xk) = 1, H3 = 30, and Xk is a complete intersection
of three divisors in P2

k
× P2

k
× P2

k
of tridegrees (0, 1, 1), (1, 0, 1), (1, 1, 0),

respectively.
• [Pro13b, (1.2.7)]: r(Xk) = 2, H3 = 6, and Xk

∼= P1
k
× P1

k
× P1

k
.

If rkPic(Xk) = 4, we have

• [Pro13b, (1.2.8)]: r(Xk) = 1, H3 = 24, and X is k-model of a divisor of
multidegree (1, 1, 1, 1) in P1

k
× P1

k
× P1

k
× P1

k
.
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Lemma 5.11. Let n ∈ {1, . . . , 8}, and let X be a smooth Fano threefold over a
field k of characteristic 0 as in [Pro13b, (1.2.n)]. Then X acquires a rational point
over a suitable base field extension of degree at most d2(n), for

(n, d2(n)) ∈ {(2, 8), (3, 4), (4, 6), (6, 18), (7, 12)}.

Proof. If n = 2, we have Pic(Xk)
∼= Pic(P3

k
× P3

k
) by [Har70, Corollary IV.3.3]

and −KX is an element of bidegree (1, 1). By Lemma 5.10 there is an extension
k′ of k of degree at most 8 such that Xk′ ⊆ P3

k′ × P3
k′ is defined by three biho-

mogeneous polynomials f1, f2, f3 of bidegree (1, 1) with coefficients in k′ in a set
of variables (x0, x1, x2, x3; y0, y1, y2, y3). Evaluating f1, f2, f3 at y0 = y1 = y2 =
y3 = 1 gives three linear forms in 4 variables, which have a nontrivial common zero
(x̃0, x̃1, x̃2, x̃3) 6= (0, 0, 0, 0) over k′. Then ((x̃0 : x̃1 : x̃2 : x̃3), (1 : 1 : 1 : 1)) is a
k′-point on X .

For n = 3, let ϕ : Xk → P4
k
be the morphism induced by the blow-up and

let H be the hyperplane class in Pic(P4
k
). By [Pro13b, pp.426-427,432] there is

a quadratic extension k′ of k such that ϕ∗(H) is invariant under the Gal(k/k′)
action on Pic(Xk). By [Lie17, Theorem 3.4] there is a Severi-Brauer k′-variety P
of dimension 4 and a morphism ϕ′ : Xk′ → P that is a k′-model of ϕ. Let αH be
the image of H in Br(k′) under the morphism α from [Kol16, (69.1)]. Since the
image of ϕ is a quadric in P4

k
, we see that 2αH = 0, but also 5αH = 0, from which

we conclude that αH = 0 and P ∼= P4
k′ . Then Xk′ is the blow up of a quadric Q

in P4
k′ along a suitable quartic curve. In particular, there is a suitable quadratic

extension k′′ of k′ such that Q has a k′′-point x and ϕ′ is an ismorphism around x.
If n = 4, we have Pic(Xk)

∼= Pic(P2
k
× P2

k
) by [Har70, Corollary IV.3.3] and H is

an element of bidegree (1, 1). By Lemma 5.10 there is an extension k′ of k of degree
at most 6 such that Xk′ ⊆ P2

k′ × P2
k′ is defined by a bihomogeneous polynomial f

of bidegree (1, 1) with coefficients in k′ in a set of variables (x0, x1, x2; y0, y1, y2).
Evaluating f on y0 = y1 = y2 = 1 yields a linear form in 3 variables, which has a
nontrivial zero (x̃0, x̃1, x̃2) 6= (0, 0, 0) over k′. Then ((x̃0 : x̃1 : x̃2), (1 : 1 : 1)) is a
k′-point on X .

If n = 6, we have Pic(Xk)
∼= Pic(P2

k
×P2

k
×P2

k
) by [Har70, Corollary IV.3.3] and

H is an element of tridegree (1, 1, 1). By Lemma 5.10 there is an extension k′ of k of
degree at most 18 such that Xk′ ⊆ P2

k′×P2
k′×P2

k′ is defined by three trihomogeneous
polynomials f1, f2, f3 of tridegrees (0, 1, 1), (1, 0, 1), (1, 1, 0), respectively, with coef-
ficients in k′ in a set of variables (x0, x1, x2; y0, y1, y2; z0, z1, z2). Evaluating f1 and

f2 at z0 = z1 = z2 = 1 gives two linear forms f̃1, f̃2 in two distinct sets of variables.
Let (ỹ0, ỹ1, ỹ2) 6= (0, 0, 0) be a nontrivial zero of f̃1 over k′. Evaluating f3 at yi = ỹi
for i ∈ {0, 1, 2} gives a linear form f̃3. Let (x̃0, x̃1, x̃2) 6= (0, 0, 0) be a nontrivial

common zero of f̃2 and f̃3 over k′. Then ((x̃0 : x̃1 : x̃2), (ỹ0 : ỹ1 : ỹ2), (1 : 1 : 1)) is
a k′-point on X .

For n = 7, we conclude by Lemma 5.10. �

5.2.3. Singular Gorenstein. By [Pro13b, Theorem 6.6] singular Gorenstein terminal
Fano threefolds of geometric Picard rank > 1 and Picard rank 1 have the same
description (1.2.n) as in Section 5.2.2 for n ∈ {1, 2, 3, 5, 6, 8}.

Lemma 5.12. Let n ∈ {1, . . . , 8}, and let X be a singular Gorenstein terminal Fano
threefold over a field k of characteristic 0 of type (1.2.n) as in [Pro13b, Theorem
6.6]. Then X acquires a rational point over a suitable base field extension of degree
at most d3(n), for

(n, d3(n)) ∈ {(1, 12), (2, 20), (3, 18), (5, 12) (6, 17), (8, 17)}.
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Proof. Let k be an algebraic closure of k, and letX ′ be a smoothing ofXk. Since the
Picard group and the degree (−KX

k
)3 are preserved under smoothing by [Nam97,

JR11], Xk contains at most

N(X) = 20− rkPic(Xk) + h1,2(X ′)

singular points by [PS17, (6.3.3)]. Combining Lemma 5.1 with the fact that the
singular locus of Xk is defined over k, we conclude that X acquires a rational
point over suitable base field extension of degree at most min{N(X), (−KX)3}.
We compute N(X) by consulting [IP99, §§12.3–12.5]. �

5.3. Non-Gorenstein terminal.

Lemma 5.13. Let X be a non-Gorenstein terminal Fano threefold over a field k
of characteristic 0. Then X acquires a rational point over a suitable field extension
of degree at most 16.

Proof. Let k be an algebraic closure of k. The orbit of a non-Gorenstein k-point
on Xk under the action of Gal(k/k) has cardinality at most 16 (the computation
can be found in the proof of [PS17, Lemma 4.2.1]). �

6. Field of definition of rational points

In this section we prove Theorem 1.5 and Theorem 1.6.

