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THE LOCALIZATION OF ORTHOGONAL CALCULUS WITH RESPECT TO

HOMOLOGY

NIALL TAGGART

Abstract. For a set of maps of based spaces S we construct a version of Weiss’ orthogonal calculus
which only depends on the S-local homotopy type of the functor involved. We show that S-local
homogeneous functors of degree n are equivalent to levelwise S-local spectra with an action of the
orthogonal group O(n) via a zigzag of Quillen equivalences between appropriate model categories.
Our theory specialises to homological localizations and nullifications at a based space. We give a
variety of applications including a reformulation of the Telescope Conjecture in terms of our local
orthogonal calculus and a calculus version of Postnikov sections.
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1. Introduction

Motivation. Building on work of Adams, Bousfield [17] established that on the category of (based)
spaces there is a well defined localization functor LE which sends a space X to a space XE which
contains all the E∗-homology of X but disregards any of the other homotopical information of X.
For example, for rational homology, the space XQ is the rationalisation of X in the sense of Quillen
[49]. Similar localizations exist for spectra, see [18].

The theory of localizations at homology theories are ubiquitous and have had wide applications;
of particular note is chromatic homotopy theory which among other things gives a spectrum level
interpretation for the periodic families appearing in the stable homotopy groups of spheres. An
extensive amount of effort has been geared toward understanding how localization at homology
theories–particularly the chromatic localizations–interact with Goodwillie’s calculus of functors
[2, 38–40], see e.g., [41] for a survey. This article is concerned with the analogous question in
orthogonal calculus although our approach is noticeably different than those applied to Goodwillie
calculus.

Overview. The classical theory of orthogonal calculus (and more generally functor calculus) is a
homotopy theoretic tool for studying ‘geometric’ objects by constructing a filtration on the object
the ‘quotients’ of which are typically easier to understand and manipulate. The spaces under
consideration in orthogonal calculus naturally take the form of a J-space: a functor from the
category of real vector spaces to the category of (based) spaces. The calculus is constructed in such
a way that it not only constructs a filtration on each level of the J-space, but these constructions
are natural; a linear map induces a map between filtrations; given a J-space F the calculus assigns
a tower of J-spaces under F

F

· · · TnF Tn−1F · · · T1F T0F

called the Weiss tower for F . The n-th term TnF acts as a categorification of polynomial of
degree less than or equal n functions from classical calculus. The n-th layer of the tower is the
homotopy fibre DnF of the map TnF → Tn−1F , and acts as the ‘quotients’ of the filtration.
Of all the flavours of functor calculus, orthogonal calculus is synonymous with being the most
computationally challenging due to the interaction between the highly ‘geometric’ nature of the
objects of study and the highly homotopical constructions.

Given a set S of maps of based spaces we produce an S-local Weiss tower of the following form:

F

· · · TnLSF Tn−1LSF · · · T1LSF T0LSF

DS
nF DS

n−1F DS
1 F

To understand the S-local Weiss tower, we utilise the interpretation of localizations in terms of
a model structure on the category of bases spaces in which the localization functor LS is a fibrant
replacement. In the case of homological localizations the weak equivalences are the homology
isomorphisms. We begin by constructing a model structure, denoted Poly≤n(J0, LS Top∗), which
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captures the homotopy theory of functors which are S-locally polynomial of degree less than or equal
n. From this model structure we construct a new model structure, denoted Homogn(J0, LS Top∗),
which captures the homotopy theory of functors which are S-locally homogeneous of degree n. In
particular, when the localization functor LS is “nice” (in a sense which is made precise below)
the S-local n-homogeneous model structure contains the n-th layer of the S-local Weiss tower as a
bifibrant object.

We consider three classes of localizations, giving three levels of results:

(1) we give general existence theorems for these S-local model structures for any set S of maps
of based spaces;

(2) we obtain more computationally auspicious results when we assume the class of local objects
is closed under homotopy colimits1; and,

(3) we restrict to the case when the localization is a nullification which further advances the
applicability of the S-local calculus to computations.

Through a zigzag of Quillen equivalences we characterise the S-local n-homogeneous functors as
levelwise S-local spectra with an action of O(n).

Theorem (Corollary 8.4.2). Let S be a set of maps of based spaces and n ≥ 0. There is a zigzag
of Quillen equivalences

Homogn(J0, LS Top∗) ≃Q Sp(LS Top∗)[O(n)].

On the derived level, we obtain a computationally accessible classification theorem for S-local
homogeneous of degree n functors.

Theorem (Theorem 8.6.1). Let S be a set of maps of based spaces and n ≥ 1. Any S-local
homogeneous of degree n functor F is (up to homotopy) of the form

V 7−→ Ω∞[(SRn⊗V ∧ ∂S
nF )hO(n)],

where ∂S
nF is a levelwise S-local spectrum with an action of O(n).

Applications. We envision that the applications of this local version of orthogonal calculus are
vast. For example, computations of rational derivatives of functors in orthogonal calculus have
been of interest in differential topology recently, see e.g., [37], and a full understanding of the Weiss
tower of BO(−) has been achieved in vn-periodic homotopy theory through complex computations
of Arone [1] using compuations of Arone and Mahowald [2]. A compelling application of the local
orthogonal calculus would be to recast these computations in a new light. In the last part of this
paper we give a number of intial applications of the theory.

By considering the acyclics of a localization with respect to a homology theory, Bousfield [18]
described a lattice of localizations built from Bousfield classes–equivalences classes of acyclics. A
similar lattice exists for nullity classes of nullifications at based spaces, see, e.g., [29]. This has a
number of repercussions for the localization of orthogonal calculus. We prove a more general result
that the stated theorem below, see Theorem 9.1.1.

Theorem (Corollary 9.1.2 & Corollary 9.1.3).

(1) Let E and E′ be spectrum. The E-local orthogonal calculus is equivalent to the E′-local
orthogonal calculus if and only if E and E′ have the same Bousfield class.

1The requirement of the class of local objects to be closed under homotopy colimits is reminiscent of smashing
localizations in the stable setting.
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(2) Let W and W ′ be based spaces. The W -local orthogonal calculus is equivalent to the W ′-local
orthogonal calculus if and only if W and W ′ have the same nullity class.

A major application of our study of Bousfield classes is in relation to the Telescope Conjecture
of Ravenel, [50, Conjecture 10.5]. Fix a prime p, and work p-locally. Denote by T (n) the telescope
of any vn-self map on a finite complex of type n, and denote by K(n) the n-th Morava K-theory.

Theorem (Theorem 9.2.3). The height n Telescope Conjecture holds if and only if the K(n)-local
orthogonal calculus and the T (n)-local orthogonal calculus are equivalent.

From a computational perspective we obtain the following relation between the Telescope Con-
jecture and the local Weiss spectral sequences.

Theorem (Lemma 9.2.4). If the height n Telescope Conjecture holds, then for all r ≥ 0, the r-th
page of the T (n)-local Weiss spectral sequence is isomorphic to the r-th page of the K(n)-local Weiss
spectral sequence.

By considering nullifications with respect to the spheres we obtain a theory of Postnikov sections
in orthogonal calculus, which is a particular example of Postnikov sections in arbitrary model
categories. For example, we prove that our Sk+1-local projective model structure on the category
of orthogonal functors is identical to the model structure of k-types in the category of orthogonal
functors in the sense of [31, §4].

Theorem (Proposition 10.2.1). Let k ≥ 0. The model structure of k-types in orthogonal functors
is identical to the Sk+1-local model structure, that is, there is an equality of model structures,

PkFun(J0,Top∗) := LWk
Fun(J0,Top∗) = Fun(J0, LSk+1 Top∗).

As an application we produce a tower of model categories

· · · −→ Homogn(J0, Pk Top∗) −→ · · · −→ Homogn(J0, P1 Top∗) −→ Homogn(J0, P0 Top∗),

by nullification at the spheres Sk+1 as k varies. By applying the theory of homotopy limits of model
categories, we show that the n-homogeneous model structure of Barnes and Oman [6, Proposition
6.9] is the homotopy limit of this tower, in the following sense.

Theorem (Corollary 10.7.3). There is a Quillen equivalence

Homogn(J0,Top∗) ≃Q holim
k

Homogn(J0, Pk Top∗).

Relation to other work. This work is intimately related to the rational orthogonal calculus
developed by Barnes [4]. Replacing our generalised homology theory E∗ with rational homology
recovers the theory developed by Barnes.

Unstable chromatic homotopy theory can be described algebraically, via Heuts’ [32] algebraic
model for vn-periodic spaces via an equivalence (of ∞-categories) with Lie algebras in T (n)-local
spectra. This model indicated that there is likely a relationship between vn-periodic orthogonal
calculus and orthogonal calculus of Heuts’ Lie algebra models. Such an equivalence at chromatic
height zero suggests a relationship between rational orthogonal calculus and the algebraic models for
rational homotopy theory of Sullivan and Quillen [49,51]. In particular this together with Barnes’
[4] model for rational n-homogeneous functors as torsion models over the rational cohomology ring
of BSO(n) suggests the existence of algebraic model calculi. We plan to return to this in future
work.

There is a strong connection between the calculus and chromatic homotopy theory. Ravenel
[50], made several conjectures relating to the structure of chromatic homotopy theory including the
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Nilpotence and Periodicity Theorems of Devinatz, Hopkins and Smith [24, 34]. These conjectures
have be resolved except for one, the Telescope Conjecture, which is trivial at height n = 0, has
been verified at height n = 1 by Bousfield [18], Mahowald [43] and Miller [47], but in general is
widely believed to be false. The validity of the Telescope Conjecture would imply an equivalence
between K(n)-local orthogonal calculus and and T (n)-local orthogonal calculus.

This work also forms part of an extensive program to go “beyond orthogonal calculus” which
was initiated in the Ph.D. thesis of the author [53], together with a series of articles exploring
extensions of the orthogonal calculus and the relations between these, [52, 54–56]. The hopes of
this extensive project is to illuminate our understanding of orthogonal calculus which (at least
relative to Goodwillie calculus) remains largely unexplored.

The future applications of the homological localization of orthogonal calculus are abound. For
example in recent work of Beaudry, Bobkova, Pham and Xu [13], the authors compute the tmf -
homology of RP 2, where tmf denotes the connective spectrum of topological modular forms. It
would be interesting to investigate whether their computation for RP 2 and the tmf -local Weiss
tower for the functor V 7→ RP (V ) yield a calculation of the tmf -homology of RP k for all k. Such
a connection would, for example, feed into a chromatic understanding of block structures, see e.g.,
[42].

Conventions. We work extensively with model categories and refer the reader to the survey article
[27] and the textbooks [33, 35] for a detailed account of the theory. We further assume the reader
has familiarity with orthogonal calculus, references for which include [6, 58].

The category Top∗ will always denote the category of based compactly generated weak Hausdorff
spaces, and we will, for brevity, call the objects of this category “based spaces”. The category of
based spaces will always be equipped with the Quillen model structure unless specified otherwise.
The weak equivalences are the weak homotopy equivalences and fibrations are Serre fibrations.
This is a cellular, proper and topological model category with sets of generating cofibrations and
acyclic cofibrations denoted by I and J , respectively.

Unless otherwise stated the word “spectra” is synonymous with the phrase “orthogonal spectra”,
details of which can be found in [46] in the non-equivariant case, and [45] in the equivariant situation.

Acknowledgements. This work has benefited from helpful conversations and comments from
D. Barnes, T. Barthel, and J. Williamson. We are particularly grateful to S. Balchin for reading
an earlier version of this material. We thank the Max Plank Institute for Mathematics for its
hospitality.

Part 1. Preliminaries

2. The localization of topological spaces

2.1. Left Bousfield localization. Given a model category C there is a systematic way of con-
structing a new model category which has the same cofibrations but more weak equivalences,
yielding a finer homotopy theory. This process is called left Bousfield localization.

Give objects X and Y in a model category C we denote by mapC(X,Y ) the homotopy function
complex in the sense of [33, Chapter 17]. In many cases our model structures will be simplicial
or topological in which case the homotopy function complex may be replaced by suitably ‘derived’
version of the internal hom arising from the simplicial or topological structure, see e.g., [33, Example
17.1.4].
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Definition 2.1.1. Let C be a model category and S a class of maps in C.

(1) An object Z in C is S-local if for every map f : A → B in S the map on homotopy function
complexes

mapC(B,Z) −→ mapC(A,Z),

induced by precomposition with f is a weak homotopy equivalence of simplicial sets.
(2) a map g : X → Y is an S-local equivalence if for every S-local object Z the map on homotopy

function complexes

mapC(Y,Z) −→ mapC(X,Z),

induced by precomposition with g is a weak homotopy equivalence of simplicial sets.

Under mild conditions on the model category C there exists a model structure on C with weak
equivalences the S-local equivalences and fibrant objects the S-local objects which are fibrant in C.
We will sometimes refer to such objects as being S-fibrant.

Theorem 2.1.2 ([33, Theorem 4.1.1.]). Let C be a model category and S a set of maps in C. If
the model structure on C is left proper and cellular, then the left Bousfield localization of C at the
set S exists. The weak equivalences are the S-local equivalences, the cofibrations are the cofibrations
of C and the fibrant objects are the S-local objects which are fibrant in C. This model structure is
cellular, left proper and topological whenever the underlying model structure on C is topological. We
denote this model structure by LSC.

As an example, consider homological localization with respect to a homology theory E∗. Bousfield
[17] showed that there exists a set JE of maps of based spaces such that the JE-local model structure
on based spaces captures the homotopy theory of based spaces up to E∗-isomorphism.

