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Abstract

We study the emergence of a giant component in the configuration

model subject to additional constraints on the possible connections in the

network. In particular, we partition a circle into compartments, and only

allow edges between vertices of neighbouring compartments. We prove

that under similar conditions on the degree sequence as for the standard

configuration model, a giant component emerges provided the number of

vertices per compartment grows quickly enough. We demonstrate the dif-

ference from the standard configuration model by providing an example

with fixed compartment size where no giant component emerges, while

the conditions on the degree sequence lead to a giant component in the

standard configuration model.
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1 Introduction

Since the classical random graph model was first introduced by Erdős and Rényi,
many alternative models were studied by adding constraints to this random
graph. For instance, the configuration model allowing one to control the de-
gree sequence [MR98; JL09; BR15] was showed to feature a phase transition
in the global connectivity which can be deduced from the degree distribution.
That is, the model may or may not contain a giant connected component that
has a positive fraction of all vertices. Random geometric graphs, in which the
vertices have coordinates defined by a given point process and are connected
based on their proximity, also feature a similar phase transition [Pen03]. This
phase transition seems to be a property of the embedding metric space, although
such a space also induces a certain degree distribution which one cannot control
independently. In general, even though both models feature phase transition-
like behaviour, there are only a few results allowing to study random geometric
graphs that have a given degree distribution. One approach was suggested in
the small world graphs [WS98; BR01], where a regular circular lattice or a con-
tinuous circle is randomly rewired by adding shortcuts to obtain an object that
retains some of the original geometric properties while having a controlled de-
gree distribution.

Random graph models in which both the degree distribution and geometri-
cal features can be controlled are relevant when modelling real networks having
some spatial content. These networks naturally arise, for example, in epidemiol-
ogy [BN03; DJ07] and wireless communications [GGD16]. In materials science,
such graphs pertain to a well-known problem of polymer gelation [Kry16].

Our aim is to provide a simple geometric generalisation of the configuration
model by additionally forbidding some pairs of vertices to be connected, hence
inducing a notion of a metric. We study the following model: We consider
k ∈ N compartments on a circle and distribute the vertices equally over these
compartments. Every compartment has two neighbouring compartments. We
then only allow an edge to connect pairs of vertices belonging to the same or
neighbouring compartments. This means that connections can only be made
locally on the circle, which may only make it more difficult for a giant com-
ponent to emerge. This model is furthermore motivated by studying networks
with geometric constraints. Since we are only allowed to connect vertices from
neighbouring compartments, such construction may be viewed as a random geo-
metric graph on Zk that has a given degree distribution. When Zk is embedded
in the circle, the larger k is, the closer connected vertices are together. However
useful Zk model is for applications, we also hope that the techniques used in
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this study will in future inspire investigation of the classical random geometric
graphs, for example in R

n.

Our method relies on the idea that the exploration of components in the random
graph can be linked to a branching process. However, compared to the standard
setting, this connection is only valid for a small number of exploration steps.
As a consequence, this only allows us to prove that locally-large components
emerge. To show a giant component emerges, we prove that all these local
components connect together with high probability.
To do this, it is important to track how each explored component spreads
through the different compartments. Therefore, we perform the exploration
with a multitype branching process. This allows us to prove that these locally-
large components spread through a significant amount of compartments, occu-
pying a positive fraction of the vertices in each of these. The proof is then
completed by showing that with high probability there are sufficiently many of
such local components that connect together to form one giant component with
high probability.

This article is structured as follows. In Section 2 we introduce the model we
are studying and state our main theorem. As with the standard configuration
model, the proof of our main theorem relies on the connection to branching
processes, which in our case will be multitype branching processes. We introduce
these in Section 3, where we also derive some relevant properties. With all
preparations done, Section 4 is dedicated to proving our main theorem. Since the
proof is rather involved, we break down the proof in a number of propositions.
Finally, in Section 5 we provide an example which shows that the geometric
constraints give rise to different behaviour compared to the configuration model
without geometric constraints.

2 Compartment model on the circle

For every n ∈ N we consider k(n) compartments C1, . . . , Ck(n), each containing

m(n) vertices. Define Vn =
⋃k(n)

i=1 Ci as the set of vertices. Our aim is to study
graphs on Vn satisfying two types of constraints:

1. Constraint on allowed connections: Vertices x, y ∈ Vn can only be con-
nected if x ∈ Ci, y ∈ Cj with |i − j| ≤ 1. Here, we identify k(n) with
0, allowing also edges between Ck(n) and C1, which results in the circle
structure.

2. Degree constraint: The vertices have prescribed degrees, given by a se-
quence dn = {d(1), . . . , d(k(n)m(n))} of non-negative integers. We will
refer to dn as the degree sequence.

We construct a random graph Gn = (Vn, En) satisfying the above two con-
straints as follows. The degree of a vertex x ∈ Vn is represented by dn(x)
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half-edges. At each iteration we choose uniformly a pair of half-edges which are
allowed to be connected together. We repeat this until no matches can be made
anymore. We refer to this model as the compartment model on the circle.
First of all, note that Gn is in general a multi-graph since we do not exclude
self-loops or multi-edges. Furthermore, it might happen that we do not satisfy
the full degree sequence, even if we assume the sum of the degrees is even. How-
ever, when the construction terminates, at most one half-edge per compartment
will be unmatched. This will be no problem, since we will be assuming that
m(n), the amount of vertices per compartment, tends to infinity.

The compartment model on the circle is closely related to a random geometric
graph on the circle. Indeed, the parameter k(n), i.e. the number of com-
partments, is related to the distance between vertices that can be connected.
However, in the compartment model, the neighbourhoods of the vertices are
homogenized, in the sense that each vertex of a compartment has the same
neighbours it can be connected to.

2.1 Main theorem

Our main result is concerned with providing sufficient conditions under which
the random graphs Gn asymptotically contain a giant component with high
probability. Moreover, we will also determine its size. In this section we collect
all of our assumptions.

First of all, we assume that Vn asymptotically contains n vertices. Noting that
|Vn| = k(n)m(n) we therefore assume that

lim
n→∞

k(n)m(n)

n
= 1.

Second, we will assume that limn→∞ k(n) = ∞. On the one hand, this reflects
the idea that vertices are only allowed to be connected when they are very close
together. On the other hand, this assures that our model is clearly distinguished
from the standard configuration model. Indeed, if we only have finitely many
compartments, then it should be possible to deduce from the standard configu-
ration model a giant component emerges locally. It them remains to show that
(finitely many) of those connect together with high probability.
In Section 5 we will see that if the number of vertices per compartment be-
comes fixed, then a giant component not necessarily emerges, even if the degree
sequence satisfied the conditions of our main theorem. Therefore, we will as-
sume that m(n), the number of vertices per compartment, tends to infinity. In
particular, we will assume that

lim
n→∞

n

m(n)k
= 0.