Proof of Theorem 1.5. For the first statement we proceed by induction on n. If
n = 0 there is nothing to prove. Let n > 0. Since the degree of a projective variety
is encoded in the Hilbert polynomial, by Proposition 3.4 there exists a positive
integer d′ such that for every terminal Fano variety X of dimension n there exists
an embedding X ⊆ PN

k of degree ≤ d′. By Bertini’s theorem n general hyperplanes
of PN

k intersect X in a smooth subvariety of dimension 0 that acquires a rational
point after a field extension of degree ≤ d′. We retrace the proof of Theorem 1.3
to show that we can take

d(n) = d(n− 1)max{d′(n), max
1≤m≤n−1

d(m)d(n−m)}, (6.1)

where d′(n) is a positive integer (for example d′ above) such that for every field k of
characteristic 0, every terminal Q-factorial Fano variety of dimension n and Picard
rank 1 over k acquires rational points over a suitable field extension of degree at
most d′(n) over k. Let X be a proper rationally connected variety of dimension
n. By the argument in the proof of Lemma 3.1 we can assume without loss of
generality that X is smooth and projective. Let f : X ′ → Y be the fibration with
X ′ birationally equivalent to X provided by Proposition 3.3, and let X ′′ → X ′ be
a resolution of singularities. Then there exists a field extension k ⊆ k′ of degree
at most max{d′(n),max1≤m≤n−1 d(m)d(n − m)} such that X ′(k′) 6= ∅. Indeed,
if dimY = 0, then X ′ acquires a rational point after a suitable field extension of
degree at most d′(n), as X ′ is a terminal Q-factorial Fano k-variety of dimension
n and Picard rank 1. If dimY = m > 0, then by induction hypothesis Y acquires
a rational point after a suitable field extension of degree at most d(m) of k and
the fiber of X ′ → Y over such a point acquires a rational point after a further
suitable field extension of degree at most d(n−m) by [HX09, Theorem 1.2] and the
induction hypothesis. By [HX09, Theorem 1.3] and the induction hypothesis there
exists a finite field extension k′ ⊆ k′′ of degree ≤ d(n − 1) such that X ′′(k′′) 6= ∅.
Then X(k′′) 6= ∅ by [Nis55]. �

Proof of Theorem 1.6. The bound d̃(1) = 2 is immediate, because all conics acquire
rational points on suitable quadratic extensions and {x2+y2+z2 = 0} defines a conic
without rational points over Q. For n = 2, by resolution of singularities, [Nis55],
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and the birational classification of proper smooth surfaces [Isk79], it suffices to find

a bound for del Pezzo surfaces and rational conic bundles. Hence, d̃(2) = 6 follows
from Lemmas 4.3 and 4.4.

For n = 3, let d′(3) be the bound for terminal Fano threefolds of Picard rank 1.

Then d′(3) ≤ 24 by the results in Section 5, and (6.1) gives d̃(3) ≤ 6max{24, 12} =
144. �

7. Varieties with points over C1 fields

In this section we find rational points on a number of rationally connected vari-
eties over C1 fields. The results in this section will be used for the proof of Theorem
1.8.

Remark 7.1. We recall that C1 fields have cohomological dimension ≤ 1 and
hence trivial Brauer group [Ser02, §II.3.2]. In particular, projective spaces have no
nontrivial forms over C1 fields [GS06, §5]. We also recall that algebraic extensions
of C1 fields are C1 [Lan52, Corollary to Theorem 5].

7.1. Toric varieties. We prove that k-forms of toric varieties have rational points
over C1 fields k of characteristic 0.

Proposition 7.2. Let k be a field of characteristic 0 of cohomological dimension ≤
1. Let k be a separable closure of k. Let X be a k-variety such that Xk is isomorphic

to a proper Q-factorial toric k-variety. Then X is an equivariant compactification
of a k-torus and has a smooth k-point.

Proof. Let Σ be a fan in Zn and Y the split toric k-variety associated to Σ ⊆ Zn.
Assume that Y is proper and Q-factorial (i.e., Σ is simplicial and

⋃
σ∈Σ σ = Rn). By

[Ser02, Proposition III.1.3.5], the k-forms of Y are classified by H1
ét
(k,AutY ) up to

isomorphism. By [Cox95, Corollary 4.7] AutY is a k-linear algebraic group. Hence,
H1

ét
(k,AutY ) ∼= H1

ét
(k,AutY /Aut0Y ) by [Ser02, Corollary III.2.4.3]. By [Cox95,

Corollary 4.7], there is a surjective homomorphism Aut(Zn,Σ) → AutY /Aut0Y ,
where Aut(Zn,Σ) is the group of lattice automorphisms of Zn that preserve the fan
Σ. Therefore, there is a surjective map H1

ét
(k,Aut(Zn,Σ)) → H1

ét
(k,AutY /Aut0Y )

by [Ser02, Corollary III.2.4.2]. Moreover, to every element of H1
ét
(k,Aut(Zn,Σ))

correspond an isomorphism class of normal k-varieties with a faithful action of a
k-torus that has a dense orbit by [ELFST14, Theorems 3.2 and 3.4]. Hence, every
k-form X of Y is a normal k-variety with a faithful action of a k-torus that has a
dense orbit U . By [Vos82, Theorem 6], U is a principal homogeneous space under
a torus T . Since tori are connected linear algebraic groups by [Bor91, p. 114],
H1

ét
(k, T ) = 0 by [Ser02, Corollary III.2.4.3]. Therefore, U ∼= T has a k-point (the

unit element). Since tori are smooth, X has a smooth k-point. �

Note that the assumption on the characteristic of k ensures that the automor-
phism group of the toric variety is smooth. The author does not know whether
smoothness and the results in [Cox95, Corollary 4.7] hold in positive characteris-
tics. The Q-factoriality assumption can be removed using [MGSdSSdS18, Theorem
7.8].

7.2. Intersections of low degree in products of weighted projective spaces.

We generalize [Lan52, Theorem 4] and [Kol96, Theorem IV.6.7] to orbit complete
intersections (in the sense of [Pie19]) in forms of products of weighted projective
spaces over C1 fields of arbitrary characteristic.

We first study the forms of products of projective spaces over C1 fields.
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Lemma 7.3. Let k be a field of cohomological dimension ≤ 1. Let k be a separable
closure of k. Let N , n1, . . . , nN and m1 < · · · < mN be positive integers. Then

H1
ét

(
k,Aut∏N

i=1

∏ni
j=1

P
mi
k

)
=

∏N
i=1H

1
ét
(k, Sni

).

Proof. Since automorphisms preserve the effective cone in Pic(Yk) and the in-

tersection product, Aut(
∏N

i=1

∏ni

j=1 P
mi

k ) =
∏N

i=1 Aut(
∏ni

j=1 P
mi

k ) and for every

i ∈ {1, . . . , N} there is an exact sequence of groups

1 →
ni∏

j=1

Aut (Pmi

k ) → Aut




ni∏

j=1

P
mi

k


 → Sni

→ 1.

This yields exact sequences
ni∏

j=1

H1
ét

(
k,AutPmi

k

)
→ H1

ét

(
k,Aut∏ni

j=1
P
mi
k

)
→ H1

ét
(k, Sni

) .

for every i ∈ {1, . . . , N}, where the second arrow is surjective by [Ser02, Corollary
III.2.4.2], and H1

ét
(k,AutPmi

k
) = 0 as Br(k) = 0 (cf. Remark 7.1). �

Notation 7.4. For positive integers a1, . . . , am, we denote by Pk(a1, . . . , am) the
(m− 1)-dimensional weighted projective space over k with weights a1, . . . , am.

For every N -tuples of positive integers n = (n1, . . . , nN ) and (m1, . . . ,mN ) and

every (
∑N

i=1mi)-tuple of positive integers a = (ai,l) 1≤i≤N
1≤l≤mi

, we denote by P(n, a) a

k-variety such that

P(n, a)k
∼=

N∏

i=1

ni∏

j=1

Pk(ai,1, . . . , ai,mi
)

with a Gal(k/k)-action by permutation of the factors with exactly N orbits given by∏ni

j=1 Pk(ai,1, . . . , ai,mi
)k for all i ∈ {1, . . . , N}. That is, if we write (xi,j,l) 1≤i≤N

1≤j≤ni

1≤l≤mi

for the coordinates (here xi,j,1, . . . , xi,j,mi
are the coordinates in the j-th factor

Pk(ai,1, . . . , ai,mi
) of the i-th orbit), then Gal(k/k) acts on the coordinates by per-

mutations of the second index in a way that {xi,1,l, . . . , xi,ni,l} forms an orbit for
all i ∈ {i, . . . , N} and all l ∈ {1, . . . ,mi}.
Remark 7.5. Lemma 7.3 together with [Ser02, Proposition III.1.3.5] shows that
all forms of products of projective spaces over a field k of cohomological dimension
≤ 1 are isomorphic to P(n, a) for some n and a = (1, . . . , 1).