Theorem 2.1.3 ([17, Theorem 10.2]). Let E∗ be a generalised homology theory. There is a model
category structure on the category of based spaces with weak equivalences the E∗-isomorphisms,
cofibrations the cofibrations of the Quillen model structure on based spaces and the fibrant objects
are the E-local spaces. This model structure is cellular, left proper and topological. We denote this
model structure by LE Top∗.

2.2. Right Bousfield localization. There is a dual theory in which one adds more weak equiv-
alences but fixes the class of fibrations. This is called a Right Bousfield localization.

Definition 2.2.1. Let C be a model category and K a set of cofibrant objects in C.

(1) A map g : X → Y is an K-colocal equivalence if for every K ∈ K the map on homotopy
function complexes

mapC(K,X) −→ mapC(K,Y ),

induced by postcomposition with g is a weak homotopy equivalence of simplicial sets.
(2) An object Z in C is S-colocal if for every K-colocal equivalence f : A → B the map on

homotopy function complexes

mapC(Z,A) −→ mapC(Z,B),

induced by postcomposition with f is a weak homotopy equivalence of simplicial sets.

Under mild conditions on the model category C there exists a model structure on C with weak
equivalences the K-colocal equivalences and cofibrant objects the K-colocal objects which are cofi-
brant in C. We will sometimes call the cofibrant objects K-cofibrant.
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Theorem 2.2.2 ([33, Theorem 5.1.1.]). Let C be a model category and K a set of cofibrant objects
in C. If the model structure on C is right proper and cellular, then the right Bousfield localization
of C at the set K exists. The weak equivalences are the K-colocal equivalences, the fibrations are
the fibrations of C and the cofibrant objects are the K-colocal objects which are cofibrant in C. This
model structure is cellular, right proper and topological whenever the underlying model structure on
C is topological. We denote this model structure by RKC.

Example 2.2.3. If Ch(Z) is the category of (unbounded) chain complexes of abelian groups
equipped with the projective model structure, then derived completion at a prime p may be mod-
elled by the right Bousfield localization at the complex Z/p.

2.3. Left Bousfield localization and right properness.

Remark 2.3.1. The process of left Bousfield localization can interfere with other model categorical
properties, for instance left Bousfield localization need not preserve right properness. For example
if E = HQ, then the HQ-local model structure on based spaces is not right proper since there is a
pullback square

K(Q/Z, 0) P

K(Z, 1) K(Q, 1)
≃HQ

in which the right hand vertical map is a fibration, P is contractible and the lower horizontal map
is a HQ-equivalence but the left hand vertical map is not. Another example is provided by Quillen
in [49, Remark 2.9].

The property of being right proper has many advantages including the ability to right Bousfield
localize. As such we investigate when the S-local model structure is right proper. It suffices to
examine when the f -local model structure is right proper for some map f : X → Y of based spaces.

The following has motivation in [22, Remark 9.11], in which Bousfield remarks that the f -
local model structure cannot be right proper unless the localization functor Lf is equivalent to
a nullification. We extend Bousfield’s remark by showing that his nullification condition is both
necessary and sufficient in a stronger sense than originally proposed by Bousfield. This result
depends on two constructions also due to Bousfield; the first is the construction of a based space
A(f) associated to a map f : X → Y of based spaces, see [21, Theorem 4.4], the second is a
nullification functor PW : Top∗ → Top∗ associated to any based space W , see [19, Theorem 2.10].
This nullification functor has two key properties which we would also like to highlight; firstly,
when W is connected PW preserves disjoint unions and secondly, PW is contractible when W is
not connected. For example, if f is the map which induces localization with respect to integral
homology, then PA(f) is Quillen’s plus construction, see e.g., [29, 1.E.5].

Proposition 2.3.2. Let f : X → Y be a map of based spaces. The f -local model structure on
based spaces is right proper if and only if there exists a based space A(f) and and equality of model
structures

Lf Top∗ = PA(f) Top∗,

where PA(f) Top∗ is the Bousfield-Friedlander localization [22, Theorem 9.3], at the nullification
endofunctor

PA(f) : Top∗ → Top∗ .

Proof. By [21, Theorem 4.4], there exists a based space A(f) such that the classes of A(f)-acyclic
and f -acyclic spaces agree, and every PA(f)-equivalence is an f -local equivalence.
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Assume that the f -local model structure is right proper. For a connected based space X, the
path fibration over LfX is an f -local fibration, hence the homotopy fibre of the map X → LfX
is f -acyclic, and hence A(f)-acyclic. It follows by [19, Corollary 4.8(i)], the map X → LfX is
a PA(f)-equivalence, hence every f -local equivalences of connected spaces is a PA(f)-equivalence.
Since the functor PA(f) on based spaces comes from a functor on unbased spaces which preserves
disjoint unions when A(f) is connected and which takes contractible values when A(f) is not
connected, every f -local equivalence must be a PA(f)-equivalence. It follows that the class of f -
local equivalences agrees with the class of PA(f)-equivalences. The equality of the model structures
follows immediately since both model structures have the same cofibrations inherited from the
Quillen model structure on the category of based spaces.

For the converse, assume that the f -local model structure agrees with the A(f)-local model
structure. The latter model structure is right proper by [22, Theorem 9.9], and since both model
structures have the same weak equivalences and fibrations, the f -local model structure must also
be right proper. �

Remark 2.3.3. The property of being right proper is completely determined by the weak equiv-
alence class of the model structure; if two model structures have the the same weak equivalences,
then one is right proper if and only if the other is, see e.g., [3, Remark 2.5.6].

We now provide some examples of localizations which can be written as a nullification.

Examples 2.3.4.

(1) Localization of spaces with respect to the map un+1 : ∗ → Sn+1 gives the Postnikov section,
that is for a space X, PnX = PSn+1X = Lun+1X, see e.g., [29, Example E.1].

(2) Extensive work of Bousfield [19,22] exhibits that vn-periodic homotopy theory, or unstable
chromatic homotopy theory can be expressed as a nullification.

3. The Borel stablisation of local spaces with a G-action

We investigate the stablisation of S-local spaces for S a set of maps of based spaces and the
relationship between E-local spectra and the stablisation of E-local spaces for a homology theory
E∗. This will be particularly useful since homogeneous functors of degree n are classified by the Borel
stablisation of spaces with an O(n)-action, see e.g., [58, Theorem 7.3], and S-local homogeneous
functors of degree n will be classified by the Borel stablisation of S-local spaces with an O(n)-action,
see Section 8.

3.1. The Borel stablisation of local spaces with a G-action. Let G be a compact Lie group.
Recall from [46] that orthogonal spectra may be described as a category of topologically enriched
functors Fun(I,Top∗). Furthermore, spectra with a G-action is the category of G-objects in spectra.
Spectra with a G-action is the ‘naive’ stabilisation of G-spaces, which we prefer to call the Borel
stablisation. This stablisation is captured by the underlying model structure on spectra with a
G-action. We are particularly interested in spectra with a G-action, when G is the orthogonal
group O(n). Following the procedure in the non-equivariant setting [46], or the equivariant setting
on a trivial universe [45], a left Bousfield localization of the projective model structure on spectra
with a G-action yields the stable model structure.

Lemma 3.1.1. The category Sp[G] of spectra with a G-action may be equipped with a model struc-
ture with weak equivalences the π∗-isomorphisms and a map f : X → Y is a fibration if it is levelwise
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fibration and for each U ∈ I, the square

X(U) ΩX(U)

Y (U) ΩY (U)

f Ωf

is a homotopy pullback. This model structure is cellular, proper, stable and topological.

Analogous to spectra, we can preform a suitable left Bousfield localization of the category of
spectra with a G-action to obtain a model for the Borel stablisation of S-local spaces with a
G-action.

Proposition 3.1.2. Let S a set of maps of based spaces. There is a model structure on the
category of spectra with a G-action such that the cofibrations are the cofibrations of the stable model
structure and the fibrant objects are the levelwise S-local Ω-spectra. This model structure is cellular,
left proper and topological. We call this model structure the (Borel) stablisation of S-local spaces
with an O(n)-action, and it Sp(LS Top∗)[G].

3.2. E-local spectra with a G-action. For a homology theory E∗, it is also possible to con-
struct a model structure on spectra such that the weak equivalences are detected by E∗-homology
isomorphisms.

Proposition 3.2.1 (Bousfield [18]). Let E be a spectrum. There is a model structure on the
category of spectra such that the weak equivalences are the E∗-isomorphisms, the cofibrations are
the cofibrations of the stable model structure and the fibrant objects are the E-local Ω-spectra. This
model structure is cellular, proper, stable and topological. We call this model structure the E-local
model structure and denote it SpE.

Proof. Existence of the model structure follows from Hovey’s Recognition Principle for model cat-
egories, [35, Theorem 2.1.19], see, e.g. [9, Theorem 7.3.3] for details and [9, Corollary 7.3.6] for
the characterisation of the fibrant objects. This model structure is stable by [8, Example 4.3 &
Proposition 4.6], and right proper by [8, Proposition 4.7]. �

This model structure can be transferred to spectra with a G-action.

Proposition 3.2.2. There is a model structure on the category Sp[G] of spectra with a G-action
where the weak equivalences are the E∗-isomorphisms, the cofibrations are the cofibrations of the
projective model structure and the fibrant objects are the E-local Ω-spectra. This model structure is
cellular, right proper, stable and topological. We denote this model structure by SpE[G].

Proof. This is the right transfer of the E-local model structure on spectra through the adjunction

G+ ∧ (−) : SpE
//

SpE[G] : i∗
oo

. �

3.3. “Stably E-local” versus “stable and E-local”. We end this section with some remarks on
the relationship between E-local spectra and the stablisation of E-local spaces. Various aspects of
the relationship between these two constructions have been considered by various groups of authors
including; Mahowald and Thompson for p-adic K-theory [44], Barthel and Bousfield for completion
at a prime [11], and by Barnes and Roitzheim in their work on local framings [7].
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Lemma 3.3.1 ([7, Lemma 8.3]). Let E be a spectrum. The adjoint pair

1 : Sp(LE Top∗)
//

SpE : 1
oo

,

is a Quillen adjunction between the stablisation of E-local spaces and E-local spectra.

Remark 3.3.2. This Quillen adjunction is not always a Quillen equivalence. For example, in
the case of completion at a prime p, the suspension spectrum of a p-complete nilpotent space is
p-complete if and only the homotopy groups of the space are bounded p-torsion [11, Theorem 4.7],
hence the derived adjunction is not an equivalence of homotopy categories.

Barnes and Roitzheim give a large class of examples for which the adjunction is a Quillen equiv-
alence. In fact, they give a class of examples for which the model structures become identical.

Lemma 3.3.3 ([7, Lemma 8.6]). Let R be a subring of the rationals. There is an equality of model
structures

Sp(LHR Top∗) = SpHR.

Part 2. Local orthogonal calculus

With the preliminaries in place, we now construct the S-local orthogonal calculus for S a set
of maps of based spaces. Our approach is motivated by the model categorical perspective on
orthogonal calculus of Barnes and Oman [6], and Barnes’ rational orthogonal calculus [4].

4. Input functors

4.1. Input functors. We first recall the ‘input functors’ for the calculus. These are the base
functors which one wishes to study through the lens of orthogonal calculus.

Definition 4.1.1. Define J to be the category with objects finite-dimensional inner product sub-
spaces of R∞ and morphisms linear isometries. Define J0 to be the category with the same objects
and J0(U, V ) = J(U, V )+.

The morphism set J(U, V ) may be topologised as the Stiefel manifold of dim(U)-frames in V .
As such, J is a topologically enriched category, and J0 is enriched in based spaces.

The category of topological2 functors from J0 to Top∗ is the category of input functors for
orthogonal calculus. We will refer to such functors as orthogonal functors and denote the category of
such functors by Fun(J0,Top∗). Examples of orthogonal functors are abound in geometry, topology
and homotopy theory, and include:

(1) the one-point compactification functor S : V 7→ SV ;
(2) the functor BO(−) : V 7→ BO(V ) which sends an inner product space to the classifying

space of its orthogonal group;
(3) the functor BTOP(−) : V 7→ BTOP(V ), which sends an inner product space V to BTOP(V ),

the classifying space of the space of self-homeomorphisms of V ;
(4) the functor BDiffb(M × −) : V 7→ BDiffb(M × V ), which for a fixed smooth and compact

manifold M sends an inner product space V to the classifying space of the group of bounded
diffeomorphisms from M × V to M × V which are the identity on ∂M × V ; and,

2By which we mean “enriched in based spaces”.
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(5) the restriction of an endofunctor on spaces spaces to evaluation on spheres 3

The category of orthogonal functors may be equipped with a projective model structure.

Proposition 4.1.2. There is a model category structure on the category of orthogonal functors
Fun(J0,Top∗) with weak equivalences and fibrations defined levelwise. The generating cofibrations
are of the form

J0(U,−) ∧ Sn−1
+ −→ J0(U,−) ∧Dn

+,

for U ∈ J0 and n ≥ 0. The generating acyclic cofibrations are of the form

J0(U,−) ∧Dn
+ −→ J0(U,−) ∧ (Dn × [0, 1])+,

for U ∈ J0 and n ≥ 0. This model structure is cellular, proper and topological.

4.2. Local input functors. The category of topological functors from J0 to Top∗ is also the
category of input functors for orthogonal calculus localized at a set of maps of based spaces S. The
‘base’ model structure for the S-local orthogonal calculus will be the S-local model structure on
the category of orthogonal functors.