Apart from assumptions on the graph structure, we also need assumptions on the
degree sequences dn. These are the same for the standard configuration model,
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see e.g. [BR15; Hof17; Dur07]. In what follows, we denote by nj(dn, Cn
i ) the

amount of vertices of degree j in compartment Cn
i . Furthermore, we define

µn(dn, Cn
i ) by

µn(dn, Cn
i ) :=

1

2

∑

x∈Cn
i

d(x) =
1

2

∞
∑

j=1

jnj(dn, Cn
i ).

Using this notation, we make the following assumption on the convergence of
the degree sequence dn.

Assumption 2.1 (Convergent degree sequence). The degree sequence dn con-
verges to a distribution D in the following sense:

1. For every ε > 0 there exists an N such that for all n ≥ N and all i =
1, . . . , k(n) we have

∣

∣

∣

∣

nj(dn, Cn
i )

m(n)
− P(D = j)

∣

∣

∣

∣

< ε

for all j.

2. For every ε > 0 there exists an N such that for all n ≥ N and all i =
1, . . . , k(n) we have

∣

∣

∣

∣

µn(dn, Cn
i )

m(n)
− E(D)

2

∣

∣

∣

∣

< ε.

We are now ready to state the main theorem.

Theorem 2.2. Consider the compartment model on the circle with k(n) com-

partments with m(n) vertices each, so that limn→∞
m(n)k(n)

n
= 1. Assume that

limn→∞ k(n) = ∞ and that there exists k ∈ N such that

lim
n→∞

n

m(n)k
= 0.

Furthermore, for every n let dn be a degree sequence on m(n)k(n) vertices satis-
fying Assumption 2.1 with distribution D. Assume D is bounded and E(D(D −
2)) > 0. If we denote by L1(Gn) the largest component in Gn, then there exists
a ρ ∈ [0, 1) such that

lim
n→∞

L1(Gn)

n
= 1 − ρ

in probability. Furthermore, with high probability, there is no other cluster of
size more than β log m(n) for some β > 0.

Remark 2.3. The constant ρ in Theorem 2.2 can be determined from the distri-

bution D. More precisely, we define the distribution D∗ by P(D∗ = i) = iP(D=i)
E(D) ,

the so called size-biased degree distribution. We can then interpret ρ as the ex-
tinction probability of the Galton-Watson tree where the root has offspring dis-
tribution D, and all other individuals have offspring distribution ZD = D∗ − 1.
The condition E(D(D − 2)) > 0 implies that E(ZD) > 1. In particular, this
implies that the Galton-Watson tree survives with positive probability, implying
that ρ < 1.
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3 Branching processes

Studying components in random graphs is intimately related to studying branch-
ing processes. This occurs when we explore components of a graph from a given
vertex. The next generation of the branching process then resembles the neigh-
bours in the graph of the current generation. During this exploration, we are
also interested in which compartments the vertices lie. Therefore, we will make
use of a multitype branching process. In this section we will shortly introduce
these processes, and collect some necessary results. For a more thorough treat-
ment, see e.g. [AN72; AL06].

3.1 Galton-Watson tree

The prototypical example of a branching process is the Galton-Watson tree,
which models the evolution of a population in which every individual of a gen-
eration gets a random number of children. Furthermore, it is assumed that the
number of children of different individuals are independent, and follow the same
distribution.
More precisely, let D be a probability distribution on the nonnegative integers
and denote by Zn the number of individuals in generation n. For every n, let
Xn

1 , . . . , Xn
Zn

be independent random variables with distribution D. Then

Zn+1 =

Zn
∑

i=1

Xn
i .

An important question regarding such processes is whether they become extinct
or grow on indefinitely. We define the extinction probability by

ρ(D) = lim
n→∞

P(Zn = 0).

If E(D) < 1 then the process becomes almost surely extinct, i.e. ρ(D) = 1. If
E(D) > 1 then the process has a positive probability to grow on indefinitely.
Moreover, this probability can be computed from the generating function of the
distribution D. In particular, the extinction probability is the largest solution
in [0, 1] of the equation

x =

∞
∑

i=0

P(D = i)xi.

3.2 Multitype branching processes

For our purposes, it is not sufficient to understand how large components grow.
We also need information on how components spread through different com-
partments. In order to study this, we consider a branching process with types,
where type I ⊂ Z of a vertex represents its compartment. We denote genera-
tion n of the branching process by a vector Zn of length |I|, where Zn(i) is the
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number of individuals of type i in generation n. We denote by |Zn| the size of
generation n, i.e.,

|Zn| =
∑

i∈I

Zn(i).

For every type i ∈ I we have an offspring distribution Di, which is now a
distribution on vectors representing the types of the offspring. For every n
and every i ∈ I, let Xn,i

1 , . . . , Xn,i

Zn(i) be independent random variables with

distribution Di. We then have that

Zn+1 =
∑

i∈I

Zn(i)
∑

j=1

Xn,i
j .

When I is finite, one looks at the matrix M of expected offspring to study
the extinction of such processes. If we for instance assume that Mk has only
positive entries for some k large enough, then the largest eigenvalue ρmax of M
determines whether extinction occurs almost surely or whether there is some
positive probability that the tree grows indefinitely, see e.g. [Har63; Dur07].
When I is countably infinite, the conditions for extinction are much more subtle,
and we refer to [Moy64; HLN13] among others.

3.2.1 Assigning types independently

We are specifically interested in the case where each offspring of a vertex is
independently assigned a type according to some distribution. In this case,
the offspring distribution is a multinomial distribution. Our claim is that the
distribution of individuals over the types in generation n of such a multitype
branching process can be found by running a number of n-step independent
random walks equal to the size of the n-th generation.
More precisely, let I ⊂ Z be the state space. Let N be a random variable
taking values in the nonnegative integers, denoting the number of children an
individual will have. Furthermore, for i ∈ I, let pi = (pi

j)j∈I be a probability
distribution on I. Let Di denote a multinomial distribution with N trials and
probability vector pi, which we will take as offspring distribution of a type i
individual. Finally, we denote by (Zn)n the associated multitype branching
process.
Let us now define the inhomogeneous random walk with which we want to
compare this branching process, which we will denote by (Sn)n. Since the
walk is inhomogeneous, we will construct it recursively. Let S0 be distributed
according to a uniformly random individual of Z0. Now, if Sn is given, we define
Sn+1 as the random variable with distribution pSn . The following proposition
relates this random walk to the branching process with multinomial offspring
distribution.