Proposition 7.6. Let k be a C1-field that admits normic forms of every degree. Let
k be a separable closure of k. Let n and a as in Notation 7.4. Let X ⊆ P(n, a) be a
subvariety such that Xk is an intersection of hypersurfaces H1, . . . , Hs in P(n, a)k
of weighted multidegrees (di,j,t)1≤i≤N

1≤j≤ni

for t ∈ {1, . . . , s}, such that
∑s

t=1 di,j,t <
∑mi

l=1 ai,l for all i ∈ {1, . . . , N} and all j ∈ {1, . . . , ni}. Assume that for some
1 ≤ s1 < · · · < sr := s, s0 := 0, the hypersurfaces Hsi−1+1, . . . , Hsi form an

orbit under the Gal(k/k)-action on P(n, a)k for all i ∈ {1, . . . , r}. Then X has a
k-rational point.

Proof. Let R = k[xi,j,l] 1≤i≤N
1≤j≤ni

1≤l≤mi

be the weighted coordinate ring of P(n, a)k (here the

variable xi,j,l corresponds to the l-th coordinate in the j-th factor Pk(ai,1, . . . , ai,mi
)

of the i-th orbit), then the group Gal(k/k) acts on the variables by permutations
of the second index. Let f1, . . . , fs ∈ R that define H1, . . . , Hs, respectively, and
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such that {fsi−1+1, . . . , fsi} is an orbit under the Gal(k/k)-action on R for all
i ∈ {1, . . . , r}.

Step 1. Assume that f1, . . . , fs are Gal(k/k)-invariant and N = 1. For each l ∈
{1, . . . ,m1}, the k-vector space

∑
1≤j≤n1

x1,j,lk is a Gal(k/k)-invariant subset of R,

hence it has a basis z1,l, . . . , zn1,l consisting of Gal(k/k)-invariant elements of degree

a1,l. Then a linear change of variables gives an isomorphism ϕ : R → k[zj,l]1≤j≤n1

1≤l≤m1

of k-algebras such that, for every t ∈ {1, . . . , s}, ϕ(ft) is a weighted homogeneous
polynomial of weighted degree

∑n1

j=1 d1,j,t in the variables z1,1, . . . , zn1,m1
. Since∑

1≤j≤n1

1≤t≤s
d1,j,t < n1

∑m1

l=1 a1,l, the system of equations ϕ(f1) = · · · = ϕ(fs) = 0 has

a solution (z̃1,1, . . . , z̃n1,m1
) ∈ kn1m1 r {0} by [Kol96, Theorem IV.6.7]. Hence, the

system f1 = · · · = fs = 0 has a Gal(k/k)-invariant solution (x̃1,j,l)1≤j≤n1

1≤l≤m1

∈ k
n1m1

with x̃1,j̃,l̃ 6= 0 for some (j̃, l̃) ∈ {1, . . . , n1}× {1, . . . ,m1}. Since {x̃1,1,l̃, . . . , x̃1,n1,l̃
}

is an orbit under the Gal(k/k)-action, then x̃1,j,l̃ 6= 0 for all j ∈ {1, . . . , n1}. Thus
(x̃1,j,l)1≤j≤n1

1≤l≤m1

defines a Gal(k/k)-invariant point in Xk(k), and hence a k-rational

point on X .
Step 2. Assume that f1, . . . , fs are Gal(k/k)-invariant and N is arbitrary. We

proceed by induction onN . The caseN = 1 is Step 1. Assume thatN > 1. Let F ⊆
{f1, . . . , fs} be the set of elements ft such that dN,j,t = 0 for all j ∈ {1, . . . , nN}. We

observe that F is invariant under the Gal(k/k)-action on R. If F 6= ∅, by hypoth-

esis of induction the subvariety V (F ) ⊆ ∏N−1
i=1

∏ni

j=1 Pk(ai,1, . . . , ai,mi
) contains a

Gal(k/k)-invariant point with coordinates (x̃i,j,l)1≤i≤N−1
1≤j≤ni

1≤l≤mi

∈ k
∑N−1

i=1
nimi

. If F = ∅,

let x̃i,j,l := 1 for all i ∈ {1, . . . , N − 1}, j ∈ {1, . . . , ni}, l ∈ {1, . . . ,mi}. Evaluating
f1, . . . , fs in xi,j,l = x̃i,j,l for all i ∈ {1, . . . , N − 1}, j ∈ {1, . . . , ni}, l ∈ {1, . . . ,mi},
yields a system of Gal(k/k)-invariant forms f ′

1, . . . , f
′
s in k[xN,j,l]1≤j≤nN

1≤l≤mN

. By Step

1 the subvariety V (f ′
1, . . . , f

′
s) ⊆ ∏nN

j=1 Pk(aN,1, . . . , aN,mN
) contains a Gal(k/k)-

invariant point with coordinates (x̃N,j,l)1≤j≤nN

1≤l≤mN

∈ k
nNmN

. Then (x̃i,j,l) 1≤i≤N
1≤j≤ni

1≤l≤mi

defines a Gal(k/k)-invariant point in Xk(k), hence, a k-point on X .
Step 3. No restrictions on f1, . . . , fs. For l = 1, . . . , r, let hl :=

∏sl
t=sl−1+1 ft.

Then hl ∈ R is a Gal(k/k)-invariant weighted multihomogeneous element of R of
weighted degree (

∑sl
t=sl−1+1 di,j,t)1≤i≤N

1≤j≤ni

. The subvariety of Yk defined by h1 =

· · · = hr = 0 has a Gal(k/k)-invariant k-point x̃ by Step 2. The point x̃ belongs to
at least one hypersurface in each orbit under the Gal(k/k)-action on {H1, . . . , Hs},
hence it belongs to all. So x̃ defines a k-point on X . �

7.3. Some cyclic coverings. We study rational points over C1 fields for cyclic
coverings of complete intersections in forms of products of projective spaces that
have Picard rank 1 over the base field. The assumption on the Picard rank is
essential for the proof.

Proposition 7.7. Let k be a C1 field that admits normic forms of every degree.
Let k be a separable closure of k. Let Y be a k-variety such that Yk

∼=
∏n

i=1 P
m
k

and rkPic(Y ) = 1. Let V ⊆ Y be an intersection of r hypersurfaces of degrees
d1(1, . . . , 1), . . . , dr(1, . . . , 1) in Pic(Yk). Let X → V be a cyclic covering of degree
d with reduced ramification divisor given by the restriction to V of a hypersurface
of Y of degree d0(1, . . . , 1) in Pic(Yk). If

∑r
i=0 di ≤ m+ d0

d , then X(k) 6= ∅.
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Proof. Let R = k[x1,0, . . . , xn,m] be the coordinate ring of Yk. By Remark 7.5 we

can assume that Gal(k/k) acts by permutations of the first index. Since rkPic(Y ) =
1, the set {x1,j , . . . , xn,j} is an orbit under the Gal(k/k)-action on R for all j ∈
{0, . . . ,m}. Let f0, . . . , fr ∈ R be Gal(k/k)-invariant homogeneous elements of
degrees d0(1, . . . , 1), . . . , dr(1, . . . , 1) such that f1, . . . , fr define V and f0 defines
the ramification divisor Z.

The Segre embedding α : Yk ⊆ P
(m+1)n−1

k
is defined over k. Let S = k[zj :

j ∈ {0, . . . ,m}n] be a coordinate ring of P
(m+1)n−1

k
such that α corresponds to the

morphism ϕ : S → R that sends a coordinate z(j1,...,jn) to
∏n

i=1 xi,ji . Let I ⊆ S be
the kernel of ϕ. Then S/I is isomorphic to a subring of R that contains f0, . . . , fr.