Proposition 4.2.1. Let S be a set of maps of based spaces. There is model structure on the category
of topological functors from J0 to Top∗ such that a map f : X → Y is a weak equivalence or fibration
if for all V ∈ J0, the induced map f(V ) : X(V ) → Y (V ) is a S-local equivalence or a S-local fibration
of based spaces, respectively. This model structure is cellular, left proper and topological. We call
this model structure the S-local projective model structure and it by Fun(J0, LS Top∗).

Proof. This model structure is an instance of a projective model structure on a category of functors,
see e.g., [33, Theorem 11.6.1]. �

As a particular example, we obtain the following model structure for the localization with respect
to a homology theory E∗.

Corollary 4.2.2. Let E be a spectrum. There is a model structure on the category of topological
functors from J0 to Top∗ such that a map f : X → Y is a weak equivalence or fibration if for all
V ∈ J0 the induced map f(V ) : X(V ) → Y (V ) is a E∗-isomorphism or a fibration in the model
category of E-local based spaces, respectively.

5. Polynomial functors

5.1. Polynomial functors. Polynomial functors behave in many ways like polynomial functions
from classical calculus, e.g., a functor which is polynomial of degree less than or equal n, is poly-
nomial of degree less than or equal n + 1. We give only the necessary details here and refer the
reader to [58] or [6] for more details on polynomial functors in orthogonal calculus.

Definition 5.1.1. An orthogonal functor F is polynomial of degree less than or equal n if for each
U ∈ J0, the canonical map

F (U) −→ holim
06=V⊆Rn+1

F (U ⊕ V ) =: τnF (U),

is a weak homotopy equivalence. Functors which are polynomial of degree less than or equal n will
sometimes be referred to as n–polynomial functors.

3Endofunctors of based spaces are particularly interesting from a homotopy theoretic point of view when you
restrict to the values on spheres, see e.g., [1, 2, 14]. In particular for F the identity functor, the Weiss tower of
F ◦ S = S and the Goodwillie tower for F agree up to weak equivalence [5], hence orthogonal calculus is intimately
related to understanding the (stable) homotopy groups of spheres.
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Remark 5.1.2. Given an orthogonal functor F and an inner product space U we can restrict the
orthogonal functor F (U ⊕−) to a functor

F (U ⊕−) : P(Rn+1) −→ Top∗,

where P(Rn+1) is the poset of finite-dimensional inner product subspaces of Rn+1. Such functors
are deserving of the name Rn+1-cubes by analogy with cubical homotopy theory. The orthogonal
functor F being n-polynomial is equivalent to asking that for each U this restricted functor is
homotopy cartesian. Informally speaking, orthogonal calculus can be thought of a calculus built
from Rn-cubical homotopy theory in a similar way to how Goodwillie calculus is built from cubical
homotopy theory, see e.g., [48].

There is a functorial assignment of a universal (up to homotopy) n-polynomial functor to any
orthogonal functor F . It is the n-polynomial approximation of F , and is defined as

TnF (U) = hocolim(F (U) −→ τnF (U) −→ · · · −→ τknF (U) −→ · · · ).

In [6, Proposition 6.5 & Proposition 6.6], Barnes and Oman construct a localization of the
projective model structure on the category of orthogonal functors which captures the homotopy
theory of n-polynomial functors. The n-polynomial approximation functor is a fibrant replacement
in this model structure, which implies that any map F → F ′ with F ′ n-polynomial factors (up
to homotopy) through the n-polynomial approximation of F . There are two equivalent ways to
consider this model structure; as the Bousfield-Friedlander localization of Fun(J0,Top∗) at the n-
polynomial approximation endofunctor

Tn : Fun(J0,Top∗) −→ Fun(J0,Top∗),

or, as the left Bousfield localization at the set of maps

Sn = {Sγn+1(U, V )+ −→ J0(U, V ) | U, V ∈ J0},

where Sγn+1(U, V ) is the sphere bundle of the (n + 1)-st complement bundle γn+1(U, V ) over the
space of linear isometries J(U, V ). The fibre over a linear isometry f in the (n+ 1)-st complement
bundle is Rn+1 ⊗ f(U)⊥, where f(U)⊥ is the orthogonal complement of f(U) in V .

Proposition 5.1.3 ([6, Proposition 6.5]). There is a model category structure on the category
of orthogonal functors with weak equivalences the Tn-equivalences

4 and fibrations those levelwise
fibrations f : X → Y such the square

X TnX

Y TnY

is a homotopy pullback. This model structure is cellular, proper and topological. We call this the
n-polynomial model structure and denote it by Poly≤n(J0,Top∗).

5.2. Local polynomial functors.

Definition 5.2.1. Let S be a set of maps of based spaces. An orthogonal functor is S-locally
n-polynomial if it is levelwise S-local and n-polynomial.

We have the following useful reduction using the S-local Whitehead’s Theorem, [33, Theorem
3.2.13(1)].

4A map f : X → Y is a Tn-equivalence if Tn(f) : TnX → TnY is a levelwise weak equivalence.
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Lemma 5.2.2. Let S be a set of maps of based spaces, and F an orthogonal functor. If F is
levelwise S-local, then F is n-polynomial if and only if the canonical map

F (U) −→ holim
06=V⊆Rn+1

F (U ⊕ V ),

is a S-local equivalence.

In our search for a model structure which captures the homotopy theory of S-locally n-polynomial
functors we start with a general existence theorem which is an iterated left Bousfield localization
involving the set Sn and the set

JS = {J0(U,−) ∧ j | U ∈ J, , j ∈ JLS Top
∗
}.

Without extra assumptions on our localizing set (or homology theory) we are unable to obtain clear
descriptions of the weak equivalences.

Proposition 5.2.3. Let S be a set of maps of based spaces. There is model category structure on the
category of orthogonal functors with cofibrations the projective cofibrations, and fibrant objects the
S-locally n-polynomial functors. This model structure is cellular, left proper and topological. We call
this model structure the S-local n-polynomial model structure and denote it by Poly≤n(J0, LS Top∗).

Proof. The process of left Bousfield localizations may be iterated and it follows that the JS-
localization of the n-polynomial model structure on and the Sn-localization of the S-local projective
model structure are identical, and have as cofibrations the projective cofibrations. It remains to
characterise the fibrant objects.

For the fibrant objects, notice that the model structure is equivalently described as the left
Bousfield localization of the projecitve model structure with respect to the set of maps Sn∪JS . By
definition an object X is Sn ∪ JS -local if and only if it is both Sn-local and JS-local, and hence the
fibrant objects are precise those S-locally n-polynomial functors. �

The S-local n-polynomial model structure behaves precisely like the S-localization of the n-
polynomial model structure in the following sense.

Lemma 5.2.4. Let S be a set of maps of based spaces. The adjoint pair

1 : Poly≤n(J0,Top∗)
//

Poly≤n(J0, LS Top∗) : 1oo
,

is a Quillen adjunction.

Proof. Since the cofibrations of both model structures are the projective cofibrations the identity
functor

1 : Poly≤n(J0,Top∗) → Poly≤n(J0, LS Top∗),

preserves cofibrations. On the other hand, since an S-locally n-polynomial functor is in particular
n-polynomial, the identity functor

1 : Poly≤n(J0, LS Top∗) → Poly≤n(J0,Top∗),

preserves fibrant objects. �

Our focus now turns to understanding the S-local n-polynomial model structure better. The
weak equivalences of the S-local n-polynomial model structure are the Sn ∪ S-local equivalences,
i.e., detected by objects which are both Sn-local and S-local, hence the class of which contains
both the Tn-equivalences and S-local equivalences but may contain maps which are neither. To
understand these equivalences better we place a condition on the local objects analogous to the
condition that a homological localization (on spectra) is smashing, see e.g., [9, Proposition 7.4.3].
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Proposition 5.2.5. Let S be a set of maps of based spaces. If the class of S-local objects is closed
under sequential homotopy colimits, then the weak equivalences of the S-local n-polynomial model
structure are those maps f : X → Y such that the induced map

TnLSf : TnLSX → TnLSY,

is a S-local equivalence. In particular, The composite TnLS is a functorial fibrant replacement in
the S-local n-polynomial model structure.

Proof. We show (1), the proof of (2) is similar. We apply [4, Lemma 5.5] which shows that
a map f : X → Y is weak equivalence in the iterated left Bousfield localization if and only if
LSf : LSX → LSY is a Sn-local equivalence. This last is equivalent to LSf : LSX → LSY being
a Tn-equivalence, i.e., TnLSf : TnLSX → TnLSY being a levelwise weak equivalence. Since both
domain and codomain of this map are S-local checking this map is a levelwise weak equivalence is
equivalent to checking that it is an S-local equivalence by the S-local Whitehead’s Theorem. �

Remark 5.2.6. Let S be a set of maps of based spaces. To ease notation, we will denote the
composite TnLS by T S

n . In particular, for E a spectrum we denote the composite functor TnLE

by TE
n . In general, T S

n need not be S-local, but will be when the class of S-local objects is closed
under sequential homotopy colimits.

Examples 5.2.7.

(1) For a finite cell complex W , TW
n F is W -local (or W -periodic) for all orthogonal functors F .

(2) For localization at the Eilenberg-Maclane spectrum associated to a subring R of the ratio-
nals, THR

n F is HR-local for all orthogonal functors F .

5.3. Characterisations for nullifications. Bousfield [19, 20], and Farjoun [29], among others,
see e.g., [23], have extensively studied the nullifcation of the category of based spaces at a based
space W . This nullification is functorial giving a functor

PW : Top∗ −→ Top∗,

which extends levelwise to a functor

PW : Fun(J0,Top∗) −→ Fun(J0,Top∗).

The nullified model structure on spaces (see, e.g., [22, §§9.8]) extends in a canonical way to give the
Bousfield-Frielander localization of the category of orthogonal functors at the functor PW , which we
denote by Fun(J0, PW Top∗). We show that the W -local n-polynomial model structure is precisely
the model structure obtained by Bousfield-Friedlander localization at the composite

Tn ◦ PW : Fun(J0,Top∗) −→ Fun(J0,Top∗).

We begin with a lemma which deals with fibrant objects in the Bousfield-Friedlander localization
of orthogonal functors at the endofunctor PW , which we call the W -periodic projective model
structure.

Lemma 5.3.1. For a finite cell complex W and an orthogonal functor F , the functor TnPWF is
fibrant in the Bousfield-Friedlander localization of the category of orthogonal functors at the functor
PW . In particular, the map

ωTnPWF : TnPWF −→ PWTnPWF,

is a levelwise weak homotopy equivalence.
14



Proof. The Bousfield-Friedlander localization of based spaces at the endofunctor PW is identical to
the left Bousfield localization of based spaces at the map ∗ → W , since both model structures have
the same cofibrations and fibrant objects. It follows that the Bousfield-Friedlander localization of
the category of orthogonal functors at the endofunctor PW is identical to the W -local projective
model structure. In particular, we see that PWF is fibrant and hence τnPWF is also fibrant, since
the class of W -local objects is closed under homotopy limits. The result follows since local objects
for a nullification are closed under sequential homotopy colimits by [29, 1.D.6]. �

Proposition 5.3.2. For a finite cell complex W the Bousfield-Friedlander localization of the cate-
gory of orthogonal functors at the endofunctor

Tn ◦ PW : Fun(J0,Top∗) −→ Fun(J0,Top∗),

exists. This model structure is proper and topological. We call this the W -periodic n-polynomial
model structure and denote it by Poly≤n(J0, PW Top∗).

Proof. We verify the axioms of [22, Theorem 9.3]. First note that since PW and Tn both preserve
levelwise weak equivalences so does their composite, hence verifying [22, Theorem 9.3(A1)].

The natural transformation from the identity to the composite Tn ◦ PW is given in components
as the composite

F
ωF−−→ PWF

ηPW F

−−−−→ TnPWF,

where ω : 1 → PW and η : 1 → Tn, hence at TnPWF , we obtain the composite

TnPWF
ωTnPWF

−−−−−→ PWTnPWF
ηPW TnPWF

−−−−−−−→ TnPWTnPWF.

Since the domain is fibrant in the W -periodic projective model structure the first map in the
composite is a levelwise weak equivalence, see Lemma 5.3.1. The second map is also a weak
equivalence. To see this, note that since TnPWF is polynomial of degree less than or equal n, the
functor PWTnPWF is also polynomial of degree less than or equal n by the commutativity of the
diagram

TnPWF τnTnPWF

PWTnPWF τnPWTnPWF

and the fact that homotopy limits preserve levelwise weak equivalences. It follows that the natural
transformation η : TnPWF → TnPWTnPWF is a levelwise weak equivalence, as a composite of two
levelwise weak equivalences.
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The map TnPW (η) : TnPWF → TnPWTnPWF is also a levelwise weak equivalence. To see this,
note that there is a commutative diagram,

F PWF TnPWF

(1) (2)

PWF PWPWF PWTnPWF

(3) (4)

TnPWF TnPWPWF TnPWTnPW

ωF
ηPW F

ωF

PWωF

ωPW F

ηPW F ηPW PW F

ωTnPW F

ηPW TnPWF

PW ηPWF

TnPWωF TnPW ηPW F

in which, the required map is given by the lower horizontal composite. Since PW is a homotopically
idempotent functor, PWωF is a levelwise weak equivalence. It follows that the bottom horizontal
map

TnPWωF : TnPWF −→ TnPWPWF,

of (3) is a weak equivalence sine Tn preserves weak equivalences.