Proposition 3.1. Let (Zn)n be a multitype branching process with multinomial
offspring distribution. Let (Sn)n be the associated random walk defined above,
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and let S1, S2, . . . , S|Zn| be independent copies of Sn. For i ∈ I, let ei be the
vector such that ei(j) = δij. Then Zn is in distribution equal to

Sn =

|Zn|
∑

i=1

eSi .

Proof. We will prove this using induction on n. First of all, note that S0 is equal
in distribution to Z0, since S0 is distributed according to a uniformly random
individual of Z0.
Now suppose that Sn has the same distribution as Zn. Observe that by def-
inition, the random variables Zn(i) for i ∈ I are independent. Therefore, if
X1, . . . , X|Zn+1| are independent samples taken uniformly from the population
Zn+1, then

Zn+1 =

|Zn+1|
∑

j=1

eXj

in distribution. Now note that the distribution of Xj is equal to pYn where Yn

is a uniform sample from the population Zn. Since Zn is equal in distribution
to Sn, this means that Xj has distribution pSn . As a consequence, we find that
Xj is equal in distribution to Sn+1. Putting everything together, we conclude
that Zn+1 = Sn+1 in distribution.

The above identification of the multitype branching process as sum of random
walks is useful in deriving properties of the distribution of its n-th generation. In
particular, we consider the specific case where I = Z and pi = 1

3 (ei−1+ei+ei+1).
One can show that in generation n, all types that are at most at distance

√
n

from the starting type Z0 = e0 are present with a significant fraction. Before
we can turn this in a rigorous statement, we first need the following result on
the associated random walk.

Lemma 3.2. Let X1, X2, . . . be a sequence of i.i.d. random variables with
P(Xi = −1) = P(Xi = 0) = P(Xi = 1) = 1

3 . Define Sn =
∑n

i=1 Xi. Then there
exists a δ > 0 such that for n large enough we have

P(Sn2 = n) ≥ δP(Sn2 = 0).

Moreover, for n large enough and −√
n ≤ k ≤ √

n we have

P(Sn = k) ≥ δP(Sn = 0).

Proof. By the Kolmogorov-Rogozin inequality ([Kol58; Rog61]) there exists a
constant C > 0 such that

P(Sn2 = 0) ≤ C

n
.

We are done once we show that

P(Sn2 = n) ≥ c

n
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for some c > 0. To this end, note that E(X1) = 0 and Var(X1) = 2
3 . Therefore,

by the central limit theorem we find that

1

n
Sn2 ⇒ N

(

0,
2

3

)

.

This implies that asymptotically we have

P(n ≤ Sn2 ≤ (1 + ε)n) ≥
√

3ε√
4π

exp

(

−9

8
(1 + ε)2

)

.

Because P(Sn2 = k) is decreasing in k (when k ≥ 0), we find that

P(Sn2 = n) ≥ 1

εn
P(n ≤ Sn2 ≤ (1 + ε)n)

≥
√

3

n
√

4π
exp

(

−9

8
(1 + ε)2

)

.

This shows we can take

c =

√
3√

4π
exp

(

−9

8
(1 + ε)2

)

,

which proves the first statement.
The second statement now follows from the observation that P(Sn = k) is
decreasing when |k| is increasing.

Using concentration inequalities, we now show that if we start with a type 0
individual, then in generation n all types between −√

n and
√

n are a positive
fraction of the total size of generation n. We have the following proposition.

Proposition 3.3. Let Zn be a multitype branching process with types I = Z.
Assume the offspring distribution is multinomial with parameters N and p =
(pi), where pi = 1

3 (ei−1 +ei +ei+1). Suppose Mn is such that P(|Zn| ≥ Mn) > 0.
Then there exists a δ > 0 such that for n large enough we have

P

(

Zn(k) ≥ δ
Mn√

n
for − √

n < k <
√

n

∣

∣

∣

∣

|Zn| ≥ Mn

)

≥ 1 − 2(2n + 1) exp

(

−δ2Mn

8n

)

.

Proof. Let X1, X2, . . . , X|Zn| be independent copies of the random walk Sn in
Lemma 3.2. By Proposition 3.1 we have that Zn is equal in distribution to

Sn =

|Zn|
∑

i=1

eXi
.

Now define

Sn =

Mn
∑

i=1

eXi
.
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Note that Sn is larger in distribution than Sn. As a consequence, we find that

P

(

Zn(k) ≥ δ
Mn√

n
for − √

n < k <
√

n

∣

∣

∣

∣

|Zn| ≥ Mn

)

= P

(

Sn(k) ≥ δ
Mn√

n
for − √

n < k <
√

n

∣

∣

∣

∣

|Zn| ≥ Mn

)

≥ P

(

Sn(k) ≥ δ
Mn√

n
for − √

n < k <
√

n

)

.

Now define the function F : RMn → R
2n+1 given by

F (x1, . . . , xMn
) =

Mn
∑

i=1

exi

If we change a variable xi, then one entry in the image of F is increased by 1
while another is decreased by 1. Therefore, we can apply Theorem A.2 with
ci = 1 for all i. This gives us that

P
(

||Sn − E(Sn)||∞ ≥ ε
)

≤ 2(2n + 1) exp

(

− ε2

2Mn

)

.

for every ε > 0.
Now we can compute E(Sn(k)) = MnP(Sn = k). Therefore, by Lemma 3.2
there exists a δ > 0 such that

E(Sn(k)) ≥ δMnP(Sn = 0).

for n large enough and −√
n ≤ k ≤ √

n. By then central limit theorem and the
fact that P(Sn = k) is largest when k = 0, we find that

P(Sn = 0) ≥ c
1√
n

for some c > 0. Therefore, by shrinking δ sufficiently, we find that

E(Sn(k)) ≥ δ
Mn√

n
.

Now

P

(

Sn(k) ≥ δ

2

Mn√
n

for − √
n < k <

√
n

)

≥ P

(

∣

∣Sn(k) − E(Sn(k))
∣

∣ ≤ δ

2

Mn√
n

for − √
n < k <

√
n

)

≥ P

(

||Sn − E(Sn)||∞ ≤ δ

2

Mn√
n

)

= 1 − P

(

||Sn − E(Sn)||∞ >
δ

2

Mn√
n

)

≥ 1 − 2(2n + 1) exp

(

−δ2Mn

8n

)

which concludes the proof.