Let f̃0, . . . , f̃r be the corresponding elements in S/I. Then Xk is the subvariety
of an (m+ 1)n-dimensional weighted projective space Pk(1, . . . , 1, d0/d) defined by

the ideal I + (f̃1, . . . , f̃r, t
d − f̃0) ⊆ S[t] where t is a new variable of degree d0/d.

Let n = (n) and a = (1, . . . , 1︸ ︷︷ ︸
m+1

, d0/d). We consider the k-variety P(n, a) with

coordinates

((x1,0 : · · · : x1,m : t1), . . . , (xn,0 : · · · : xn,m : tn))

on P(n, a)k and a Gal(k/k)-action that is compatible with the Gal(k/k)-action on
Yk under the embedding that identifies Yk with the subvariety of P(n, a)k defined
by t1 = · · · = tn = 0. The coordinate ring of P(n, a)k is R′ := R[t1, . . . , tn],

where t1, . . . , tn are new variables with deg ti = d0

d deg xi,0 for all i ∈ {1, . . . , n}.
We observe that f1, . . . , fr, (t1 · · · tn)d − f0 define a Gal(k/k)-invariant subvariety

of P(n, a)k, which has a Gal(k/k)-invariant k-point x̃ = (x̃1,0 : · · · : x̃n,m : t̃1 :

· · · : t̃n) by Proposition 7.6. If x̃i,j 6= 0 for some (i, j) ∈ {1, . . . , n} × {0, . . . ,m},
then x̃1,j , . . . , x̃n,j 6= 0 as they form an orbit under the Gal(k/k)-action on k.

If x̃1,0, . . . , x̃n,m = 0, then t1, . . . , tn 6= 0 as x̃ is a point of
∏n

j=1 P
m+1

k
. Let

t̃ := t̃1 · · · t̃n, and let z̃j be the evaluation of ϕ(zj) at (x̃1,0, . . . , x̃n,m) for all j ∈
{0, . . . ,m}n. The k-point of P(1, . . . , 1, d0/d) with coordinates ({z̃j}j∈{0,...,m}n , t̃)

is then a Gal(k/k)-point of Xk. �

7.4. A symmetric Cremona transformation. In this section we consider the
varieties described in [Pro13b, (1.2.3)] (cf. Section 5.2). Some of the computations
have been carried out using the web interface SageMathCell of the software [The19].

Notation 7.8. We denote the adjugate of an invertible matrix M by Ad(M) :=
det(M)M−1. We recall that, given an automorphism σ of a field k, a morphism
θ : V → W of k-vector spaces is called σ-linear if θ(av) = σ(a)θ(v) for all a ∈ k
and v ∈ V . We denote by σ : Pn(k) → Pn(k) the σ-linear automorphism that sends
(y0 : · · · : yn) to (σ−1(y0) : · · · : σ−1(yn)).

Let k be a field of characteristic 0. Let S ⊆ P5
k be the image of the Veronese

embedding v : P2
k → P5

k,

v(x0 : x1 : x2) = (x20 : x21 : x22 : x1x2 : x0x2 : x0x1).

Denote by (y0 : · · · : y5) the coordinates on P5
k. Then S is defined by the quadrics

A0 := y1y2 − y23 , A1 := y0y2 − y24 , A2 := y0y1 − y25 ,

A3 := y4y5 − y0y3, A4 := y3y5 − y1y4, A5 := y3y4 − y2y5,

and A0, . . . , A5 is a basis of the linear system S of quadrics in P5
k containing S.
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Let S3 be the k-vector space of symmetric 3 × 3 matrices. We consider the
isomorphism P5

k → P(S3) induced by the isomorphism

α : k6 → S3, (y0, . . . , y5) 7→



y0 y5 y4
y5 y1 y3
y4 y3 y2


 .

Every automorphism of P5
k that preserves S belongs to the image of the embed-

ding PGL(3, k) ⊆ PGL(6, k) induced by the group homomorphism ϕ : GL(3, k) ⊆
GL(6, k) that sends a matrix M ∈ GL(3, k) to the element of GL(6, k) defined by
ϕ(M)(y) = α−1(Mα(y)M t) for all y ∈ k6.

Let A : P5
k 99K P5

k be the rational map defined by (A0, . . . , A5). It is a symmet-
ric Cremona transformation. For every matrix M ∈ GL(3, k) the birational map
ϕ(M) ◦A is a Cremona transformation of P5

k with inverse ϕ(M t) ◦A.
Let f : Y → P5

k be the blow up with center S. Then f resolves any Cremona
transformation P5

k 99K P5
k induced by the linear system S (see [ESB89] for exam-

ple). Let H be the pullback of a hyperplane in Y and E the exceptional divisor of
f . Then |2H −E| is the linear system of strict transforms of elements of S under
f .

Lemma 7.9. Let L be a hyperplane in P5
k such that L ∩ S spans L. Let Q be a

quadric in S . Let X ⊆ Y be the strict transform of L ∩ Q. Let σ be an auto-
morphism of k. Then every σ-linear automorphism θ of X that induces a σ-linear
isomorphism between the complete linear systems of H |X and (2H − E)|X is the
restriction to X of a σ-linear automorphism θY of Y that resolves a σ-linear Cre-
mona transformation on P5

k of the form σ ◦ ϕ(M) ◦ A for some M ∈ GL(3, k).
Moreover, if θ is an involution, so is θY .

Proof. We fix a basis z0, . . . , z5 of the linear system |H | such that z5 defines the
hyperplane L. Let C ∈ GL(6, k) such that the basis y0, . . . , y5 of |H | corresponding
to the choice of coordinates on P5

k can be written as (y0, . . . , y5) = C(z0, . . . , z5).

Let B0, . . . , B4, B̃0, . . . , B̃4 ∈ S such that B0|Q, . . . , B4|Q and B̃0|Q, . . . , B̃4|Q are
the bases of S |Q image of the basis z0|L, . . . , z4|L of |H ||L under the isomorphisms

induced by θ and θ−1, respectively. Let R, R̃ ∈ GL(6, k) such that

σ(C)(B0, . . . , B4, Q) = R(A0, . . . , A5), σ(C)(B̃0, . . . , B̃4, Q) = R̃(A0, . . . , A5)

as bases of S . Then θ induces via f a birational map (σ◦R◦A)|Q∩L : Q∩L→ Q∩L
with inverse (σ ◦ R̃◦A)|Q∩L. Since σ(S) = S by construction and (σ ◦ R̃◦A)|Q∩L =
(A◦R−1 ◦σ−1)|Q∩L is a birational map with exceptional locus S∩L = σ(R(S∩L)),
we have R(S∩L) = S∩σ−1(L); that is, R induces an isomorphism of conics between
v−1(S ∩L) and v−1(S ∩ σ−1(L)). Hence there is a matrix M ∈ GL(3, k) such that
(v−1 ◦ R ◦ v)|v−1(S∩L) is the restriction of the automorphism of P2

k defined by M .

Then ϕ(M−1)|σ−1(L) = R−1|σ−1(L) because they agree on S∩σ−1(L) and S∩σ−1(L)

spans σ−1(L). So (A ◦R−1 ◦σ−1)|Q∩L = (A ◦ϕ(M−1) ◦σ−1)|Q∩L, and the σ-linear
Cremona transformations on P5

k induced by R and ϕ(M) have the same restriction
to Q ∩ L.

If θ ◦ θ is the identity on X , then the automorphism

ϕ(σ(M) ·Ad(M)t) = ϕ(σ(M)) ◦A ◦ ϕ(M) ◦A

of P5
k restricts to the identity on an open subset of Q ∩ L, and hence on L. Then

σ(M)·Ad(M)t is an automorphism of P2
k that restricts to the identity on v−1(L∩S).

Since the conic v−1(L∩S) spans P2
k, we conclude that σ(M)·Ad(M)t is the identity

on P2
k, and so σ ◦ ϕ(M) ◦A is a symmetric σ-linear Cremona transformation. �
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Let
β : k6 → k6, (a0, . . . , a5) 7→ (a0, a1, a2, 2a3, 2a4, 2a5).