Moreover, PW being homotopically idempotent yields that the vertical map

ωPWF : PWF −→ PWPWF

in (2) is a levelwise weak equivalence. The right-hand vertical map in this square is also an
equivalence by Lemma 5.3.1. By [58, Theorem 6.3], the top right hand horizontal map

ηPWF : PWF −→ TnPWF,

is an approximation of order n in the sense of [58, Definition 5.16]. By commutativity of (2), the
lower horizontal map

PW ηPWF : PWPWF −→ PWTnPWF,

is an approximation of order n. The proof of [58, Theorem 6.3] also demonstrates that the vertical
maps in (4) are approximations of order n, and since three out of the four maps in the lower right
square are approximations of order n, so too is the lower right hand horizontal map

TnPW ηPWF : TnPWPWF −→ TnPWTnPWF.

An application of [58, Theorem 5.15] yields that this map is a levelwise weak equivalence as both
source and target are polynomial of degree less than or equal n. This concludes the proof that the
map

TnPW (η) : TnPWF −→ TnPWTnPWF,

is a levelwise weak equivalence, and verifying [22, Theorem 9.3(A2)].

Finally we verify [22, Theorem 9.3(A3)]. Let

A B

C D

k

g f

h
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be a pullback square with f a levelwise fibration between W -local n-polynomial functors, and
TnPWh : TnPWC → TnPWD a levelwise weak equivalence. By [22, Theorem 9.9], we see that
the fibre of k is PW -acyclic, i.e. PW (fib(k)) is levelwise weakly contractible. Since Tn preserves
levelwise weak equivalences, we see that TnPW (fib(k)) is levelwise weakly contractible, and hence
k is a TnPW -equivalence.

The fact that the resulting model structure is topological follows from [22, Theorem 9.1]. �

This Bousfield-Friedlander localization results in an identical model structure to the W -local
n-polynomial model structure of Proposition 5.2.3

Proposition 5.3.3. For a finite cell complex W there is an equality of model structures

Poly≤n(J0, LW Top∗) = Poly≤n(J0, PW Top∗),

that is, the W -local n-polynomial model structure and the W -periodic n-polynomial model structure
agree. In particular, these model structures are cellular, proper and topological.

Proof. Both model structures have the same cofibrations, namely the projective cofibrations. It
suffices to show that they share the same fibrant objects. Working through the definition of a fibrant
object in the Bousfield-Friedlander localization we see that an orthogonal functor F is fibrant if and
only if the canonical map F → TnPWF is a levelwise weak equivalence. It follows that F must be
W -local and n-polynomial, hence fibrant in the W -local n-polynomial model structure. Conversely,
if F is fibrant in the W -local n-polynomial model structure, then the map F → PWF is a levelwise
weak equivalence and there is a commutative diagram

F PWF

TnF TnPWF

in which three out of the four arrows are levelwise weak equivalences, hence so to is the right-hand
vertical arrow. It follows that F is fibrant in the Bousfield-Friedlander localization. �

Remark 5.3.4. The nullification condition here is necessary. The above lemma does not hold
in general. To see this, consider the (smashing) localization at the spectrum E = HQ. The
HQ-local model structure is not right proper, (see Remark 2.3.1) yet if this were expressible as a
Bousfield-Friedlander localization it would necessarily be right proper, [22, Theorem 9.3].

Corollary 5.3.5. For a finite cell complex W a map f : X → Y is a fibration is the W -local n-
polynomial model structure if and only if f is a fibration in the projective model structure and the
square

X TnPWX

Y TnPWY

is a homotopy pullback square in the projective model structure on Fun(J0,Top∗).

Remark 5.3.6. It is highly unlikely that this result holds in more general localizations than
nullifications. Let C be a model category and S a set of maps in C such that the left Bousfield
localization of C at S exists. By [33, Proposition 3.4.8(1)] right properness of C and LSC is sufficient
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for a map f : X → Y being a fibration in LSC if and only if f is a fibration in C and the square

X X̂

Y Ŷ

jX

jY

f f̂

is a homotopy pullback square, where f̂ : X̂ → Ŷ is a S-localization of f in the sense of [33,
Definition 3.2.16]. In our situation, Proposition 2.3.2 guarantees that a homological localization is
right proper if and only if it is a nullification. However, it is not clear in general if right properness
of the base model category and the localized model category is a necessary condition for the above
description of the fibrations in LSC.

6. Homogeneous functors

6.1. Homogeneous functors. The layers of the Weiss tower associated to an orthogonal functor
F are the homotopy fibres of maps TnF → Tn−1F and have two interesting properties: firstly, they
are polynomial of degree less than or equal to n and secondly, their (n−1)-polynomial approximation
is trivial. We denote the n-th layer of the Weiss tower of F by DnF .

Definition 6.1.1. For n ≥ 0, an orthogonal functor F is said to be n-reduced if its (n − 1)-
polynomial approximation is levelwise weakly contractible. An orthogonal functor F is said to be
homogeneous of degree n if it is both polynomial of degree less than or equal n and n-reduced. We
will sometimes refer to a functor which is homogeneous of degree n as being n-homogeneous.

There is a model structure on the category of orthogonal functors which contains the n-homogeneous
functors as the bifibrant objects.

Proposition 6.1.2 ([6, Proposition 6.9]). There is a model category structure on the category of
orthogonal functors with weak equivalences the Dn-equivalences and fibrations the fibrations of the
n-polynomial model structure. The cofibrant objects are the n-reduced projectively cofibrant objects
and the fibrant objects are the n-polynomial functors. In particular, cofibrant-fibrant objects of
this model structure are the projectively cofibrant n-homogeneous functors. This model structure is
cellular, proper, stable and topological. We call this the n-homogeneous model structure and denote
it by Homogn(J0,Top∗).

Remark 6.1.3. The model structure of [6, Proposition 6.9] has as weak equivalences those maps
which induce levelwise weak equivalences on the n-th derivatives of their n-polynomial approxima-
tions. We showed in [52, Proposition 8.2], that the class of such equivalences is precisely the class
of Dn-equivalences.

The n-homogeneous model structure is (zigzag) Quillen equivalent to spectra with an action of
O(n).

Proposition 6.1.4 ([6, Proposition 8.3 & Theorem 10.1]). Let n ≥ 0. There is a zigzag of Quillen
equivalences

Homogn(J0,Top∗) ≃Q Sp[O(n)].

On the homotopy category level the Barnes-Oman zigzag of Quillen equivalences recovers Weiss’
characterisation of homogeneous functors of degree n.
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Proposition 6.1.5 ([58, Theorem 7.3]). Let n ≥ 1. An n-homogeneous functor F is determined
by and determines a spectrum ∂nF with an O(n)-action. In particular, an n-homogeneous functor
F is levelwise weak homotopy equivalent to the functor

V 7−→ Ω∞[(SRn⊗V ∧ ∂nF )hO(n)],

and any functor of the above form is homogeneous of degree n.

6.2. Local homogeneous functors.

Definition 6.2.1. Let S be a set of maps of based spaces. An orthogonal functor F is S-locally
homogeneous of degree n if it is levelwise S-local and n-homogeneous.

Our prototypical example of an S-local n-homogeneous functor is the homotopy fibre of the map
Tn(LSX) → Tn−1(LSX), when localization with respect to S is “nice”, as made precise below.

Lemma 6.2.2. Let S be a set of maps of based spaces, and F and orthogonal functor. For n ≥ 1,
there is a homotopy fibre sequence

DS
nF −→ Tn(LSF ) −→ Tn−1(LSF ),

in which DS
n (F ) is

(1) homogeneous of degree n; and,
(2) S-locally n-homogeneous if, in addition, the class of S-local spaces is closed under sequential

homotopy colimits.

Proof. By [58, Lemma 5.5] the homotopy fibre of a map between two n-polynomial functors is
n-polynomial, hence DS

nF is n-polynomial. Applying Tn−1 to the homotopy fibre sequence, yields
that the (n− 1)-polynomial approximation of DS

nF is levelwise weakly contractible, proving (1).

For (2), observe that the homotopy fibre of a map between S-local objects is S-local and when
the class of S-local spaces is closed under sequential homotopy colimits, TnLSF is S-local for all
n. �

Examples 6.2.3.

(1) For homological localization at the Eilenberg-Maclane spectrum associated to a subring R
of the rationals, DHR

n F is HR-locally n-homogeneous.
(2) For nullification at a finite cell complex W , DW

n F is W -locally n-homogeneous.

In most versions of functor calculus the n-homogeneous model structure is a right Bousfield
localization of the n-polynomial model structure, see e.g., [16, Theorem 6.4], [6, Proposition 6.9]
or [56, Proposition 3.2]. In the local picture, the n-polynomial model structure need not be right
proper, hence one must find an alternative way to construct an n-homogeneous model structure.
We will return to the search for a local n-homogeneous model structure once we have discussed the
derivatives in orthogonal calculus.

7. The derivatives

7.1. The derivatives. For each n ≥ 0, sitting over the space of linear isometries J(U, V ) is a
vector bundle γn(U, V ) with fibre over a linear isometry f : U → V given by Rn ⊗ f(U)⊥, where
f(U)⊥ denotes the orthogonal complement of f(U) in V .

Definition 7.1.1. For n ≥ 0 define Jn to be the category with the same objects as J and morphism
space Jn(U, V ) given as the Thom space of γn(U, V ).
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For n = 0 this recovers the category J0 of Definition 4.1.1.

Remark 7.1.2. The standard action of O(n) on Rn via the regular representation induces an action
on the vector bundles that is compatible with the composition, hence Jn is naturally enriched over
based spaces with an O(n)-action.

Definition 7.1.3. For n ≥ 0 define the n-th intermediate category to be the category of O(n)Top∗-
enriched functors from Jn to O(n)Top∗. We will denote this category by FunO(n)(Jn, O(n)Top∗).

Let 0 ≤ m ≤ n. The inclusion inm : Rm → Rn induces a functor inm : Jm → Jn. Postcomposition
with inm induced a topological functor

resnm : Fun(Jn,Top∗) −→ Fun(Jm,Top∗),

which by [58, Proposition 2.1] has a right adjoint

indnm : Fun(Jm,Top∗) −→ Fun(Jn,Top∗),

given by
indnm F (U) = natm(Jn(U,−), F ),

where natm(−,−) denotes the (based) space of natural transformations in Fun(Jm,Top∗), and
Jn(U,−) is considered as an object of Fun(Jm,Top∗) by restriction. Combining the restriction
and induction functors with change of group adjunctions from [45], we obtain an adjoint pair

resnm /O(n −m) : FunO(n)(Jn, O(n)Top∗)
//

FunO(m)(Jm, O(m)Top∗) : ind
n
mCI

oo
,

see [6, §4].

Definition 7.1.4. Let F be an orthogonal functor. For n ≥ 0, the n-th derivative of F is given by
indn0 CIF . In which case, we write indn0 ε

∗F or F (n).

The n-th intermediate category is equivalent to the category of modules over the monoid

nS : I −→ O(n)Top∗,

V 7−→ SRn⊗V ,

in the category of O(n)-equivariant I-spaces, where I is the category of finite-dimensional inner
product subspaces of R∞ and linear isometric isomorphisms, see [6, Proposition 7.4]. As such it may
be equipped with a stable model structure reminiscent of the stable model structure on spectra.
Given an object F of the n-th intermediate category, we define the n-homotopy groups of F as

nπkF = colim
q

πnq+k(F (Rq)),

for k ∈ Z. The weak equivalences of the n-stable model structure are then the nπ∗-isomorphisms;
those maps f : X → Y such that for each integer k, the induced map

nπk(f) : nπk(X) −→ nπk(Y ),

is an isomorphism.

Proposition 7.1.5 ([6, Proposition 7.14]). There is a model category structure on the n-th inter-
mediate category with weak equivalences the nπ∗-isomorphisms and fibrations the levelwise fibrations
X → Y such that the square

X(U) ΩRn⊗V X(U ⊕ V )

Y (U) ΩRn⊗V Y (U ⊕ V )
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is a homotopy pullback for all U, V ∈ Jn. The fibrant objects are the nΩ-spectra, i.e., those objects
F such that

F (U) → ΩRn⊗V F (U ⊕ V ),

is a weak homotopy equivalence for all U, V ∈ Jn. This model structure is cellular, proper, stable
and topological. We call this the n-stable model structure and denote it by FunO(n)(Jn, O(n)Top∗).

7.2. The local n-stable model structure. We now equip the n-th intermediate category with an
S-local model structure which will be intermediate in our classification of S-local n-homogeneous
functors as levelwise S-local spectra with an action of O(n).

Proposition 7.2.1. Let S be a set of maps of based spaces. There is a model category structure
on the n-th intermediate category with cofibrations the cofibrations of the n-stable model structure
and fibrant objects the nΩ-spectra which are levelwise S-local. This model structure is cellular,
left proper and topological. We call this the S-local n-stable model structure and denote it by
LSFunO(n)(Jn, O(n)Top∗).

Proof. This model structure is the left Bousfield localization of the n-stable model structure at the
set

Qn = {O(n)+ ∧ Jn(U,−) ∧ j | U ∈ J, j ∈ JLS Top
∗
}.

�

We record the following fact which will prove useful later.

Lemma 7.2.2. Let S be a set of maps of based spaces. If F is an S-local functor, then F (n) = indn0 F
is S-local.

Proof. The objectwise smash product

(−) ∧ (−) : Fun(Jn, LS Top∗)× LS Top∗ −→ Fun(Jn, LS Top∗),

is a Quillen bifunctor, and the result follows from the definition of indn0 F . �

7.3. The derivatives as spectra. The n-th derivative of an orthogonal functor may be thought
of as a spectrum, in particular, the n-th intermediate category and the category of spectra with an
O(n)-action are Quillen equivalent via the following adjunction

(αn)! : FunO(n)(Jn, O(n)Top∗)
//

Sp[O(n)] : (αn)
∗

oo
,

see e.g., [6, §8]. We now prove that this result holds S-locally for any set S of maps of based spaces.