10



4 Proof of Theorem 2.2

In this section we prove Theorem 2.2. The proof follows a similar idea as the
proof in [Dur07] for the standard configuration model. To study the components
of the random graph Gn from the compartment model, we use an exploration
process. Contrary to the standard case, we can only use this to find large
components locally, because the compartment structure restricts the neighbours
of vertices we are exploring.
To study this exploration process, we connect it to a branching process. In
particular, we need to consider a multitype branching process to keep track of
how the exploration process searches through different compartments. This is
important for the next step, where we aim to connect local large components to
form one large component that spread through all compartments of the circle.
To show that this happens with high probability, we need to carefully analyse
the probability that large components arise locally.
Finally, the proof is concluded in a similar way as for the standard configuration
model. We show that the large component found above is actually a giant
component by determining its size.

4.1 Exploration process

In order to study the growth of components in the graph Gn = (Vn, En) of the
compartment model, we will explore them iteratively. To do this, we start at a
vertex v ∈ Vn and reveal its neighbours. After that, we consider each of these
newly revealed vertices and reveal their neighbours, and so on. In particular, in
the exploration, we keep track of the compartment to which each vertex belongs.
Let us now define this process rigorously.

Recall that the graph Gn = (Vn, En) consists of k(n) compartments Cn
1 , . . . , Cn

k(n),

each containing m(n) vertices. Let now v ∈ Cn
j be some vertex in the graph

Gn. The exploration process started at v is a sequence of tuples (Rl, Al, Ul) of
vectors of length k(n) constructed recursively. Here Rl(i) denotes the set of
explored vertices in compartment Cn

i , Al(i) the set of active vertices in com-
partment Cn

i , i.e., those that we have already revealed, but not yet explored,
and Ul(i) are the other, yet unseen vertices in compartment Cn

i . We initialize
the process by setting R0(i) = ∅ for all i, A0(j) = {v} and A0(i) = ∅ for all
i 6= j and U0(j) = Cn

j − {v} and U0(i) = Cn
i for i 6= j. Now, at every iteration,

we define Al+1 to be all neighbours of vertices in Al which are in Ul. We then
set Rl+1 = Rl ∪ Al and Ul+1 = Ul \ Al+1, where the set operations have to be
interpreted elementwise.

Using this exploration process, we want to analyse how large the component we
explore grows. In order to do this, we need to find a lower bound on the size of
the active set Al. To this end, we introduce the following notation:

|Al| = (|Al(1)|, . . . , |Al(k(n))|)

11



and

||Al|| =

k(n)
∑

i=1

|Al(i)|.

In the upcoming proposition we prove that we can use a multitype branching
process as pointwise stochastic lower bound for |Al|. For real-valued random
variables X and Y we say that X is a lower bound for Y if for all a ∈ R we
have P(X ≥ a) ≤ P(Y ≥ a). Furthermore, we call a sequence r = (rk)k≥0 a
distribution if

∑∞
k=0 rk = 1 and rk ≥ 0 for all k. For every such sequence, we

let Wr : (0, 1) → N be a non-decreasing function satisfying

|{ω|Wr(ω) = k}| = rk.

It follows that if we remove mass η from the distribution r and normalize, then
this will be stochastically larger than W η

r = (Wr(ω)|ω < 1 − η). Indeed, the
latter removes mass η, starting from the largest values of Wr. Using all this, we
can state and prove the following proposition.

Proposition 4.1. Let the assumptions of Theorem 2.2 be satisfied. Let v ∈ Cn
1

and denote by (Rl, Al, Ul) the exploration process started at v. Let η ∈ (0, 1)
and assume that at most ηm(n) vertices of each compartment have already been
exposed. Then for every δ > 0 there exist a multitype branching process (Sl)l,
such that until δm(n) vertices in at least one compartment have been exposed,
we have that |Al| is stochastically bounded from below by Sl.
Moreover, the offspring distribution of (Sl)l can be chosen to be multinomial
with parameters N and p = (pi) where pi = 1

3 (ei−1 + ei + ei+1). Furthermore,
for δ small enough, N can be chosen such that E(N) > 1.

Proof. We argue the existence by constructing a suitable multitype branching
process. To this end, we first argue what happens when exploring a single vertex
w ∈ Cn

j . Assume that at most ηm(n) vertices have been exposed of every
compartment. Let D∗ be the size-biased degree distribution (see Remark 2.3)
and set ZD = D∗ − 1. We define the distribution q = (qk) by qk = P(ZD = k).
Since at most a fraction η of the vertices has been exposed, together with the
fact that dn converges to D as in Assumption 2.1, it follows that for n large
enough the amount of new neighbours found while exploring w is bounded from
below by W 2η

q .
By symmetry, these W 2η

q new vertices are equally likely to be in any of the
neighbouring compartments of w, i.e., in the compartments Cn

j−1, Cn
j and Cn

j+1.
Therefore, we consider the random variables

W̄ 2η
q,j ∼ Mult

(

W 2η
q ,

1

3
(ej−1 + ej + ej+1)

)

,

which is a multinomial distribution. Here {e1, . . . , ek(n)} denote the standard

basis of Rk(n).
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Finally, we need to take into account that the new vertices may already have
been exposed before. Because of the degree constraints, we remove these ver-
tices from the active set. Note that W̄ 2η

q,j(i) takes values in the set {0, 1, . . . , L},
where L = Wq(1 − 2η). Therefore, if at most δm(n) vertices have been ex-
posed from any compartment Cn

i , then there are at most Lδm(n) possible half-
edges connected to active vertices in Cn

i . On the other hand, there are at least
µn(dn, Cn

i ) − Lδm(n) half-edges left which are not connect to an active vertex.
Therefore, the probability of choosing an active neighbour in that compartment
is at most

Lδm(n)

µn(dn, Cn
i ) − Lδm(n)

.

From Assumption 2.1 it follows that
µn(dn,Cn

i )
m(n) converges to 1

2E(D) uniformly

over the compartments. Therefore, given ε > 0, for n large enough the above is
smaller than

γδ :=
Lδ

1
2E(D) − ε − Lδ

provided δ > 0 is small enough.
Collecting everything, we see that the number of new vertices found while ex-
ploring w ∈ Cn

j is bounded from below by

Xj ∼ W̄ 2η
q,j − 2

j+1
∑

t=j−1

Bin(|W̄ 2η
q,j(t)|, γδ)et.

From this we can conclude that Xj follows a multinomial distribution with
parameters N and pj = 1

3 (ej−1 + ej + ej+1). In particular, for N we have

N ∼ W 2η
q − 2Bin(W 2η

q , γδ).

From this it follows that

E(N) = E(W 2η
q )(1 − 2γδ).

Now note that limη→0 E(W 2η
q ) = E(Wq) = E(ZD). Since by assumption E(ZD) >

1 (see Remark 2.3), we find that for η small enough we have E(W 2η
q ) > 1. Fur-

thermore, note that γδ tends to 0 as δ tends to 0. Combining the above, we find
that we can choose δ and η small enough so that E(N) > 1.