Let ψ : GL(3, k) → GL(6, k) be the group homomorphism defined by ψ(M) =
β ◦ ϕ(Ad(M)) ◦ β−1. Let M ∈ GL(3, k) and a = (a0, . . . , a5) ∈ k6, then

5∑

i=0

aiAi(ϕ(M)(y)) =
5∑

i=0

ψi(M)(a)Ai(y) (7.1)

for all y ∈ k6, where (ψ0(M)(a), . . . , ψ5(M)(a)) = ψ(M)(a) = ϕ(Ad(M)t)t(a). In
particular,

A ◦ ϕ(M) ◦A = ϕ(Ad(M)t) (7.2)

as birational maps on P5
k.

The secant variety V of S in P5
k is the cubic hypersurface defined by

y0y1y2 + 2y3y4y5 − y0y
2
3 − y1y

2
4 − y2y

2
5 = 0.

The action of PGL(3, k) on P5
k induced by ϕ has three orbits: S, V rS and P5

krV ,
see [Ure18, §3.1] for example. Hence, the action of PGL(3, k) on P5

k induced by ψ

has three orbits: β̃(S), β̃(V ) and P5
k r β̃(V ), where β̃ is the automorphism of P5

k

induced by β. Now, β̃(S) is defined by A0 ◦ β−1, . . . , A5 ◦ β−1, and β̃(V ) is defined
by p = 0, where

p = 4y0y1y2 + y3y4y5 − y0y
2
3 − y1y

2
4 − y2y

2
5 .

Remark 7.10. If a = (a0, . . . , a5) ∈ k6 and qa :=
∑5

i=0 aiAi, the matrix Ja that
defines the linear system

∂qa
∂y0

= · · · = ∂qa
∂y5

= 0, (7.3)

satisfies det Ja = −p(a)2 and every 5 × 5 minor of Ja is divisible by p(a). So, if
nonempty, the linear subvariety of P5

k defined by (7.3) has dimension ≥ 1, and hence
it intersects the quadric qa = 0. In particular, qa is smooth if and only if p(a) 6= 0.

7.4.1. Smooth case.

Lemma 7.11. Let k be an algebraically closed field. For a0, . . . , a3, b0, b1, b2 ∈ k,
let g3 := a3x

3 + a2x
2 + a1x+ a0, g2 := b2x

2 + b1x+ b0 ∈ k[x], and

δ(g3, g2) := b2δ
2
1 − b1δ1δ2 + b0δ

2
2 ,

where δ1 := a3b0b1 − a2b0b2 + a0b
2
2 and δ2 := a3b

2
1 − a3b0b2 − a2b1b2 + a1b

2
2. If

δ(g3, g2) 6= 0, then b2 6= 0, and g3 and g2 have no common zero in k.

Proof. If b2 = 0, then δ(g3, g2) = 0. Assume now that b2 6= 0 and that g3 and g2
have a common zero c ∈ k. Then c2 = − b1

b2
c − b0

b2
and substituting it twice in g3

gives δ2c+ δ1 = 0. If δ2 = 0, then δ1 = 0. If δ2 6= 0, we substitute c = −δ1/δ2 in g2
and obtain δ(g3, g2) = 0. �

Lemma 7.12. Let k be an algebraically closed field of characteristic 0. Let Q be
a smooth quadric in the linear system S . Let H be a hyperplane in P5

k. Then
for a general quadric Q′ in S , the singular locus Sing(Q ∩ Q′) is contained in
the union of three lines of P5

k, Sing(Q ∩ Q′) ∩ S is nonempty of dimension 0, and
Sing(Q ∩Q′) ∩ S ∩H = ∅.
Proof. By Remark 7.10, the open orbit under the action of PGL(3, k) on P5(k) via

ψ is the locus of (a0 : · · · : a5) ∈ P5(k) such that the quadric
∑5

i=0 aiAi = 0 is
smooth. Hence, by (7.1), up to an automorphism of P5

k that fixes S, we can assume
that Q is defined by the quadratic form q := A0 + A3. Let a := (1, 0, 0, 1, 0, 0).

Let q′(u) :=
∑5

i=0 uiAi ∈ k[u0, . . . , u5, y0, . . . , y5], where u := (u0, . . . , u5). For
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every b ∈ k6, let Q′
b ⊆ P5

k be the quadric defined by the quadratic form q′b :=
q′(b0, . . . , b5) ∈ k[y0, . . . , y5].

Let L ⊆ Gm,k × P5
k × P5

k be the subvariety defined by

∂(q − tq′(u))

∂y0
= · · · = ∂(q − tq′(u))

∂y5
= 0, (7.4)

where (t, (u0 : · · · : u5), (y0 : · · · : y5)) denotes the coordinates onGm,k×P5
k×P5

k. Let
J(t, u) ∈Mat6×6(k[t, u0, . . . , u5]) be the matrix that defines (7.4) as a linear system
in the variables y0, . . . , y5 with coefficients in k[t, u0, . . . , u5]. Then det(J(t, u)) =
−p(a− tu)2 and every 5× 5 minor of Jt,u is divisible by p(a− tu).

For every b ∈ k6, the singular locus of Q ∩ Q′
b is contained in the subvariety of

P5
k where the Jacobian matrix of (q, q′b) has rank 1; that is, the union of the linear

subspaces Lc,b, for c ∈ k×, where Lc,b ⊆ P5
k is the subvariety defined by the linear

system J(c, b)(y0, . . . , y5) = 0. We observe that Lc,b 6= ∅ if and only if p(a− cb) = 0
and in that case dimLc,b ≥ 1. Moreover, dimLc,b ≥ 2 if and only if all the 4 × 4
minors of J(c, b) vanish.

The 4×4 minor m(t, u) of J(t, u) obtained by deleting the 4th and 6th rows and
the 4th and 6th columns is −4u21t

3(A1(β
−1(u))t− u2). If b ∈ k6 satisfies

b1A1(β
−1(b))p(A1(β

−1(b))a+ b2b) 6= 0, (7.5)

thenm(t, b) and p(a−tb) have no common zeros in k×. Hence, for general b ∈ k6, the
singular locus of Q∩Q′

b is contained in a union of three lines of P5
k, as p(a−tb) ∈ k[t]

has degree ≤ 3.
The variety L is defined by equations

yi = lt,u,i(y3, y5), i ∈ {0, 1, 2, 4}, (7.6)

where lt,u,i are linear forms in k(t, u0, . . . , u5)[y3, y5] for i ∈ {0, 1, 2, 4}. If b ∈ k6

satisfies b2p(b0a−b) 6= 0 and (7.5), then for every c ∈ k× such that Lc,b 6= ∅, the line
Lc,b is defined by the linear equations yi = lc,b,i(y3, y5), for i ∈ {0, 1, 2, 4}, obtained
by evaluating (7.6) in t = c and u = b. By substituting these equations into the
equations that define S, we see that Lc,b∩S is the subvariety of Lc,b defined by the
quadratic equation

(1 − cb0)y
2
3 + cb4y3y5 − cb2y

2
5 = 0. (7.7)

In particular, it is nonempty and of dimension 0.

Let h0, . . . , h5 ∈ k such that h :=
∑5

i=0 hiyi is a linear form that defines
H . Let H3(t, u), H5(t, u) ∈ k[t, u0, . . . , u5], such that H3(t, u)y3 + H5(t, u)y5 ∈
k(t, u0, . . . , u5)[y3, y5] is the polynomial obtained by substituting (7.6) intom(t, u)h.
If b ∈ k6 satisfies (7.5), then m(c, b) 6= 0 for all c ∈ k× such that Lc,b 6= ∅,
so the intersection Lc,b ∩ H is the subvariety of Lc,b defined by the equation
H3(c, b)y3 +H5(c, b)y5 = 0.