Theorem 7.3.1. Let S be a set of maps of based spaces. The adjoint pair

(αn)! : LSFunO(n)(Jn, O(n)Top∗)
//

Sp(LS Top∗)[O(n)] : (αn)
∗

oo
,

is a Quillen equivalence between the S-local model structures.

Proof. For the Quillen adjunction apply [33, Theorem 3.3.20(1)], noting that there is an isomor-
phism

(αn)!(O(n)+ ∧ Jn(U,−) ∧ j) ∼= O(n)+ ∧ J1(R
n ⊗ U,−) ∧ j,

for j a generating acyclic cofibration for the S-local model structure on based spaces.

By [6, Proposition 8.3] the adjoint pair

(αn)! : FunO(n)(Jn, O(n)Top∗)
//

Sp[O(n)] : (αn)
∗

oo
,
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is a Quillen equivalence. To show that the adjunction is a Quillen equivalence, it suffices by
[36, Proposition 2.3] to show that if Y is fibrant in Sp[O(n)] such that (αn)

∗Y is fibrant in the
S-local n-stable model structure, then Y is fibrant in the S-local model structure on Sp[O(n)]. This
follows readily from the definitions of fibrant objects in both model structures. �

In the case of homological localizations we obtain the following Quillen equivalence.

Corollary 7.3.2. Let E be a spectrum. The adjoint pair

(αn)! : LEFunO(n)(Jn, O(n)Top∗)
//

Sp(LE Top∗)[O(n)] : (αn)
∗

oo
,

is a Quillen equivalence between the E-local model structures.

8. The classification of local homogeneous functors

8.1. The local n-homogeneous model structure. We now return to the question of a suitable
model structure on the category of orthogonal functors which caputures the homotopy theory of
local n-homgoeneous functors. The case of the homological localization E = HQ was discussed by
Barnes in [4, §6]

Proposition 8.1.1. Let S be a set of maps of based spaces. There is model category structure on
the category of orthogonal functors with cofibrations the cofibrations of the n-homogeneous model
structure and fibrant objects the n-polynomial functors whose n-th derivative is levelwise S-local.
This model structure is cellular, left proper and topological. We call this the S-local n-homogeneous
model structure and denote it by Homogn(J, LS Top∗).

Proof. We left Bousfield localize the n-homogeneous model structure at the set of maps

Kn = {Jn(U,−) ∧ j | U ∈ J, j ∈ JLS Top
∗
},

where Jn(U, V ) is the Thom space of the n-th complement vector bundle γn(U, V ) sitting over the
space of linear isometries J(U, V ). This left Bousfield localization exists since the n-homogeneous
model structure is cellular and left proper by [4, Lemma 6.1]. The description of the cofibrations
follows immediately.

The fibrant objects are the Kn-local objects which are fibrant in the n-homogeneous model
structure, i.e., those n-polynomial functors Z for which the induced map

[Jn(U,−) ∧B,Z] −→ [Jn(U,−) ∧A,Z],

is an isomorphism for all maps Jn(U,−) ∧A → Jn(U,−) ∧B in Kn. A straightforward adjunction
argument, and the definition of the n-th derivative of an orthogonal functor yield the required
characterisation of the fibrant objects. �

Corollary 8.1.2. Let S be a set of maps of based spaces. The cofibrant objects of the S-local
n-homogeneous model structure are the projectively cofibrant functors which are n-reduced.

Proof. The S-local n-homogeneous model structure is a particular left Bousfield localization of the
n-homogeneous model structure, hence has the same cofibrant objects. The result follows by the
orthogonal calculus version of [52, Corollary 8.6]. �

We now relate the S-local n-homogeneous model structure to the S-local n-polynomial model
structure, exhibiting that the S-local n-homogeneous model structure behaves like a right Bousfield
localization of the S-local n-polynomial model structure.
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Lemma 8.1.3. Let S be a set of maps of based spaces. The adjoint pair

1 : Homogn(J0, LS Top∗)
//

Poly≤n(J0, LS Top∗) : 1oo
,

is a Quillen adjunction.

Proof. To demonstrate that the left adjoint preserves cofibrations it suffices by [35, Lemma 2.1.20]
to show that the identity functor sends the generating cofibrations of the S-local n-homogeneous
model structure to cofibrations of the S-local n-polynomial model structure.

The cofibrations of the S-local n-homogeneous model structure are the cofibrations of the n-
homogeneous model structure, which are contained in the cofibrations of the n-polynomial model
structure, which in turn are precisely the cofibrations of the S-local n-polynomial model structure,
hence

1 : Homogn(J0, LS Top∗) −→ Poly≤n(J0, LS Top∗),

preserves cofibrations.

On the other hand, to show that the right adjoint is right Quillen it suffices to show that the
identity functor sends fibrant objects in the S-local n-polynomial model structure to fibrant objects
in the S-local n-homogeneous model structure. This follows from Lemma 7.2.2 since the fibrant
objects in the S-local n-polynomial model structure are the S-locally n-polynomial functors by
Proposition 5.2.3 and the fibrant objects of the S-local n-homogeneous model structure are the
n-polynomial functors with S-local n-th derivative by Proposition 8.1.1. �

8.2. Characterisations for homological localizations. In the case of a homological localiza-
tion, we obtain a characterisation of the fibrations. A more general result holds when the localizing
set S is stable in the sense of [8, Definition 4.2], i.e., when the class of S-local spaces is closed under
suspension.

Proposition 8.2.1. If S is a set of maps of based spaces which is stable, then the fibrations of
the S-local n-homogeneous model structure are those maps f : X → Y which are fibrations in the
n-polynomial model structure such that

X(n) −→ Y (n),

is a levelwise fibration of S-local spaces.

Proof. We first given an explicit characterisation of the acyclic cofibrations since the fibrations are
characterised by the right lifting property against these maps. The maps in Kn are cofibrations
between cofibrant objects since Jn(U,−) is cofibrant in Homogn(J0,Top∗) and the maps in JLS Top

∗

are cofibrations of S-local spaces. Moreover, since the localizing set S is stable, it follows the set
of generating acyclic cofibrations JLS Top

∗
is stable and in turn that the set Kn is stable. Hence by

[8, Theorem 4.11], the generating acyclic cofibrations are given by the set JHomogn ∪ Λ(Kn), where
JHomogn is the set of the generating acyclic cofibrations of the n-homogeneous model structure and
Λ(Kn) the set of horns on Kn in the sense of [33, Definition 4.2.1]. As horns in topological model
categories are given by pushouts and Kn is a set of cofibrations between cofibrant objects it suffices
to use the set JHomogn ∪ Kn as the generating acyclic cofibrations of the S-local n-homogeneous
model structure.

If f : X → Y is a map with the right lifting property with respect to JHomogn ∪Kn, then f has
the right lifting property with respect to JHomogn and the right lifting property with respect to Kn

independently. Having the right lifting property with respect to JHomogn is equivalent to being a
fibration in the n-polynomial model structure. On the other hand, a map in Kn is of the form
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Jn(U,−) ∧ A → Jn(U,−) ∧ B for A → B a generating acyclic cofibration of the S-local model
structure on based spaces. A lift in the diagram

Jn(U,−) ∧A X

Jn(U,−) ∧B Y

f

(indicated by the dotted arrow) exists if and only if the lift in the diagram

A nat0(Jn(U,−),X)

B nat0(Jn(U,−), Y )

f∗

exists, which is equivalent to the statement that X(n) → Y (n) is a levelwise fibration of S-local
spaces, see §7.1. �

This specialises to homological localizations.

Corollary 8.2.2. Let E be a spectrum. The fibrations of the E-local n-homogeneous model structure
are those maps f : X → Y which are fibrations in the n-polynomial model structure such that

X(n) −→ Y (n),

is a levelwise fibration of E-local spaces.

Proof. Combine Proposition 8.2.1 with [8, Example 4.3]. �

Remark 8.2.3. For the case E = HQ, Barnes [4, Theorem 6.2], states that the fibrant objects

of this model structure are the n-homogenous functors F with F (n) levelwise HQ-local. This is a
typographical error; it is the bifibrant objects which admit this characterisation.

Corollary 8.2.4. Let E be a spectrum. An orthogonal functor F is fibrant in the E-local n-
homogeneous model structure if and only if F is n-polynomial and F (n) is levelwise E-local. In
particular, F is bifibrant if F is projectively cofibrant, n-homogeneous and X(n) is levelwise E-
local.

Proof. Apply Corollary 8.2.2 to the map F → ∗. �

8.3. Characterisations for nullifications. In the case of a nullification with respect to a based
space W Proposition 8.1.1 is not the only way of constructing a model structure which deserves the
title of the W -local n-homogeneous model structure. Since the W -local model structure on based
spaces is right proper, so too is the W -local n-polynomial model structure and hence we can also
follow the classical procedure and preform a right Bousfield localization at the set

K′
n = {Jn(U,−) | U ∈ J},

to obtain a local n-homogeneous model category structure.

Proposition 8.3.1. For a finite cell complex W there exists a model structure on the category of
orthogonal functors with weak equivalences those maps X → Y such that

(TnPWX)(n) −→ (TnPWX)(n),

is a levelwise weak equivalence and with fibrations the fibrations of the W -local n-polynomial model
structure. This model structure cellular, proper, stable and topological. We call this the W -periodic
n-homogeneous model structure and denote it Homogn(J0, PW Top∗).
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Proof. This is the right Bousfield localization of the W -local n-polynomial model structure. The
proof of which follows exactly as in [6, Proposition 6.9]. Note that this right Bousfield localiza-
tion exists since the W -local n-polynomial model structure in right proper and cellular when the
localization is a nullification, see Proposition 5.3.3. �

This right Bousfield localization behaves like a left Bousfield localization of the n-homogeneous
model structure in the following sense.

Lemma 8.3.2. For a finite cell complex W the adjoint pair

1 : Homogn(J0,Top∗)
//

Homogn(J0, PW Top∗) : 1oo
,

is a Quillen adjunction.

Proof. Since the acyclic cofibrations of the n-homogeneous model structure are precisely the acyclic
cofibrations of the n-polynomial model structure and similarly, the acyclic cofibrations of W -
periodic n-homogeneous model structure are precisely the acyclic cofibrations of the W -local n-
polynomial model structure, the identity functor preserves acyclic cofibrations by Lemma 5.2.4.

On the other hand, by [33, Proposition 3.3.16(2)], cofibrations between cofibrant objects in a
right Bousfield localization are cofibrations in the underlying model structure, hence Lemma 5.2.4
shows that the identity functor preserves cofibrations between cofibrant objects. The result follows
by [25, Corollary A.2]. �

Remark 8.3.3. We will see in Corollary 8.5.2 that although the W -local n-homogeneous model
structure and the W -periodic n-homogeneous model structure are not identical, the identity functor
yields a Quillen equivalence between them and hence they have canonically equivalent homotopy
categories.

8.4. Differentiation as a Quillen functor. The n-th derivative of a functor F is a right Quillen
functor as part of a Quillen equivalence between the n-homogeneous model structure and the
intermediate category; the adjunction

resn0 /O(n) : FunO(n)(Jn, O(n)Top∗)
//

Homogn(J0,Top∗) : ind
n
0ε

∗
oo

,

is a Quillen equivalence, [6, Theorem 10.1]. We now show that this extends to the S-local situation
with respect to a set of maps of based spaces.

Theorem 8.4.1. Let S be a set of maps of based spaces. The adjoint pair

resn0 /O(n) : LSFunO(n)(Jn, O(n)Top∗)
//

Homogn(J0, LS Top∗) : ind
n
0ε

∗
oo

,

is a Quillen equivalence between the S-local model structures.

Proof. The left adjoint applied to the localizing set of the S-local n-stable model structure is
precisely the localization set of the S-local n-homogeneous model structure, hence the result follows
from [33, Theorem 3.3.20(1)]. �

Corollary 8.4.2. Let S be a set of maps of based spaces, and n ≥ 0. There is a zigzag of Quillen
equivalences

Homogn(J0, LS Top∗) ≃Q Sp(LS Top∗)[O(n)].

Example 8.4.3. Let R be a subring of the rationals. Then there is a zigzag of Quillen equivalences

Homogn(J0, LHR Top∗) ≃Q SpHR[O(n)],

between HR-local n-homogeneous functors and HR-local spectra with an action of O(n).
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8.5. Characterisations for nullifications. An analogous Quillen equivalence is obtained be-
tween the W -local intermediate category and the W -periodic n-homogeneous model structure
of Proposition 8.3.1 which recall is obtained as a right Bousfield localization of the W -local n-
polynomial model structure.

Theorem 8.5.1. For a finite cell complex W the adjoint pair

resn0 /O(n) : LWFunO(n)(Jn, O(n)Top∗)
//

Homogn(J0, PW Top∗) : ind
n
0ε

∗
oo

,

is a Quillen equivalence.

Proof. By [6, Lemma 9.2], the adjoint pair

resn0 /O(n) : FunO(n)(Jn, O(n)Top∗)
//

Poly≤n(J0,Top∗) : ind
n
0 ε

∗
oo

,

is a Quillen adjunction, hence the adjunction

resn0 /O(n) : FunO(n)(Jn, O(n)Top∗)
//

Poly≤n(J0, PW Top∗) : ind
n
0 ε

∗
oo

,

is also a Quillen adjunction. This Quillen adjunction extends to give a Quillen adjunction

resn0 /O(n) : LWFunO(n)(Jn, O(n)Top∗)
//

Poly≤n(J0, PW Top∗) : ind
n
0 ε

∗
oo

,

by [33, Theorem 3.1.6(1) & Proposition 3.3.18(1)], since the n-th derivative of a W -local n-
polynomial functor is W -local by Lemma 7.2.2, and an nΩ-spectrum by [58, Corollary 5.12]. An
application of [33, Theorem 3.1.6(2) & Proposition 3.3.18(2)] extends the above Quillen adjunction
to a Quillen adjunction

resn0 /O(n) : LWFunO(n)(Jn, O(n)Top∗)
//

Homogn(J0, PW Top∗) : ind
n
0 ε

∗
oo

,

since a map f is a weak equivalence between fibrant objects in the W -periodic n-homogeneous
model structure if and only if indn0 ε

∗(f)is a levelwise weak equivalence.