Our next aim is to prove that if ||Al|| grows to size β log m(n), then it actually
grows to size m(n)

2
3 with high probability. For this, we will use the lower bound

we found in Proposition 4.1. Before we can show this, we first need a lemma.

Lemma 4.2. Let X be a random variable such that X ≥ −1, P(X = −1) > 0
and E(X) > 0. Define Sn by

Sn = S0 +
n
∑

i=1

Yi,

13



where Yi =
∑Si−1

j=1 Xj with X1, . . . XSi−1 i.i.d. with distribution X. Suppose
S0 = x > 0 and define

T (x) := inf{n||Sn| = 0}.

Then there exists a λ > 0 such that

P(T (x) < ∞) ≤ e−λx.

Proof. It suffices to prove the statement for X bounded from above, since this
only increases T (x). Let M(t) = E(etX) be the moment generating function of
X . Since X is bounded from below, we have that M(t) is defined for all t ≤ 0.
Note that M(0) = 1, M ′(0) = E(X) > 0 and

lim
t→−∞

M(t) ≥ lim
t→−∞

P(X = −1)e−t = ∞.

From this, together with the continuity of M(t), it follows that there exists a
λ > 0 such that M(−λ) = 1. This implies that Zn = e−λSn is a martingale.
From the optional stopping theorem, we find that

E
(

ZT (x)

)

= lim
n→∞

E
(

Zn∧T (x)

)

= E(Z0) = e−λx.

On the other hand,
E
(

ZT (x)

)

≥ P(T < ∞),

and hence we find that P(T (x) < ∞) ≤ e−λx.

Using this lemma, we can show that if the active set grows to size β log m(n),
then the probability that the exploration process does not explore a large cluster
is small. More precisely, we have the following proposition.

Proposition 4.3. Let the assumptions in Proposition 4.1 be satisfied. Suppose
∑l

i=0 ||Ai|| ≥ β log m(n) for some l. Define

T := inf{n|||An|| = 0}.

Then for β large enough we have

P(T < ∞) ≤ 2m(n)−k.

Proof. Let Sn be the lower bound for |An| from Proposition 4.1. Then |Sn| is a
lower bound for ||An||, and in particular,

Σl =

l
∑

i=0

|Si|

is a lower bound for
∑l

i=0 ||Ai||.
Now assume that Σl ≥ β log m(n) and define

T̃ = inf{n||Sn| = 0}.

14



Then P(T < ∞) ≤ P(T̃ < ∞).
Note that we can write

|Sl+1| =

|Sl|
∑

i=1

X̃i,

where X̃1, . . . , X̃|Sl| are independent and distributed like N as in Proposition
4.1. By telescoping, this implies that

|Sl+1| =

Σl
∑

j=1

Xj ,

where X1, . . . , XΣl
are independent and equal in distribution to N − 1.

Let λ be as in Lemma 4.2 for the random variable X1. From Chernoff’s bound
it follows that

P





σ
∑

j=1

Xj ≤ k

λ
log m(n)



 ≤ eθ k
λ

log m(n)
E(e−θX1)σ

= exp

(

θ
k

λ
log m(n) + σ log M(−θ)

)

for all θ > 0, where M(t) = E(etX1 ). Since M(0) = 1, M(−λ) = 1 and M ′(0) =
E(X1) > 0, there exists a λ′ ∈ (0, λ) such that M(−λ′) < 1. In particular, this
implies that log M(−λ′) < 0. From this it follows that for σ ≥ β log m(n) we
have

P





σ
∑

j=1

Xj ≤ k

λ
log m(n)



 ≤ exp

((

λ′ k

λ
+ β log M(−λ′)

)

log m(n)

)

.

Using that log M(−λ′) < 0, we can take β enough such that

λ′ k

λ
+ β log M(−λ′) ≤ −k

so that

P





σ
∑

j=1

Xj ≤ k

λ
log m(n)



 ≤ m(n)−k.

From this we conclude that if Σl ≥ β log m(n) for large enough β, we have that

P

(

|Sl+1| <
k

λ
log m(n)

)

≤ m(n)−k.

From this, we obtain that

P(T̃ < ∞)
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≤ P

(

|Sl+1| ≤ k

λ
log m(n)

)

+ P

(

T̃ < ∞
∣

∣

∣

∣

|Sl+1| ≥ k

λ
log m(n)

)

≤ 2m(n)−k.

Here, we applied Lemma 4.2 to bound the second term. Since P(T < ∞) ≤
P(T̃ < ∞), this proves the claim.

We conclude this part by proving that if we repeatedly start the exploration
process at a vertex in Cn

1 , then with high probability we find a component of
size at least m(n)

2
3 before δm(n) vertices have been exposed. This follows from

the fact that with high probability, each failed attempt uses at most β log m(n)
vertices.

Proposition 4.4. The probability that the exploration process started (repeat-
edly) at a point in Cn

1 finds a component of size at least m(n)
2
3 before a total of

δm(n) vertices have been exposed is at least

(

1 − 2m(n)−k
)

δm(n)
β log m(n)

(

1 − (1 − p)
δm(n)

β log m(n)

)

.

Here, p > 0 is the probability that the branching process (Sn)n in Proposition
4.1 survives indefinitely.

Proof. Let G denote the number of tries it takes before Sn grows to size m(n)
2
3 .

Then G is geometrically distributed with parameter p̃ ≥ p > 0. Let R1, R2, . . .
be a sequence of i.i.d. random variables representing the number of vertices
exposed in a failed attempt. We need to prove that

P

(

G
∑

i=1

Ri ≤ δm(n)

)

≥
(

1 − 2m(n)−k
)

δm(n)
β log m(n)

(

1 − (1 − p)
δm(n)

β log m(n)

)

.

Now

P

(

G
∑

i=1

Ri ≤ δm(n)

)

=

∞
∑

g=1

P

(

g
∑

i=1

Ri ≤ δm(n)

)

P(G = g).

For g ≤ δm(n)
β log m(n) we have

P

(

g
∑

i=1

Ri ≤ δm(n)

)

≥ (1 − 2m(n)−k)g ≥
(

1 − 2m(n)−k
)

δm(n)
β log m(n) ,

where the first inequality follows from Proposition 4.3. Using this, we find that

P

(

G
∑

i=1

Ri ≤ δm(n)

)

≥
(

1 − 2m(n)−k
)

δm(n)

β log m(n)
P

(

G ≤ δm(n)

β log m(n)

)

=
(

1 − 2m(n)−k
)

δm(n)
β log m(n)

(

1 − (1 − p̃)
δm(n)

β log m(n)

)

.