We use Lemma 7.11 to show that for general b ∈ k6 the polynomials H3(t, b),
H5(t, b) and p(a − tb) have no common solutions, that is, there is no c ∈ k× such
that Lc,b 6= ∅ and Lc,b ⊆ H . Indeed, we observe that H5(t, u)/t ∈ k[t, u0, . . . , u5]
is a polynomial of degree 2 in t, and that δ(p(a − tu), H5(t, u)/t) is a nonzero
element in k[u0, . . . , u5] if h0 6= 0 or h1 6= 0 or h2 6= 0 or h4 6= 0 or h5 6= 0. If
h0 = h1 = h2 = h4 = h5 = 0, we observe that H3(t, u)/t ∈ k[t, u0, . . . , u5] is a
polynomial of degree 2 in t and δ(p(a − tu), H3(t, u)/t) is a nonzero element in
k[u0, . . . , u5], as h3 6= 0.

Then, for general b ∈ k6 and for every c ∈ k× such that Lc,b 6= ∅, the intersection
Lc,b ∩ H consists of a point z, and Lc,b ∩ H ∩ S is defined by evaluating (7.7) in
z. Computations show that since p(a− cb) = 0, if m(c, b) 6= 0 then Lc,b ∩H ∩ S is
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nonempty if and only if C(c, b) = 0, where

C(t, u) := w2
0h

2
0+w

2
1h

2
1+w

2
2h

2
2+w1w2h

2
3+w0w2h

2
4+w0w1h

2
5+(w2

5−2w0w1)h0h1

+ (w2
4 − 2w0w2)h0h2 − (w0w3 − w4w5)h0h3 + w0w4h0h4 + w0w5h0h5

+ (w2
3 − 2w1w2)h1h2 + w1w3h1h3 − (w1w4 − w3w5)h1h4 +w1w5h1h5 + w2w3h2h3

+ w2w4h2h4 − (w2w5 − w3w4)h2h5 + w2w5h3h4 + w1w4h3h5 + w0w3h4h5 (7.8)

with wi := ai− tui ∈ k[t, u0, . . . , u5] for all i ∈ {0, . . . , 5}. Since δ(p(a− tu), C(t, u))
is a nonzero element in k[u0, . . . , u5], we conclude by Lemma 7.11 that Lc,b∩H∩S =
∅ for general b ∈ k6 and for every c ∈ k× such that Lc,b 6= ∅. �

Proposition 7.13. Let X be a variety [Pro13b, (1.2.3)] defined over a field k of
characteristic 0 and cohomological dimension ≤ 1. Then X(k) 6= ∅.
Proof. By [Pro13b, pp.426–427], there exists a quadratic extension k′ of k such that
Xk′ is a blowing up of a smooth quadric Q′ ⊆ P4

k′ along a twisted quartic curve Γ.
Let π : Xk′ → P4

k′ be the induced morphism. We identify P4
k′ with a hyperplane

L1 of P5
k′ such that L1 ∩ S = Γ. Let Q1 ⊆ P5

k′ be the unique quadric containing
S such that Q1 ∩ L1 = Q′. Then Xk′ embeds into Yk′ as the strict transform of
Q1 ∩ L1 under f , and π = f |Xk′

. By Lemma 7.9 the action of Gal(k′/k) on Xk′ is
induced by an action of Gal(k′/k) on Yk′ . Let σ be a generator of Gal(k′/k). Then
f(σ(f−1(L1))) = Q1.

By construction, v−1(Γ) is a smooth conic, so Γ(k′) is nonempty and hence
dense in Γ by Remark 7.1. Then the set of hyperplanes of P5

k′ that intersect Γ(k′)
is dense in P(H0(P5

k′ ,OP5

k′

(1))). So we can choose a general hyperplane L2 ⊆ P5
k′

that intersects Γ(k′), such that Q2 := f(σ(f−1(L2)) is a general member of S , and
hence Q1∩Q2 is smooth outside the base locus S of S by Bertini [Kle98, Theorem
(4.1)] and smooth at all k′-points in L1 ∩ S by Lemma 7.12.

Let x ∈ L2 ∩ Γ(k′). Let Z be the strict transform of Q1 ∩ Q2 under f . Then
the morphism f |Z : Z → Q1 ∩ Q2, which is the blowing up of Q1 ∩ Q2 at S, is an
isomorphism around x because S is a smooth divisor in Q1 ∩Q2 and x is a smooth
point of Q1 ∩ Q2. We observe that f(σ(Z)) = L1 ∩ L2. Let L3, L4, L5 ⊆ P5

k′ be
hyperplanes such that L1 ∩ L2 ∩ L3 ∩ L4 ∩ L5 = {x}. Then

f |−1
Z (x) = Z ∩ σ(Z) ∩

5⋂

i=3

(f−1(Li) ∩ σ(f−1(Li)))

consists of a Gal(k′/k)-invariant point of Xk′ . �

7.4.2. Singular case.

Proposition 7.14. Let X be a variety [Pro13b, Theorem 6.6(iii)] defined over a
field k of characteristic 0 with Br(k) = 0. Then X has a k-rational point.

Proof. By [Pro13b, p.432] there exists a quadratic extension k′ of k, contained in
an algebraic closure k of k, such that Xk′ is a blowing up of a quadric cone Q′ ⊆ P4

k′

with center a curve Γ such that Γ does not contain the vertex ν of Q′ and Γk is the

union of two conics Γ(1) and Γ(2) that intersect each other transversally. Let σ be the
generator of Gal(k′/k), and let σX be the induced σ-linear automorphism ofXk′ . By
[Pro13b, p.432] X contains at least 2 singular points. Since f(Sing(Xk))rΓ = {ν},
the k′-point γ := f(σX(f−1

1 (ν))) belongs to Sing(Γ) = Γ(1) ∩ Γ(2). Let ℓ be the
strict transform of the line between ν and γ. Since ℓ ∼= P1

k′ , it suffices to show that
ℓ is invariant under σX , because in that case ℓ contains a σX -invariant k′-point, as
Br(k) = 0.
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Let π : Xk′ → P4
k′ be the morphism induced by the blowing up. Let H ′ be the

pullback of a hyperplane of P4
k′ under π. Let E′ be the exceptional divisor of the

blowing up. Then σX(H ′) = 2H ′−E′ in Pic(Xk′ ) by [Pro13b, (5.2.1), Theorem 6.1,
and p.432]. Let S be the linear system of quadrics in P4

k′ that contain Γ. Since π is
defined by the complete linear system |H ′|, |2H ′ −E′| is the linear system of strict
transforms of elements of S|Q′ . Thus dimS − 1 = dimS|Q′ = dim |2H ′ − E′| =
dimH ′ = 5 as k′-vector spaces.

Let Pi ⊆ P4
k
be the plane spanned by Γ(i) for i ∈ {1, 2}. We claim that P1∩P2 =

{γ}. Clearly P1 ∩ P2 contains γ because it contains the intersection Γ(1) ∩ Γ(2). If
P1 = P2 then dimS ≥ 9 as k′-vector space, which is a contradiction. If P1 ∩P2 has
dimension 1, the linear system S ′ of quadrics containing P1 ∪ P2 has dimension 6,
hence S = S ′. So the base locus of S contains (P1 ∪P2)rΓ, contradicting the fact
that σX(|H ′|) = |2H ′ − E′| is base point free.