We now move on to showing that the adjunction is a Quillen equivalence. First note that the
right adjoint reflects weak equivalences, since if f : X → Y is a map between fibrant orthogonal
functors in the W -local n-homogeneous model structure, such that

indn0 ε
∗TnPW (f) : indn0 ε

∗TnPW (X) −→ indn0 ε
∗TnPW (Y )

is a W -local equivalence in LWFunO(n)(Jn, O(n)Top∗), then indn0 ε
∗TnPW (f) is a levelwise weak

equivalence by the W -local Whitehead’s Theorem and [6, Theorem 10.1]. It follows that f is a
weak equivalence in Homogn(J0, PW Top∗).

To prove the Quillen equivalence, by [35, Corollary 1.3.16], it is left to show that the derived
unit is a weak equivalence. Let F be a cofibrant object of the W -local n-stable model structure.
As in [6, Theorem 10.1], there is a commutative diagram

F ĉ((αn)
∗Ψ)

indn0 ε
∗TnPW resn0 F/O(n) indn0 ε

∗TnPW resn0 (ĉ((αn)
∗Ψ))

1

32

4

in which, Ψ is a fibrant replacement of (αn)!F in the Borel stablisation of W -local spaces with an
O(n)-action and ĉ denotes cofibrant replacement in the W -local n-stable model structure. By loc.
cit. the maps labelled “1” and “2” are n-stable equivalences, hence W -local n-stable equivalences,
thus it suffices to show that the map labelled “3” is aW -local n-stable equivalence. This follows from
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the proof of [6, Theorem 10.1], and the observation that a Tn-equivalence is a TnPW -equivalence
by the commutativity of the diagram

TnA TnB

TnPWA TnPWB.

Tn(f)

TnωA TnωB

TnPW (f)

�

Proposition 8.1.1 and Proposition 8.3.1 provide two different model structures which both cap-
ture the homotopy theory of W -locally n-homogeneous functors. However, these model structures
are not identical. For instance, the W -local model structure of Proposition 8.1.1 has fibrant ob-
jects the n-polynomial functors which have W -local n-th derivative, whereas the fibrant objects of
the W -periodic n-homogeneous model structure (Proposition 8.3.1) are the W -local n-polynomial
functors. These model structures are Quillen equivalent via the identity functor. Recall that theW -
local n-homogeneous model structure, which is a left Bousfield localization of the n-homogeneous
model structure, see Proposition 8.1.1, is denoted by Homogn(J0, LW Top∗), and the W -periodic
n-homogeneous model structure is denoted by Homogn(J0, PW Top∗).

Corollary 8.5.2. For a finite cell complex W the adjoint pair

1 : Homogn(J0, LW Top∗)
//

Homogn(J0, PW Top∗) : 1oo
,

is a Quillen equivalence.

Proof. Since cofibrations between cofibrant objects in Homogn(J0, LW Top∗) are projective cofibra-
tions which are Tn-equivalences, and the cofibrations between cofibrant objects of Homogn(J0, PW Top∗)
are the projective cofibrations, it follows that the identity functor

1 : Homogn(J0, LW Top∗) −→ Homogn(J0, PW Top∗),

necessarily preserves cofibrations between cofibrant objects. On the other hand, the identity functor

1 : Homogn(J0, PW Top∗) −→ Homogn(J0, LW Top∗),

preserves fibrant objects since if X is levelwise W -local, indn0 X is levelwise W -local, by Lemma
7.2.2. It follows that the adjunction is a Quillen adjunction. To see that the adjunction is a Quillen
equivalence, there is a commutative square

LWFunO(n)(Jn, O(n)Top∗) Homogn(J0, LW Top∗)

LWFunO(n)(Jn, O(n)Top∗) Homogn(J0, PW Top∗)

resn0 /O(n)

indn0 ε∗

indn0 ε∗

resn0 /O(n)

1 11 1

of Quillen adjunctions, in which three-out-of-four are Quillen equivalences by Theorem 8.4.1 and
Theorem 8.5.1. Hence the remaining Quillen adjunction must also be a Quillen equivalence. �

It follows that there is a zigzag of Quillen equivalences

Homogn(J0, PW Top∗) ≃Q Sp(LW Top∗)[O(n)],

whenever both model structures exist.
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8.6. The classification. As in the classical theory, any S-locally n-homogeneous functor may be
expressed concretely in terms of a levelwise S-local spectrum with an action of O(n). The proof of
which follows as in the classical setting, [58, Theorem 7.3] and can be realised through the derived
equivalence of homotopy categories provided by our zigzag of Quillen equivalences.

Theorem 8.6.1. Let S be a set of maps of based spaces and n ≥ 1. An S-local n-homogeneous func-
tor F is determined by and determines a levelwise S-local spectrum with an O(n)-action, denoted
∂S
nF . In particular, an S-local n-homogeneous functor F is levelwise weak homotopy equivalent to

the functor

V 7−→ Ω∞[(SRn⊗V ∧ ∂S
nF )hO(n)],

and any functor of the above form is levelwise S-local and n-homogeneous.

8.7. The classification for homology theories. This let’s us characterise the n-th layer of the
E-local Weiss tower for a “nice” localizations since by Lemma 6.2.2 the n-th layer is E-locally
n-homogeneous.

Corollary 8.7.1. Let E be a spectrum such that the class of local spaces is closed under sequential
homotopy colimits. If F is an orthogonal functor, then for n ≥ 1, DE

n F is levelwise weakly equivalent
to the functor given by

V 7−→ Ω∞[(SRn⊗V ∧ ∂E
n F )hO(n)].

Part 3. Applications

Before moving on to the initial applications of our theory of local orthogonal calculus we briefly
recall the various constructions from Part 2, particularly the various model structures and how
they relate to each other.

Let S be a set of maps of based spaces and let LS Top∗ denote the S-local model structure
on based spaces. This model structure may be transferred (Proposition 4.2.1) to the category
of orthogonal functors to produce a model structure Fun(J0, LS Top∗) in which the weak equiv-
alences and fibrations are the levelwise S-local weak equivalences and fibrations respectively. A
left Bousfield localization (Proposition 5.2.3) resulted in the S-local n-polynomial model structure
Poly≤n(J0, LS Top∗), in which the fibrant objects were the S-local n-polynomial functors. In nice
cases such as nullification at a finite cell complex, we demonstrated (Proposition 5.3.3) that a fi-
brant replacement in this model structure is given by the composite of the localization functor LS

with the n-polynomial approximation functor Tn.

To understand the layers of the S-local Weiss tower better we began with the n-homogenous
model structure of Barnes and Oman [6], which contains the homogeneous of degree n functors as
the bifibrant objects and preformed a left Bousfield localization (Proposition 8.1.1) to obtain the
S-local n-homogeneous model structure Homogn(J0, LS Top∗) which contains the n-homogeneous
functors with S-local n-th derivative as the bifibrant objects.

In the case of a nullification at a finite cell complex W , the W -local n-homogeneous model
structure can chararcterised (up to Quillen equivalence via the identity functor, see Corollary 8.5.2)
as the W -periodic n-homogeneous model structure Homogn(J0, PW Top∗) in which the bifibrant
objects are the W -local n-homogeneous functors.

For a general set of maps of based spaces S we showed (Theorem 8.4.1) that taking the n-th
derivative realises a Quillen equivalence between the S-local n-homogenous model structure and the
S-local n-th intermediate category and that this latter category is canonically Quillen equivalent
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(Theorem 7.3.1) to the category of spectra in S-local spaces with an O(n)-action. This produces
the following zigzag of Quillen equivalences

Homogn(J0, LS Top∗) LSFunO(n)(Jn, O(n)Top∗) Sp(LS Top∗)[O(n)].
resn0 /O(n)

indn0 ε∗ (αn)∗

(αn)!

For the case of a nullification with respect to a finite cell complex W , we summarise our model
structures in Figure 1. Note that the Quillen adjunctions forming the lower “p” shape are Quillen
equivalences.

Fun(J0, LW Top∗)

Poly≤n(J0, LW Top∗) Poly≤n(J0, PW Top∗)

Homogn(J0, LW Top∗) Homogn(J0, PW Top∗)

LWFunO(n)(Jn, O(n)Top∗)

Sp(LW Top∗)[O(n)]

1

1

resn0 /O(n)

(αn)!

(5.3.3)

1

indn0 ε∗

(αn)∗

1

1

1(5.2.3)

(8.1.1)

(8.5.2)

(8.4.1)

(7.3.1)

Figure 1. Diagram of Quillen adjunctions for W -periodic orthogonal calculus

In the case of a homological localization with respect to a homology theory E∗, we summarise
our model structures in Figure 2. In this case, the lower two Quillen adjunctions are Quillen
equivalences.

Fun(J0, LE Top∗)

Poly≤n(J0, LE Top∗)

Homogn(J0, LE Top∗)

LEFunO(n)(Jn, O(n)Top∗)

Sp(LE Top∗)[O(n)] SpHR[O(n)]

1

1

resn0 /O(n)

(αn)!

1

indn0 ε∗

(αn)∗

1(5.2.3)

(8.1.1)

(7.3.1)

(8.4.1)

(3.3.3)

(E=HR,R⊆Q)

Figure 2. Diagram of Quillen adjunctions for E-local orthogonal calculus
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9. Bousfield classes

9.1. Bousfield classes. The concept of Bousfield classes were introduced (in the stable setting)
by Bousfield in [18], and extensively studied by Ravenel in [50]. For a spectrum E, the Bousfield
class of E, denoted 〈E〉, is the equivalence class of of all spectra E′ such that the class of E′-
acyclic spectra is the class of E-acyclic spectra. If 〈E〉 = 〈E′〉, then the classes of E∗-isomorphisms
and E′

∗-isomorphisms agree and hence the localization functors (on spaces or spectra) agree. The
collection of all Bousfield classes forms a lattice, with partial ordering 〈E〉 ≤ 〈E′〉 given by reverse
containment, i.e., if and only if the class of E′-acyclic spectra is contained in the class of E-acyclic
spectra.

A similar story remains true unstably. Given a based space W , Bousfield, [19, §9] and Farjoun
[29], introduced the unstable Bousfield class of W , or the nullity class of W . This is the equivalence
class 〈W 〉 of all spaces W ′ such that the class of W -local spaces agrees with the class of W ′-local
spaces. There is a partial ordering 〈W 〉 ≤ 〈W ′〉 given by reverse containment, i.e., if and only if
every W ′-periodic space is W -periodic. In particular, the relation 〈W 〉 ≤ 〈W ′〉 implies that every
W -local equivalence is a W ′-local equivalence and there is a natural transformation PW → PW ′ ,
which is a W ′-localization.

Theorem 9.1.1. Let S and S′ be sets of maps of based spaces. The class of S-local spaces agrees
with the class of S′ local spaces if and only if for every orthogonal functor F , the S-local Weiss
tower of F is levelwise weakly equivalent to the S′-local Weiss tower of F .

Proof. If the class of S-local spaces agrees with the class of S′-local spaces, then the localization
functors LS and LS′ agree on the level of spaces and hence on the level of orthogonal functors. In
particular, for every orthogonal functor F , the canonical map5 LSF → LS′F is a levelwise weak
equivalence. Now, consider the commutative diagram

DS
nF T S

n F T S
n−1F

DS′

n F T S′

n F T S′

n−1F

in which the rows are homotopy fibre sequences. For each n ≥ 0, the map T S
n F → T S′

n F is a
levelwise weak equivalence since polynomial approximation preserves levelwise weak equivalences.
It follows that the left-most vertical arrow is also a levelwise weak equivalence and that the S-local
Weiss tower is levelwise weakly equivalent to the S′-local Weiss tower.

The converse is immediate from specialising for every based space A, to the constant functor at
A. �

As corollaries, we obtain a relationship between Bousfield classes and the local Weiss towers.

Corollary 9.1.2. Let W and W ′ be based spaces. For every orthogonal functor F the W -local
Weiss tower of F and the W ′-local Weiss tower of F agree if and only if 〈W 〉 = 〈W ′〉.

Corollary 9.1.3. Let E and E′ be spectra. For every orthogonal functor F the E-local Weiss tower
of F and the E′-local Weiss tower of F agree if and only if 〈E〉 = 〈E′〉.

On the model category level, we have the following.

5This map is induced from the S-local objects being contained in the S′-local objects. We could also use the
canonical LS′F → LSF since the S-local objects also contained the S′-local objects.
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Theorem 9.1.4. Let S and S′ be sets of maps of based spaces. If the class of S-local spaces agrees
with the class of S′-local spaces, then the following are equalities of model structures

Fun(J0, LS Top∗) = Fun(J0, LS′ Top∗),

Poly≤n(J0, LS Top∗) = Poly≤n(J0, LS′ Top∗),

Homogn(J0, LS Top∗) = Homogn(J0, LS′ Top∗).