The desired bound now follow because p̃ ≥ p.
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4.2 From local to global

In Proposition 4.4 we have seen that if we start exploring from a vertex in Cn
1 ,

with high probability we find a component of size at least m(n)
2
3 at some point.

In this section, we will first show that such a component spreads equally through
all compartments near Cn

1 . Since we could have started equally well from any
other compartment, the idea is to show that with high probability, many of such
local large components exist which together cover all compartments. It then
remains to prove that these components are all connected with high probability,
forming a large component which spreads through every compartment.

4.2.1 Spreading through compartments

To see how the explored component spreads through neighbouring compart-
ments, we use the multitype branching process found in Proposition 4.1. We
will first show that, provided the branching process grows to a certain size, it
actually does so exponentially fast with high probability. The following propo-
sition is closely related to the large deviation results in [Ath94]. However, we
need more precise information on the growth of the involved constants.

Proposition 4.5. Let T = (Tl)l be a Galton-Watson tree with bounded offspring
distribution N satisfying E(N) > 1 and T0 = 1. Suppose there exists an l such
that Tl ≥ Mn. Define

p(n) = inf{p|Tp ≥ Mn} < ∞.

Then for any k ∈ N there exist constants α, β > 0 such that

P(p(n) ≥ α log Mn) ≥ 1 − βM−k
n .

Furthermore, there exists an L > 0 such that

P (p(n) ≤ LM τ
n) ≥ 1 − βe−kMτ

n

for every τ > 0.

Proof. Because there exists and l such that Tl ≥ Mn, we know that every
generation contains at least one vertex which survives until the tree grows to
size Mn. We call such a vertex immortal. Every immortal vertex has at least
one child that is also immortal. Moreover, since E(N) > 1, the probability
of having only one immortal child is less than 1. Denote by N the offspring
distribution N conditioned to be at least 1. Then E(N) > 1 and N is bounded
since N is bounded.
Denote by (Zl) the Galton-Watson tree with offspring distribution N . Since
N ≥ 1, Zl is non-decreasing in l and therefore we have

P(p(n) > α log Mn) ≥ P (Zα log Mn
< Mn) .

We will first show that there exist L, β > 0 such that for every n we have

P(ZLn ≤ n) ≤ βe−nk. (4.1)
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To this end, note that Zl is larger than
∑l

i=1 Bi, where B1, . . . , Bl are i.i.d.
Bernoulli random variables with parameter p = P(N > 1) > 0. This implies
that

P(Zl ≤ n) ≤ P

(

l
∑

i=1

Bi ≤ n

)

Choosing L > 0 such that Lp = LE(B1) > 1, we have

P

(

Ln
∑

i=1

Bi ≤ n

)

≤ P

(∣

∣

∣

∣

∣

Ln
∑

i=1

Bi − Lnp

∣

∣

∣

∣

∣

> (Lp − 1)n

)

≤ 2 exp
(

−2L−1n(Lp − 1)2
)

.

Here, the last line follows from Hoeffding’s inequality. The claim now follows
by taking L sufficiently large.

From (4.1) we find that

P
(

ZLMτ
n

≥ M τ
n

)

≥ 1 − βe−kMτ
n .

From this it follows that

P (p(n) ≤ LM τ
n) ≥ P

(

ZLMτ
n

≥ M τ
n

)

≥ 1 − βe−kMτ
n ,

which proves the second estimate.

We now prove the first estimate. Take c > E(Ñ). From Hoeffding’s inequality
we find

P(ZLn+1 ≥ cZLn)

= P

(

1

ZLn

ZLn
∑

i=1

Ñi ≥ c

)

≤ P

(∣

∣

∣

∣

∣

1

ZLn

ZLn
∑

i=1

Ñi − E(Ñ)

∣

∣

∣

∣

∣

≥ c − E(Ñ)

)

=
∑

z

P

(∣

∣

∣

∣

∣

1

z

z
∑

i=1

Ñi − E(Ñ)

∣

∣

∣

∣

∣

≥ c − E(Ñ)

)

P(ZLn = z)

≤ 2P(ZLn ≤ n) +
∑

z>n

2 exp

(

−2z(c − E(Ñ ))2

||N ||∞

)

P(ZLn = z)

≤ 2βe−nk + 2 exp

(

−2n(c − E(Ñ))2

||N ||∞

)

.

Here we used inequality (4.1) in the last line. Furthermore, ||N ||∞ is the bound
of N . By taking c sufficiently large, we conclude that there exist a β > 0 such
that

P(ZLn+1 ≥ cZLn) ≤ βe−kn
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For l ∈ N we now find that

P(ZLn+1 < cn−l) ≥ P





n
⋂

j=l

{ZLj+1 < cZLj}





≥ P





∞
⋂

j=l

{ZLj+1 < cZLj}





= 1 − P





∞
⋃

j=l

{ZLj+1 ≥ cZLj}





≥ 1 −
∞
∑

j=l

P(ZLj+1 ≥ cZLj)

≥ 1 − β
∞
∑

j=l

e−kj

= 1 − β

1 − e−k
e−kl.

In particular, there is some constant β̃ > 0 such that

P(ZLn+1 < cn−l) ≥ 1 − β̃e−kl.

Hence, if we take α = L(1 + 1
log c

) and l = log Mn, the above implies that

P (Zα log Mn
< Mn) ≥ 1 − β̃M−k

n ,

which concludes the proof.

We are now ready to prove how local large components we find while exploring
spread through the compartments. We have the following.

Proposition 4.6. Let the assumptions of Proposition 4.1 be satisfied and denote
by C a component explored by the exploration process started at a vertex v ∈ Cn

1 .
Assume the active set of the exploration process reaches size m(n)

2
3 . Then for

every k ∈ N and δ > 0 sufficiently small, there exist ε, α, β, B > 0 such that

P

(

|C ∩ Cl| ≥ εm(n)
2
3 −τ for |l − 1| <

√

α log m(n)
)

≥
(

1 − Bm(n)2τ exp

(

−1

8
ε2m(n)

2
3 −2τ

))

(

1 − βm(n)−k
)

for every τ ∈ (0, 2
3 ) and m(n) large enough. Here we consider |l − 1| to be

modulo k(n) to respect the circle structure.

Proof. Let (Sn)n be the multitype branching process from Proposition 4.1. As-
sume there exists an l such that |Sl| ≥ m(n)

2
3 . Set

p(n) := inf
{

p
∣

∣

∣|Sp| ≥ m(n)
2
3

}

< ∞.
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Then |C ∩ Cl| ≥ Sp(n)(l). Therefore, it suffices to find a lower bound for

P

(

Sp(n)(l) ≥ εm(n)
2
3 −τ for |l − 1| <

√

α log m(n)
)

.