Now we show that X is a degeneration of a Fano threefold as in Proposition 7.13.
Let k′′/k′ be a quadratic extension such that Γ(1) and Γ(2) are defined on k′′. Let
u ∈ k′′ such that k′′ = k′(u) and u2 ∈ k′. Without loss of generality, we can choose
coordinates z0, . . . , z4 on P4

k′ such that Γ(1) = {z3 − uz2 = z1 − uz4 = z0z2 − z24}
and Γ(2) = {z3 + uz2 = z1 + uz4 = z0z2 − z24}. Let w : P4

k′ ⊆ P5
k′ be the embedding

given by (z0 : · · · : z4) 7→ (z0 : u2z2 : z2 : z3 : z4 : z1). Then the image of w is the
hyperplane L = {y1−u2y2 = 0}, also w(Γ) = L∩S and v−1(L∩S) is the degenerate
conic {x21 − u2x22 = 0} ⊆ P2

k′ . Since dimS = 6 = dimS as k′-vector spaces and
S |L = S, there exists a unique quadric Q in S such that Q ∩ L = w(Q′). Then
Xk′ embeds into Yk′ as the strict transform of Q ∩ L under f , and π = f |Xk′

.
By Lemma 7.9 there is M ∈ GL(3, k′) such that the σ-linear Cremona trans-

formation σ ◦ ϕ(M) ◦ A defines a σ-linear involution of Y that restricts to σX
on Xk′ . The quadric Q is the image of L under σ ◦ ϕ(M) ◦ A and has equation
q = (0, 1,−σ(u)2, 0, 0, 0) ·ϕ(M) · (A0, . . . , A5)). Let U := (Q∩L)rπ(E′ ∪σX(E′)).
Computations show that π(ℓ)∩π(E′ ∪σX(E′)) = {γ, ν}, and (σ ◦ϕ(M)◦A)(π(ℓ)∩
U) = π(ℓ) ∩ U . Thus, ℓ is invariant under σX . �

8. Terminal Fano varieties of large index

Proof of Theorem 1.7. We denote by k an algebraic closure of k. We recall that
r(X) ≤ n+ 1 by a result of Shokurov (cf. [IP99, Corollary 2.1.13]).

Gorenstein terminal Fano varieties of index r(X) ≥ n are classified in [Fuj82,
Theorem 0] (cf. [IP99, Theorem 3.1.14]). If r(X) = n + 1, then Xk

∼= Pn
k
, hence,

X ∼= Pn
k by Remark 7.1. If r(X) = n, then the linear system | − 1

nKX | embeds X

as a quadric hypersurface in Pn+1
k . Hence X(k) 6= ∅ by definition of C1 field.

Gorenstein terminal Fano varieties of index r(X) = n− 1 are del Pezzo varieties
(see [IP99, Remarks 3.2.2]). Let X be a del Pezzo k-variety of dimension n. We
prove that X(k) 6= ∅ by induction on n. If n = 2, Xk is a smooth rational sur-
face, hence X(k) 6= ∅ by [CT87, Proposition 2]. Assume that n > 2. By [IP99,
Proposition 3.2.3] the general element of the linear system − 1

n−1KX is a del Pezzo
k-variety of dimension n−1, hence it has a k-rational point by inductive hypothesis.
Thus X(k) 6= ∅.

Non-Gorenstein terminal Fano varieties of index r(X) > n − 2 are classified in
[San96] and have a rational point by Proposition 7.2 and [Kol96, Theorem IV.6.7].

�

9. Terminal Fano threefolds

9.1. Gorenstein case. We prove Theorem 1.8.
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Proof of Theorem 1.8. We recall that the index r(X) of a Gorenstein terminal Fano
variety X is a positive integer. Terminal Fano threefolds of index ≥ 2 are covered
by Theorem 1.7. Hence, we need to consider only the cases of index 1.

Q-factorial Gorenstein terminal Fano threefolds of Picard rank 1 and geometric
Picard rank> 1 are classified in [Pro13b, Theorem 1.2, §2, Theorem 6.6] (cf. Section
5.2).

The varieties [Pro13b, (1.2.4), (1.2.7)] have index 2 by [IP99, Remarks (vi) p.
217].

The varieties [Pro13b, Case 1.2.1 a), p. 421] and [Pro13b, (1.2.2), (1.2.8)] are
k-models of complete intersections of divisors in products of projective spaces that
have a k-rational point by [Pie19, Theorem 1.1] and Proposition 7.6 (cf. [Pro13b,
Remark 2.1]).

The variety [Pro13b, Case 1.2.1 b), p. 421] is a double cover π : X → V of a
variety V that belongs to [Pro13b, (1.2.4)] with branch locus a member of | −KV |.
The morphism π : Xk → P2

k
× P2

k
is defined over k (see [Pro13b, proof of Theorem

6.6 (ii)]) and the Gal(k/k)-action on Vk is induced by the one on P2
k
× P2

k
. We

observe that V is smooth by [Pro13b, Theorem 6.6 (i)], and Pic(Vk)
∼= Pic(P2

k
×P2

k
)

by [Har70, Corollary IV.3.3]. Then rkPic(P2
k
× P2

k
)Gal(k/k) = rkPic(V ) = 1. The

variety Vk is a hypersurface of bidegree (1, 1) in P2
k
× P2

k
. Moreover, −KV = (2, 2)

in Pic(Vk). Hence, the branch locus of π is defined by the restriction to V of a
hypersurface of degree (2, 2) in P2

k
× P2

k
. Then X(k) 6= ∅ by Proposition 7.7.

The varieties [Pro13b, (1.2.3)] have a k-rational point by Propositions 7.13 and
7.14.

The variety [Pro13b, (1.2.5)] is a k-modelX of a double cover of P1
k
×P1

k
×P1

k
with

branch locus a member of | −KP1

k
×P1

k
×P1

k

| (which is a divisor of tridegree (2, 2, 2)).

By [Pro13b, Lemma 4.4], the composition with the first projection f1 : Xk → P1
k
is a

del Pezzo bundle with general fiber F1, let {F1, F2, F3} be the Gal(k/k)-orbit of F1

in Pic(Xk). Then there are other two del Pezzo bundles f1, f2 conjugate to f1. Then
product f = f1 × f2 × f3 : Xk → P1

k
×P1

k
×P1

k
is a finite map and it is defined over

k. Thus X is a double cover of a k-model Y of P1
k
× P1

k
× P1

k
. Since rkPic(X) = 1,

also rkPic(Y ) = 1 and hence Pic(Y ) is the subgroup of Pic(P1
k
×P1

k
×P1

k
) generated

by (1, 1, 1). Then X has a k-point by Proposition 7.7.
The variety [Pro13b, (1.2.6)] is a k-model X of an intersection of divisors of

tridegrees (0, 1, 1), (1, 0, 1), (1, 1, 0) in P2
k
×P2

k
×P2

k
. Let π1, π2, π3 : P2

k
×P2

k
×P2

k
→

P2
k
× P2

k
be the three projections. The Gal(k/k)-action on P2

k
× P2

k
× P2

k
is by

permutation of the factors by Lemma 7.3, and rkPic(P2
k
× P2

k
× P2

k
)Gal(k/k) = 1.

So, for every i, j ∈ {1, 2, 3}, there exists gi,j ∈ Gal(k/k) such that πj = πi ◦ gi,j .
Then πi(X) = πi ◦ gi,j(X) = πj(X) for all i, j ∈ {1, 2, 3}. By [Pro13b, Case
1.2.6, p. 422], π1(Xk) ⊆ P2

k
× P2

k
is a hypersurface of degree (1, 1). So Xk =

π−1
1 (π1(X))∩ π−1

2 (π1(X))∩ π−1
3 (π1(X)). Since π−1

j (π1(X)) = g−1
i,j (π

−1
i (π1(X)) for

every i, j ∈ {1, 2, 3}, Xk is a complete intersections of hypersurfaces H1, H2, H3 in
P2
k
×P2

k
×P2

k
of degrees (0, 1, 1), (1, 0, 1), (1, 1, 0) respectively, such that {H1, H2, H3}

is a Gal(k/k)-invariant set under the action of Gal(k/k) over Xk. Hence, X(k) 6= ∅
by Proposition 7.6.