Proof. First note that the S-local model structure on based spaces agrees with the S′-local model
structure on based spaces since these model structures have the same cofibrations and the same
fibrant objects, since a space is S-local if and only if it is S′-local. This equality lifts to the local
projective model structures on the category of orthogonal functors since a functor is levelwise
S-local if and only if it is levelwise S′-local under our assumption.

As left Bousfield localization does not alter the cofibrations, the cofibrations of the S-local n-
polynomial model structure agree with the cofibrations of the S′-local n-polynomial model structure.
These model structures also have the same fibrant objects since a functor is S-locally n-polynomial
if and only if it is S′-local n-polynomial under our assumption.

For the local n-homogeneous model structures, recall that these are certain left Bousfield lo-
calizations of the n-homogeneous model structure (see Proposition 8.1.1), hence have the same
cofibrations. As before, these model structures have the same fibrant objects since our assump-
tion together with Lemma 7.2.2 implies that the n-th derivative of a functor is S-local if and only
if it is S′-local, and the fibrant objects are the n-polynomial functors with local derivatives, see
Proposition 8.1.1. �

With respect to the partial ordering on Bousfield classes, we obtain the following more general
result. The proof of which relies on the fact that if the class of S′-local spaces is contained in the
class of S-local spaces, then the induced map LS → LS′ is an S′-local equivalence.

Lemma 9.1.5. Let S and S′ be sets of maps of based spaces and F an orthogonal functor. If the
class of S′-local spaces is contained in the class of S-local spaces then,

(1) there is an S′-local equivalence DS
nF → DS′

n F ; and,
(2) if F is reduced, then the S-local Weiss tower of F is S′-locally equivalent to the S′-local

Weiss tower of F .

Proof. For (1), note that the map on derivatives ∂S
nF → ∂S′

n F induced by the natural transformation
LS → LS′ is an S′-local equivalence, hence the n-homogeneous functors which correspond to these
spectra are S′-locally equivalent, i.e., the map DS

nF → DS′

n F is an S′-local equivalence. For (2),
since F is reduced [58, Corollary 8.3] implies that there is a commutative diagram

T S
n F T S

n−1F RS
nF

T S′

n F T S′

n−1F RS′

n F

in which both rows are homotopy fibre sequences. The map RS
nF → RS′

n F is an S′-local equivalence

by part (1), and the map T S
0 F → T S′

0 F is also an S′-local equivalence since F is reduced. An
induction argument on the degree of polynomials yields the result. �

We obtain corollaries for both stable and unstable Bousfield classes.

Lemma 9.1.6. Let E and E′ be spectra and F an orthogonal functor. If 〈E〉 ≤ 〈E′〉, then
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(1) there is an E′-local equivalence DE
n F → DD′

n F ; and,
(2) if F is reduced, then the E-local Weiss tower of F is E′-locally equivalent to the E′-local

Weiss tower of F .

Lemma 9.1.7. Let W and W ′ be based spaces and F an orthogonal functor. If 〈W 〉 ≤ 〈W ′〉, then

(1) there is an W ′-local equivalence DW
n F → DW ′

n F ; and,
(2) if F is reduced, then the W -local Weiss tower of F is W ′-locally equivalent to the W ′-local

Weiss tower of F .

9.2. The Telescope Conjecture. The height n Telescope Conjecture relates the T (n)-localization
and K(n)-localization of spectra. There are numerous equivalent formalisations of the conjecture
see e.g., [10, Proposition 3.6] and we choose the following as it best suits any possible interaction
with the calculus.

Conjecture 9.2.1 (The height n Telescope Conjecture). Let n ≥ 0. The Bousfield class of T (n)
agrees with the Bousfield class of K(n).

Lemma 9.2.2. Let n ≥ 0. The validity of the height n Telescope Conjecture implies an equality of
model structures

Fun(J0, LK(n) Top∗) = Fun(J0, LT (n) Top∗),

Poly≤n(J0, LK(n) Top∗) = Poly≤n(J0, LT (n) Top∗),

Homogn(J0, LK(n) Top∗) = Homogn(J0, LT (n) Top∗).

Proof. The Telescope Conjecture implies that the Bousfield class of T (n) and the Bousfield class
of K(n), agree, hence the result follows by Theorem 9.1.4. �

The following is an immediate corollary to Theorem 9.1.1.

Theorem 9.2.3. Let n ≥ 0. The height n Telescope Conjecture is equivalent to the statement that
for every orthogonal functor F the K(n)-local Weiss tower of F and the T (n)-local Weiss tower of
F agree.

This provides new insight into the the height n Telescope Conjecture. For example, to find a
counterexample it now suffices to find an orthogonal functor such that one corresponding term in
the K(n)-local and T (n)-local Weiss towers disagree. This can also be seen through the spectral
sequences associated to the local Weiss towers. The K(n)-local and T (n)-local Weiss towers of an
orthogonal functor F produce two spectral sequences,

πt−sD
K(n)
s F (V ) ∼= πt−s((S

Rs⊗V ∧ ∂K(n)
s F )hO(n)) ⇒ π∗holim

d
T
K(n)
d F (V ),

and,

πt−sD
T (n)
s F (V ) ∼= πt−s((S

Rs⊗V ∧ ∂T (n)
s F )hO(n)) ⇒ π∗holim

d
T
T (n)
d F (V ),

These are closely related to the telescope conjecture as follows.

Lemma 9.2.4. Let F be an orthogonal functor. If the height n Telescope Conjecture holds, then
for all r ≥ 1, the Er-page of the T (n)-local Weiss spectral sequence is isomorphic to the Er-page of
the K(n)-local Weiss spectral sequence. In particular, the homotopy limit of the T (n)-local Weiss
tower is levelwise weakly equivalent to the homotopy limit of the K(n)-local Weiss tower.
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Proof. It suffices to prove the claim for r = 1. The validity of the height n Telescope Conjecture
implies that there is a natural transformation LK(n) → LT (n). This natural transformation induces

a map D
K(n)
d F → D

T (n)
d F , which by Theorem 9.2.3 is an levelwise weak equivalence. It hence

suffices to show that the natural map D
K(n)
d F → D

T (n)
d F induces a map on the E1-pages of the

spectral sequences, that is, we have to show that the induced diagram

πt−sD
K(n)
s F (V ) πt−s+1D

K(n)
s+1 F (V )

πt−sD
T (n)
s F (V ) πt−s+1D

T (n)
s+1 F (V )

d
K(n)
1

d
T (n)
1

commutes for all s and t. This follows from the commutativity of the induced diagram of long
exact sequences induced by the diagram of homotopy fibre sequences,

D
K(n)
s F (V ) T

K(n)
s F (V ) T

K(n)
s−1 F (V )

D
T (n)
s F (V ) T

T (n)
s F (V ) T

T (n)
s−1 F (V )

and the construction of the d1-differential in the homotopy spectral sequence associated to a tower
of fibrations. �

10. Postnikov sections

The classical theory of Postnikov sections of based spaces is obtained by the nullification with
respect to the spheres, that is, given a based space A, the k-th Postnikov section of A is the nullifi-
cation of A at Sk+1, i.e., PkA = PSk+1A. Given a diagram of (simplicial, left proper, combinatorial)
model categories, Barwick [12, Section 5 Application 1] and Bergner [15] develop a general machin-
ery for producing a model structure which captures the homotopy theory of the homotopy limit
of the diagram of model categories. Gutiérrez and Roitzheim [30, Section 4] applied this to the
study of Postnikov sections for model categories, which recovers the classical theory when C is the
Kan-Quillen model structure on simplicial sets. We consider the relationship between Postnikov
sections and orthogonal calculus via our local calculus.

10.1. A combinatorial model for calculus. The current theory of homotopy limits of model
categories requires that the model categories in question be combinatorial, i.e., locally presentable
and cofibrantly generated. Since the category of based compactly generated weak Hausdorff spaces
is not locally presentable the Quillen model structure is not combinatorial and hence none of our
model categories for orthogonal functors are either. We invite the reader to take for granted that
all of our cellular model categories may be replaced by combinatorial model categories by starting
with a combinatorial model for the Quillen model structure on based spaces, and hence skip directly
to Subsection 10.2.

We spell out the details of these combinatorial replacements here. We replace compactly gener-
ated weak Hausdorff spaces with ∆-generated spaces; a particular full subcategory of the category
of topological spaces, which were developed by Vogt [57] and unpublished work of Smith, which are
surveyed by Dugger in [26]. The category of ∆-generated spaces may be equipped with a model
structure analogous to the Quillen model structure on compactly generated weak Hausdorff spaces.
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Lemma 10.1.1. There is a model category structure on the category of ∆-generated spaces with
weak equivalences the weak homotopy equivalences and fibrations the Serre fibrations. This model
structure is combinatorial, proper and topological.

Proof. The existence of the model structure follows from [26, Subsection 1.9]. The locally pre-
sentable (and hence combinatorial) property follows from [28, Corollary 3.7] . �

The category of based ∆-generated spaces is a convenient model category for doing homotopy
theory in the following sense, see [26, Subsection 1.9].

Lemma 10.1.2. The model category of based ∆-generated spaces is Quillen equivalent to the
Quillen model structure on based compactly generated weak Hausdorff spaces.

The combinatorial model for spaces transfers to categories of functors and we obtain a projective
model structure on the category of orthogonal functors which is Quillen equivalent to our original
projective model structure but is now combinatorial.

A left or right Bousfield localization of a combinatorial model category is again combinato-
rial, hence the n-polynomial, n-homogeneous and local versions of these model categories are all
combinatorial when we begin with the combinatorial model for the projective model structure on
orthogonal fucntors.

Hypothesis 10.1.3. For the remainder of this section, we will assume that all our model structures
are combinatorial, since they are all Quillen equivalent to combinatorial model categories using the
combinatorial model for based spaces.

10.2. The model structure of k-types in orthogonal functors. Denote by I the set of gener-
ating cofibrations of the projective model structure of orthogonal functors, and denote by Wk the
set I�{Sk+1 → Dk+2}, that is, the set of maps of the form

B ∧ Sk+1
∐

A∧Sk+1

A ∧Dk+2 −→ B ∧Dk+2,

where A → B is a map in I. The model category of k-types in Fun(J0,Top∗) is the left Bous-
field localization of the projective model structure at I�{Sk+1 → Dk+2} used by Gutiérrez and
Roitzheim [30] to model Postnikov sections.

Proposition 10.2.1. Let k ≥ 0. Under Hypothesis 10.1.3, the model structure of k-types in
orthogonal functors is identical to the Sk+1-local model structure, that is, there is an equality of
model structures,

PkFun(J0,Top∗) := LWk
Fun(J0,Top∗) = Fun(J0, LSk+1 Top∗).

Proof. It suffices to show that both model structures have the same fibrant objects since the cofi-
brations in both model structures are identical. To see this, note that by examining the pushout
product we can rewrite the set Wk as

Wk = {J0(U,−) ∧ Sn+k+1
+ −→ J0(U,−) ∧Dn+k+2

+ | n ≥ 0, U ∈ J0}.

It follows by an adjunction argument that an orthogonal functor Z is Wk-local if and only if
πiZ(U) is trivial for all i ≥ k+1 and all U ∈ J0. This last condition is equivalent to being levelwise
Sk+1-local. �
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10.3. The model structure of k-types in spectra.

Proposition 10.3.1. Let k ≥ 0. Under Hypothesis 10.1.3, there is an equality of model structures
between the model category of k-types in spectra, and the stablisation of Sk+1-local spaces, that is,

PkSp := LWk
Sp = Sp(LSk+1 Top∗).

Proof. Both model structures can be described as particular left Bousfield localizations of the stable
model structure on spectra, hence have the same cofibrations. The proof reduces to the fact that
the model structures have the same fibrant objects. To see this, note that the fibrant objects of
PkSp are the k-truncated Ω-spectra, and the fibrant objects of Sp(LSk+1 Top∗) are the levelwise k-
truncated Ω-spectra. Since both fibrant objects are Ω-spectra a connectivity style argument yields
that an Ω-spectrum is k-truncated if and only if it is levelwise k-truncated, and hence both model
structures have the same fibrant objects. �

10.4. Postnikov reconstruction of orthogonal functors. The collection of Sk+1-local model
structures on the category of orthogonal functors assembles into a tower of model categories6

P• : N
op −→ MCat,

k 7−→ Fun(J0, LSk+1 Top∗),

whereMCat denotes the category of model categories and left Quillen functors. The homotopy limit
of this tower of model categories recovers the projective model structure on orthogonal functors.
The existence of a model structure which captures the homotopy theory of the limit of these model
categories follows from [30, Proposition 2.2]. In particular, the homotopy limit model structure is a
model structure on the category of sections7 of the diagram P• formed by right Bousfield localizing
the injective model structure in which a map of sections is a weak equivalence or cofibration if it is
a levelwise weak equivalence or cofibration respectively.

Lemma 10.4.1 ([30, Theorem 1.3 & Proposition 2.2]). There is a combinatorial model structure
on the category of sections of P• where a map f• : X• → Y• is a fibration if and only if f0 is a
fibration in Fun(J0, LS1 Top∗) and for every k ≥ 1 the induced map

Xk

Yk ×Yk−1
Xk−1 Xk−1

Yk Yk−1

fk−1
fk

indicated by a dotted arrow in the above diagram is a fibration in Fun(J0, LSk+1 Top∗). A section X•

is cofibrant if and only if Xn is cofibrant in Fun(J0,Top∗) and for every k ≥ 0, the map Xk+1 → Xk

is a weak equivalence in Fun(J0, LSk+1 Top∗). A map of cofibrant sections is a weak equivalence if
and only if the map is a weak equivalence in Fun(J0, LSk+1 Top∗) for each k ≥ 0. We will refer to
this model structure as the homotopy limit model structure and denote it by holimP•.