Note that p(n) is a random variable. We have

P

(

Sp(n)(l) ≥ εm(n)
2
3 −τ for |l − 1| <

√

α log m(n)
)

=
∑

p

P

(

Sp(l) ≥ εm(n)
2
3 −τ for |l − 1| <

√

α log m(n)
)

P(p(n) = p).

By Proposition 4.5 there exist constants α, β, η > 0 such that

P(p(n) ≥ α log m(n)) ≥ 1 − βm(n)−k

and
P(p(n) ≤ η2m(n)2τ ) ≥ 1 − βe−km(n)2τ

.

In particular, this implies that

P(α log m(n) ≤ p(n) ≤ η2m(n)2τ ) ≥ 1 − βm(n)−k − βe−km(n)2τ

≥ 1 − 2βm(n)−k,

where the last line holds as along as m(n) is large enough.
Now, for α log m(n) ≤ p ≤ η2m(n)2τ we have

P

(

Sp(l) ≥ εm(n)
2
3 −τ for |l − 1| <

√

α log m(n)
)

≥ P

(

Sp(l) ≥ εη
m(n)

2
3

√
p

for |l − 1| <
√

p

)

≥ 1 − 2(2p + 1) exp

(

− (εη)2m(n)
2
3

8p

)

≥ 1 − 2(2η2m(n)2τ + 1) exp

(

−1

8
ε2m(n)

2
3 −2τ

)

.

Here, the third line follows from Proposition 3.3. We conclude that there exists
a constant B > 0 such that

P

(

Sp(l) ≥ εm(n)
2
3

−τ for |l − 1| <
√

α log m(n)
)

≥ 1 − Bm(n)2τ exp

(

−1

8
ε2m(n)

2
3 −2τ

)

for all α log m(n) ≤ p ≤ η2m(n)2τ .
If we now collect everything, we find that

P

(

Sp(n)(l) ≥ εm(n)
2
3 −τ for |l − 1| <

√

α log m(n)
)
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≥
(

1 − Bm(n)2τ exp

(

−1

8
ε2m(n)

2
3 −2τ

))

P(α log m(n) ≤ p(n) ≤ η2m(n)2τ )

≥
(

1 − Bm(n)2τ exp

(

−1

8
ε2m(n)

2
3 −2τ

))

(

1 − 2βm(n)−k
)

.

This concludes the proof.

4.2.2 Connecting local components

Proposition 4.4 and 4.6 together give a lower bound on the probability that there
exists a component of at least size m(n)

2
3 which spreads through approximately

√

log m(n) compartments, each compartment containing at least εm(n)
2
3 −τ ver-

tices of the component.

Set

N(n) =

⌊

k(n)
√

α log m(n)

⌋

(4.2)

and define the indices li = 1 + i⌊
√

α log m(n)⌋ for i = 0, . . . , N(n). Denote by
Ili

the indicator random variable of the event that there exists a component as
in Section 4.2.1, where the exploration is started in compartment Cli

. It follows
from Proposition 4.4 and 4.6 that P(Ili

= 1) = anbn, where

an =
(

1 − 2m(n)−k
)

δm(n)
β log m(n)

(

1 − (1 − p)
δm(n)

β log m(n)

)

and

bn =

(

1 − Bm(n)2τ exp

(

−1

8
ε2m(n)

2
3 −2τ

))

(

1 − βm(n)−k
)

.

However, the random variables Ili
are not (necessarily) independent. We have

P(Ili
= 1 for all i = 1, . . . , N(n)) = 1 − P(Ili

= 0 for some i = 1, . . . , N(n))

≥ 1 −
N(n)
∑

i=1

P(Ili
= 0)

= 1 − N(n)P(I1 = 0)

= 1 − N(n)(1 − anbn).

Since |li+1 − li| ≤
√

α log m(n), the components Cli+1 and Cli
have a common

compartment in which they both have at least εm(n)
2
3 −τ vertices. If these sets

of vertices intersect, then surely there is a connection between the components.
If not, then the probability that there is no edge between the two sets is smaller
than (see e.g. [BR15, Lemma 20])

exp
(

−Cε2m(n)
1
3 −2τ

)
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for some constant C > 0 depending on the bound of the degree distribution.
Hence, the probability that two neighbouring components are connected is more
than

cn := 1 − exp
(

−Cε2m(n)
1
3 −2τ

)

.

Collecting everything, we find that there exists a component C with |C ∩Cn
k | ≥

εm(n)
2
3 −τ for all k = 1, . . . , k(n) with probability at least

(1 − N(n)(1 − anbn))(1 − N(n)cn),

where N(n) is as in (4.2). From this discussion, we obtain the following.

Proposition 4.7. For every τ ∈ (0, 1
6 ) we have that with high probability there

exists a component C in Gn such that for all k = 1, . . . , k(n) we have

|C ∩ Cn
k | ≥ εm(n)

2
3 −τ .

Proof. Following the reasoning above, it remains to show that

lim
n→∞

(1 − N(n)(1 − anbn))(1 − N(n)cn) = 1,

where

N(n) =

⌊

k(n)
√

α log m(n)

⌋

.

In order to do this, we observe that is suffices to prove that

lim
n→∞

aN(n)
n = lim

n→∞
bN(n)

n = lim
n→∞

(1 − cn)N(n) = 1 (4.3)

Indeed, suppose 0 < xn < 1 and assume limn→∞ x
N(n)
n = 1. It then holds

that limn→∞ N(n) log(xn) = 0. But log(xn) ≤ xn − 1 ≤ 0, and hence, by the
squeeze theorem we find that limn→∞ N(n)(xn − 1) = 0 from which it follows
that limn→∞ 1 − N(n)(1 − xn) = 1.
Let us prove that (4.3) holds. We will only show this for an, the result for bn

and cn being proven similarly (the conditions on τ being needed there to have
the desired decay).

Since by assumption limn→∞
k(n)m(n)

n
= 1, we have for n large that

⌊

k(n)
√

α log m(n)

⌋

≈ n

m(n)
√

α log m(n)
.

Therefore, we have asymptotically

aN(n)
n ≈

(

1 − 2m(n)−k
)

δn

β log m(n)
√

α log m(n)

(

1 − (1 − p)
δm(n)

β log m(n)

)

n

m(n)
√

α log m(n)
.

For the first factor, taking logarithms, we have

δn

β log m(n)
√

α log m(n)
log
(

1 − 2m(n)−k
)

≈ − δn

βm(n)k log m(n)
√

α log m(n)
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where we used that log(1 − x) ≈ −x. Since by assumption k is such that
limn→∞ nm(n)−k = 0, the above converges to 0 and therefore

lim
n→∞

(

1 − 2m(n)−k
)

δn

β log m(n)
√

α log m(n) = 1.