Indecomposable Gorenstein terminal Fano threefolds of index 1 and geometric
Picard rank 1 are classified in [Muk02, Theorems 1.10, 6.5] (cf. Sections 5.1.4 and
5.1.5). Let X be an indecomposable Gorenstein terminal Fano threefold of index 1
and geometric Picard rank 1. We use the notation introduced in Section 5.1.4.
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If g = 2, then X ⊆ P(1, 1, 1, 1, 3) is a hypersurface of degree 6. Thus X(k) 6= ∅
by [Kol96, Theorem IV.6.7].

If g = 3 and X is a quartic hypersurface in P4
k, then X has a k-rational point by

definition of C1 field. If g = 3 and X is a double cover of a quadric hypersurface
Q in P4

k, then it is ramified along the restriction to Q of a hypersurface of degree 4
(see [Pro04, (4.3.2)]). Thus X ⊆ P(1, 1, 1, 1, 1, 2) is a complete intersection of two
hypersurfaces of degrees 2 and 4, and X(k) 6= ∅ by [Kol96, Theorem IV.6.7].

If g ∈ {4, 5} the variety X has a k-rational point by [Lan52, Theorem 4].
If g = 12 and X is singular, then its singular locus consists of a k-point by

[Pro16, Theorem 1.3]. If g = 12 and X is smooth, then the Fano variety of conics
of X is isomorphic to P2

k by [KPS18, Proposition B.4.1] and Remark 7.1. Hence,
X contains smooth conics defined over k, which have k-points again by Remark
7.1. �

As recalled in Section 5.1.5, decomposable terminal Gorenstein Fano threefolds
of index 1 and geometric Picard rank 1 are not completely classified. However,
the cases with g ∈ {2, 3, 4, 5} are completely classified in [Muk02, Theorem 6.5].
Moreover, if g = 12 the only decomposable cases we are interested in are classified
in [Pro16, Theorem 1.3]. These cases are covered by Theorem 1.8.

9.2. Non-Gorenstein case. We start by considering non-Gorenstein terminal
Fano threefolds of index 1 with only cyclic quotient singularities, which are classified
in [San95].

Theorem 9.1. Let X be a non-Gorenstein terminal Fano threefold of index 1 with
only cyclic quotient singularities over a C1 field k of characteristic 0 that admits
normic forms of arbitrary degree. Then X(k) 6= ∅.
Proof. Let k be an algebraic closure of k. By Lemma 5.2 the double covering in
[San95, Theorem 1.1] is defined over k, we denote it by Y → X . Moreover, Y is a
smooth Fano threefold, and there are 14 possible cases for Y .

In the cases [San95, Theorem 1.1, No. 8, 12, 14] the variety Y has index 2, then
Y (k) 6= ∅ by Theorem 1.7. In the remaining cases the variety Y has index 1. If Y
has Picard rank 1 over k, then Y (k) 6= ∅ by Theorem 1.8. Therefore we can assume
that Y has Picard rank ≥ 2 over k.

In the case [San95, Theorem 1.1, No. 3, 7] (see also [IP99, §12.3, No. 3, 10]),
the variety Y is a blow-up of a smooth Fano threefold of index 2 that has a k-point
by Theorem 1.7. Then Y (k) 6= ∅ by [Nis55].

In the cases [San95, Theorem 1.1, No. 4, 10, 13], by studying the automorphisms
of Yk as in [Bay94, §§6.5.1, 6.6.1, 6.6.2] we conclude that Y is isomorphic to C×kSd,
where C is a smooth conic and Sd is a smooth del Pezzo surface of degree d ∈
{2, 4, 6}. Since C(k) 6= ∅ by Remark 7.1 and Sd(k) 6= ∅ by [CT87, Proposition 2],
we conclude that Y (k) 6= ∅.

In the case [San95, Theorem 1.1, No. 5] (see also [IP99, §12.4, No. 1]), the variety
Y is a double covering of a k-form Z of P1

k × P1
k × P1

k ramified along a divisor of
tridegree (2, 2, 2). Since rkPic(Yk) = 3 we deduce that rkPic(Z) = rkPic(Y ) ≥ 2.
By Lemma 7.3 this can only happen if Z is a product of a smooth conic C with a
k-form of P1

k × P1
k. By [Pro13b, Lemma 4.4], the composition with the projection

Z → C is a del Pezzo bundle structure on Y . By Remark 7.1 C(k) is nonempty,
and hence Zariski dense in C. Thus Y contains a smooth del Pezzo surface defined
over k that has a k-point by [CT87, Proposition 2].

In the case [San95, Theorem 1.1, No. 6], since rkPic(Y ) = 2, the two extremal
contractions from [IP99, Case (C1,C1), p.140] are defined over k. Hence there is
a dominant morphism Y → P2

k whose general fiber is a smooth conic, and hence
contains k-points by Remark 7.1.
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In the case [San95, Theorem 1.1, No. 9], Y is a k-model of a complete intersection
of three divisors of tridegree (1, 1) in P3

k
× P3

k
, hence Y is a complete intersection

of three divisors of bidegree (1, 1) in a k-form of P3
k × P3

k by [Pie19, Theorem 1.1]
and Y (k) 6= ∅ by Proposition 7.6.

In the case [San95, Theorem 1.1, No. 11], Y is a k-model of a divisor of multi-
degree (1, 1, 1, 1) in P1

k
× P1

k
× P1

k
× P1

k
, hence Y (k) 6= ∅ by Proposition 7.6. �

The Graded Ring Database [B+] contains the list of possible baskets [BS07, §2] of
non-Gorenstein singularities for geometrically Q-factorial non-Gorenstein terminal
Fano threefolds of geometric Picard rank 1 over an algebraically closed field of
characteristic 0. Such varieties X are studied in [BS07] using the Fano index f(X)
defined in the introduction. The Fano index f(X) divides q(X) and they coincide
if there is no torsion in the Weil divisor class group (see [Pro07, Corollary 2.3] and
[Pro10, Lemma 3.2]). In particular, f(X) ∈ {1, . . . , 9, 11, 13, 17, 19} by [Suz04].

Remark 9.2. The basket of singularities of a terminal Fano variety was introduced
in [Rei87, (8.2), (10.2)]. It is a collection of quotient singularity germs. To each
non-Gorenstein singular point of the variety there is an associated collection of
quotient singularity germs. The disjoint union of such collections forms the basket
of the variety. The collection of quotient singularity germs associated to a singular
point is invariant under the automorphisms of the variety. Therefore, if a given
quotient singularity germ appears only once in a basket (we say it has multiplicity
one in the basket), then the corresponding singular point is a fixed point for all the
automorphisms of the variety.

Theorem 9.3. Let k be a field of characteristic 0 and k an algebraic closure. Let
X be a non-Gorenstein terminal Fano threefold over k such that Xk is Q-factorial
and rkPic(Xk) = 1.

(1) If f(Xk) ≥ 6, then X(k) 6= ∅.
(2) If f(Xk) = 5 and k is C1 and admits normic forms of arbitrary degree,

then X(k) 6= ∅.
Proof. By inspection in the Graded Ring Database [B+, Fano 3-folds], if f(Xk) ≥ 6
each possible basket of singularities for X contains a quotient singularity germ that
appears with multiplicity one. Hence, the corresponding singular point on X(k)
is invariant under the action of Gal(k/k) by Remark 9.2. If f(Xk) = 5 the same
argument works for all possible baskets of singularities except one [B+, Fano 3-
folds, ID 41439], which is realized by a hypersurface of degree 6 in P(1, 2, 2, 3, 3),
and hence has a k-point by [Kol96, Theorem IV.6.7]. �

The Graded Ring Database [B+] contains 1847 cases with Fano index f ∈
{2, 3, 4} and 52646 cases with Fano index f = 1. The arguments used in Theo-
rem 9.3 work for all except 9 cases if f = 4, for all except 13 cases if f = 3, for all
except 109 cases if f = 2, and for at least 1581 cases if f = 1 (the basket has car-
dinality 1 in 1415 cases, the variety is a Fano complete intersection of codimension
at most 2 in a weighted projective space in 166 further cases).
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