6A tower of model categories is a special instance of a left Quillen presheaf, that is a diagram of the form
F : Jop → MCat for some small indexing category J.

7A section X• of the tower P• is a sequence

· · · −→ Xk −→ Xk+1 −→ · · · −→ X0,

of orthogonal functors, and a morphism of sections f : X• → Y• is given by maps of orthogonal functors fk : Xk → Yk

for all k ≥ 0 subject to a commutative ladder condition.
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Proposition 10.4.2. Under Hypothesis 10.1.3 the adjoint pair

const : Fun(J0,Top∗)
//

holimP• : limoo

is a Quillen equivalence.

Proof. The adjoint pair exists, and is a Quillen adjunction by [30, Lemma 2.4].

To see that the adjoint pair is a Quillen equivalence let X• be a cofibrant and fibrant section
in the homotopy limit model structure. Showing that const limX• → X• is a weak equivalence is
equivalent to showing that the map limX• → Xk is a weak equivalence in Fun(J0, LSk+1 Top∗) for
all k ≥ 0. This is in turn, equivalent to the map (limX•)(U) → Xk(U) being a weak equivalence
in LSk+1 Top∗ for all k ≥ 0. Since limits in functor categories are computed levelwise, the fact that
the unit is a weak equivalence follows from [30, Theorem 2.5]. A similar argument, shows that the
counit is also a weak equivalence. �

10.5. Postnikov reconstruction for spectra with an O(n)-action. The aim is to show that
similar reconstruction theorems may be obtained for the n-homogeneous functors. We first start
by investigating analogous theorems for spectra and show that such reconstructions are compatible
with the zigzag of Quillen equivalences between spectra with an O(n)-action and the n-homogeneous
model structure.

Lemma 10.5.1. The functor

PSp
• : Nop −→ MCat,

k 7−→ Sp(LSk+1 Top∗),

defines a left Quillen presheaf.

Proof. This follows from Proposition 10.3.1 and [30, Subsection 2.1] since the stablisation of Sk+1-
local spaces is precisely the model structure of k-types in spectra. �

Remark 10.5.2. Alternatively Lemma 10.5.1 may be proved by exhibiting that the adjoint pair

1 : Sp(LSk+2 Top∗)
//

Sp(LSk+1 Top∗) : 1oo

is a Quillen adjunction. This fact follows from the facts that both model structures have the same
cofibrations and a Sk+1-local space is Sk+2-local as 〈ΣW 〉 ≤ 〈W 〉 for all based spaces W , see e.g.,
[19, §9.9].

This left Quillen presheaf is ‘convergent’ in the following sense.

Proposition 10.5.3. Under Hypothesis 10.1.3 the adjoint pair

const : Sp
//

holim P
Sp
• : lim

oo

is a Quillen equivalence.

Proof. The fact that the adjoint pair is a Quillen adjunction follows from [30, Lemma 2.4].

The left adjoint reflects weak equivalences between cofibrant objects. Indeed, if X → Y is a map
between cofibrant spectra X and Y , such that

const(X) −→ const(Y ),

is a weak equivalence in holim P
Sp
• , then

const(X) −→ const(Y ),
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is a weak equivalence in Sect(N,PSp
• ) by the colocal Whitehead’s theorem and the fact that the

left adjoint is left Quillen and thus preserves cofibrant objects. It follows that for each k ∈ N, the
induced map

const(X)k −→ const(Y )k,

is a weak equivalence in Sp(LSk+1 Top∗), that is, X → Y is a weak equivalence in Sp(LSk+1 Top∗)
for all k. Unpacking the definition of a weak equivalence in Sp(LSk+1 Top∗) and using the fact that
the right adjoint is a right Quillen functor and hence preserves weak equivalences between fibrant
objects, we see that the induced map

lim PkX −→ lim PkY,

is a weak equivalence in Sp, and hence, so is the map X → Y .

It is left to show that the derived counit is an isomorphism. Let Y• be bifibrant in holim P
Sp
• .

The condition that the counit applied to Y• is a weak equivalence is equivalent to asking for the
map

lim
≥k

PkY• −→ Yk,

to be a weak equivalence in Sp(LSk+1 Top∗) for all k ∈ N. The structure maps of Y• induce a map
of towers

· · · Yj · · · Yk+3 Yk+2 Yk+1

· · · Yk+1 · · · Yk+1 Yk+1 Yk+1

=

in which each vertical arrow is a weak equivalence in Sp(LSk+1 Top∗). This map of towers induces
a map

0 lim1
≥k πi+1(Y•) πi(lim≥k Y•) lim≥k πi(Y•) 0

0 lim1
≥k πi+1(Yk+1) πi(lim≥k Yk+1) lim≥k πi(Yk+1) 0

of short exact sequences. For 0 ≤ i < n the left and right hand side maps are isomorphisms hence
the map

lim
≥k

Y• −→ Yk+1,

is a weak equivalence in Sp(LSk+1 Top∗) for all k, and it follows that the required map

lim
≥k

Y• −→ Yk+1 −→ Yk,

is a weak equivalence in Sp(LSk+1 Top∗) for all k. �

A similar justification to Lemma 10.5.1 provides a left Quillen presheaf

P
Sp[O(n)]
• : Nop −→ MCat,

k 7−→ Sp(LSk+1 Top∗)[O(n)],

where Sp(LSk+1 Top∗)[O(n)] is the category of O(n)-objects in the category of k-types in spectra.
This is equivalent to the category of k-types in spectra with an O(n)-action.

Lemma 10.5.4. Let k, n ≥ 0. The model structure of the Borel stablisation of Sk+1-local spaces
with an O(n)-action is identical to the model structure of k-types in the category of spectra with an
O(n)-action, that is, there is an equality of model structures

Sp(LSk+1 Top∗)[O(n)] = Pk(Sp[O(n)]).
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Proof. Both model structures are identical to model structures transferred through the same ad-
junction from identical model structures. �

As a corollary to Proposition 10.5.3, we obtain that the induced left Quillen presheaf on spectra
with an O(n)-action is also suitably convergent.

Corollary 10.5.5. Under Hypothesis 10.1.3 the adjoint pair

const : Sp[O(n)]
//

holim P
Sp[O(n)]
• : lim

oo

is a Quillen equivalence.

10.6. Postnikov reconstruction for the intermediate categories. Our attention now turns
to the intermediate categories. We construct an analogous left Quillen presheaf and show that it
is also convergent in a fashion which interacts well with the convergent left Quillen presheaf for
spectra with an O(n)-action.

Lemma 10.6.1. The functor

PJn
• : Nop −→ MCat,

k 7−→ LSk+1FunO(n)(Jn, O(n)Top∗),

defines a left Quillen presheaf.

Proof. As before, it suffices to show that there is an equality of model structures between the Sk+1-
local n-stable model structure and the model structure of k-types in FunO(n)(Jn, O(n)Top∗). The
proof of which is completely analogous to the case for spectra, see Lemma 10.5.1. �

Remark 10.6.2. Since the Sk+1-local n-stable model structure agrees with the model structure
of k-types, we will denote both model structure by PkFunO(n)(Jn, O(n)Top∗).

The homotopy limit of the left Quillen presheaf of Lemma 10.6.1 agrees with the homotopy limit
of the left Quillen presheaf of Lemma 10.5.1, in the sense that the homotopy limit model categories
are Quillen equivalent. In detail, the adjunction

(αn)! : FunO(n)(Jn, O(n)Top∗)
//

Sp[O(n)] : (αn)
∗

oo
,

of [6, §8] induces an adjunction

(αn)
N
! : Fun(N,FunO(n)(Jn,O(n)Top∗))

//

Fun(N,Sp[O(n)]) : (α∗
n)

N
oo

,

where (α∗
n)

N = (αn)
∗ ◦ (−). This adjunction in turn induces an adjunction

(αn)
N
! : holim PJn

•

//

holim P
Sp[O(n)]
• : (α∗

n)
N

oo
.

Proposition 10.6.3. Under Hypothesis 10.1.3 the adjoint pair

(αn)
N
! : holim PJn

•

//

holim P
Sp[O(n)]
• : (α∗

n)
N

oo
,

is a Quillen equivalence.

Proof. Fibrations of the homotopy limit model structure of P
Sp[O(n)]
• are precisely the fibrations of

the injective model structure on the category of sections of P
Sp[O(n)]
• since the homotopy limit model

structure is a right Bousfield localization of the injective model structure. A similar characterisation
holds for the left Quillen presheaf PJn

• , hence to show that the right adjoint preserves fibrations it
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suffices to show that the left adjoint preserves acyclic cofibrations of the injective model structure
on the categories of sections. To see this, note that the adjunction

(αn)! : FunO(n)(Jn, O(n)Top∗)
//

Sp[O(n)] : (αn)
∗

oo
,

is a Quillen adjunction and hence, so to is the induced adjunction on the injective model structures
on the categories of sections.

To show that the left adjoint preserves cofibrations it suffices to show that cofibrations between
cofibrant objects are preserved. As the homotopy limit model structures are right Bousfield localiza-
tions [33, Proposition 3.3.16(2)] implies that cofibrations between cofibrant objects are cofibrations
of the injective model structures on the categories of sections which by the analogous reasoning as
above are preserved by the left adjoint. This yields that the adjunction in question is a Quillen
adjunction.

To show that the adjunction is a Quillen equivalence notice that the right adjoint reflects weak
equivalences between cofibrant objects by the colocal Whitehead’s Theorem [33, Theorem 3.2.13(2)],
and the fact that the induced adjunction on the injective model structures on the categories of

sections is a Quillen equivalence since for B• ∈ Sect(N,PJn
• ) and X• ∈ Sect(N,P

Sp[O(n)]
• ), a map

B• → (α∗
n)

NX• is a weak equivalence if and only if for each k ∈ N, the map Bk → (α∗
n)

NXk is a
weak equivalence of spectra, which in turn happens if and only if the adjoint map (αn)!Bk → Xk

is an n-stable equivalence, which is precisely the condition that the adjoint map (αn)
N
! B• → X• is

a weak equivalence.

It is left to show that the derived counit is an isomorphism. Let Y• be bifibrant in the homotopy

limit model structure of the left Quillen presheaf P
Sp[O(n)]
• . Then the derived counit

(αn)
N
! ĉ ((α∗

n)
NY•) −→ Y•,

is a map between cofibrant objects, hence a weak equivalence in the homotopy limit model structure
if and only if a weak equivalence in the injective model structure on the category of sections i.e., if
and only if for each k ∈ N, the induced map

(αn)!(αn)
∗Yk −→ Yk,

is a weak equivalence. This last is always a weak equivalence by [6, Proposition 8.3]. �

As a corollary, we see that the left Quillen presheaf PJn
• is convergent.

Corollary 10.6.4. Under hypothesis 10.1.3 the adjoint pair

const : FunO(n)(Jn, O(n)Top∗)
//

holim PJn
• : lim

oo
,

is a Quillen equivalence.

Proof. Consider the commutative diagram

FunO(n)(Jn, O(n)Top∗) Sp[O(n)]

holim PJn
• holim P

Sp[O(n)]
•

(αn)!

(αn)∗

const lim const lim

(αn)N!

(α∗

n)
N

of Quillen adjunctions in which three out of the four adjoint pairs are Quillen equivalences by
[6, Proposition 8.3], Corollary 10.5.5 and Proposition 10.6.3. It follows since Quillen equivalences
satisfy the 2-out-of-3 property, that the remaining Quillen adjunction is a Quillen equivalence. �

39



10.7. Postnikov reconstruction for homogeneous functors. Using the same approach as we
have just employed from moving from spectra with an O(n)-action to the intermediate categories
we obtain similar results for the homogeneous model structures. We choose to model Sk+1-local
n-homogeneous functors by the Sk+1-periodic n-homogeneous model structures of Proposition 8.3.1.

Lemma 10.7.1. The functor

PHomogn

• : Nop −→ MCat,

k −→ Homogn(J0, PSk+1 Top∗),

defines a left Quillen presheaf.

Proof. It suffices to show that the adjoint pair

1 : Homogn(J0, PSk+2 Top∗)
//

Homogn(J0, PSk+1 Top∗) : 1oo
,

is a Quillen adjunction. The adjoint pair

1 : Poly≤n(J0, LSk+2 Top∗)
//

Poly≤n(J0, LSk+1 Top∗) : 1oo

is a Quillen adjunction since the composite of Quillen adjunctions is a Quillen adjunction so the
adjunction

1 : Fun(J0, LSk+2 Top∗)
//

Poly≤n(J0, LSk+1 Top∗) : 1oo

is a Quillen adjunction, and by [33, Proposition 3.3.18(1) & Theorem 3.1.6(1)], this composite
Quillen adjunction extends to the Sk+2-local n-polynomial model structure since Sk+1-local n-
polynomial functors are Sk+2-locally n-polynomial.

An application of [33, Theorem 3.3.20(2)(a)] yields the desired result about the n-homogeneous
model structures. �

Similar proofs to Proposition 10.6.3 and Corollary 10.6.4 yeild the following results relating the
n-homogeneous model structure to the homotopy limit of the tower of Sk+1-local n-homogeneous
model structures.

Proposition 10.7.2. Under Hypothesis 10.1.3 the adjunction

(resn0 /O(n))N : holim P
Homogn

•
//

holim PJn
• : (indn0 ε

∗)N
oo

,

is a Quillen equivalence.

Corollary 10.7.3. Under Hypothesis 10.1.3 the adjunction

const : Homogn(J0,Top∗)
//

holim P
Homogn

• : lim
oo

,

is a Quillen equivalence.
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