In a similar way, the second factor converges to 1 if

lim
n→∞

n

m(n)
√

α log m(n)
(1 − p)

δm(n)
β log m(n) = 0.

This again follows from the assumptions that limn→∞ nm(n)−k = 0. This
concludes the proof.

4.3 The size of the giant component

So far, we have shown that with high probability there exists a large component
spreading through all compartments. It remains to show that there is only one
such component, and that its size is asymptotically (1 − ρ)n, where ρ is the
extinction probability of the Galton-Watson tree as explained in Remark 2.3.

From Proposition 4.3 we obtain the following identification of the largest com-
ponent in the compartment model Gn. Note that this also proves the final
statement of Theorem 2.2.

Proposition 4.8. Let the assumptions of Theorem 2.2 be satisfied. Then with
high probability the largest component in Gn is equal to

{x||Cx| ≥ β log m(n)},

where Cx denotes the component of Gn containing x.

Proof. By Proposition 4.7 we know that C ⊂ {x||Cx| ≥ β log m(n)} with high
probability. The claim now follows once we show that

P ({x||Cx| ≥ β log m(n)} ⊂ C)

goes to 1. For this, it suffices to prove that

P(|Cx| ≥ β log m(n) and x /∈ C for some x)

goes to 0. Note that there are at most n
β log m(n) components of size larger than

β log m(n). Therefore, the above probability is bounded above by

n

β log m(n)
P
(

|C̃| ≥ β log m(n) and C̃ ∩ C = ∅
)

.

By conditioning we have

P
(

|C̃| ≥ β log m(n) and C̃ ∩ C = ∅
)
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≤ P

(

|C̃| < m(n)
2
3

∣

∣

∣
|C̃| ≥ β log m(n)

)

+ P

(

C̃ ∩ C = ∅
∣

∣

∣
|C̃| ≥ m(n)

2
3

)

.

From Proposition 4.3 it follows that

P
(

|C̃| ≥ β log m(n) and C̃ ∩ C = ∅
)

≤ m(n)−k.

Furthermore, an argument similar to the proof of [BR15, Lemma 20] gives us
that

P

(

C̃ ∩ C = ∅
∣

∣

∣|C̃| ≥ m(n)
2
3

)

≤ exp
(

−Cm(n)
1
3 −τ

)

.

Here we used that the component C contains at least εm(n)
2
3 −τ vertices from

each compartment and the fact that the degree sequence is bounded.
Since by assumption limn→∞ nm(n)−k = 0, it follows that

lim
n→∞

n

β log m(n)

(

m(n)−k + exp
(

−Cm(n)
1
3 −τ
))

= 0

as long as we take τ small enough. This completes the proof.

From Proposition 4.8 it follows that we are done once we show that

1

n
|{x||Cx| ≥ β log m(n)}| → 1 − ρ

in probability. To this end, we first show that

lim
n→∞

P(|C| ≤ β log m(n)) = ρ. (4.4)

For this, we need the following result, where we show that until depth β log m(n),
the component |C| is locally a tree with high probability.

Proposition 4.9. Let the assumptions of Theorem 2.2 be satisfied. A compo-
nent C in Gn with |C| ≤ β log m(n) is with high probability a tree.

Proof. Note that with high probability, the degree distribution of the graph Gn

is close to D. In particular, the degree sequence is bounded, say by B. Let us
explore C from a vertex v ∈ C. We first reveal all neighbours of v by going
through the half-edges at v. We then consider a neighbour of v and expose the
neighbours attached to all its half-edges, and so on.
If we have explored t vertices in this way, we have exposed at most Bt vertices,
which together have at most B2t half edges. From the convergence of the degree
sequence, it follows that for n large enough, there are at least cm(n) half-edges
a vertex can be attached to for some c > 0. Therefore, when exploring a
vertex at iteration t, there are at least cm(n) − B2(t + 1) half-edges to choose
from. Of these, at most B2(t + 1) are incident with already exposed vertices.
Therefore, the probability that a half-edge we are exploring is attached to an
already exposed vertex is at most

B2(t + 1)

cm(n) − B2(t + 1)
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As a consequence, the probability that we only find unexposed vertices is at
least

(

1 − B2(t + 1)

cm(n) − B2(t + 1)

)B

.

From this it follows that the probability that there exists a t ≤ β log m(n) for
which we find an already exposed vertex during the exploration is at most

β log m(n)
∑

t=1

1 −
(

1 − B2(t + 1)

cm(n) − B2(t + 1)

)B

≤ β log m(n)

(

1 −
(

1 − B2(β log m(n) + 1)

cm(n) − B2(β log m(n) + 1)

)B
)

.

Using a binomial expansion, one can prove that the latter converges to 0 since
m(n) tends to infinity. We conclude that the probability of only finding new
vertices during the exploration until β log m(n) vertices have been explored goes
to 1. This proves that the probability that C is a tree converges to 1.

In particular, we find that C is with high probability equal to a Galton-Watson
tree where the root has offspring distribution D, while all other vertices have
offspring distribution ZD = D∗ − 1, the size-biased off-spring distribution (see
Remark 2.3). Since ρ is the extinction probability of this Galton-Watson tree,
Proposition 4.9 implies (4.4).

4.4 Proof of Theorem 2.2

With all preparations done, we are finally ready to prove Theorem 2.2.

Proof of Theorem 2.2. From Proposition 4.8 it follows that we are done once
we show that

lim
n→∞

1

n
|{x||Cx| ≥ β log m(n)}| = 1 − ρ

in probability.
To this end, define the random variables Y n

x , where Y n
x = 1 if |Cx| ≤ β log m(n)

and 0 otherwise. Then

|{x||Cx| ≤ β log m(n)}| =

k(n)m(n)
∑

x=1

Yx.

Note that by (4.4) we have

lim
n→∞

E(Y n
x ) = lim

n→∞
P(|Cx| ≤ β log m(n)) = ρ.

Therefore, we find that
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lim
n→∞

P

(∣

∣

∣

∣

1

n
|{x||Cx| ≥ β log m(n)}| − ρ

∣

∣

∣

∣

> ε

)

= lim
n→∞

P





∣

∣

∣

∣

∣

∣

k(n)m(n)
∑

x=1

Yx − k(n)m(n)ρ

∣

∣

∣

∣

∣

∣

≥ nε



 .

By Chebyshev’s inequality, we have

P





∣

∣

∣

∣

∣

∣

k(n)m(n)
∑

x=1

Yx − k(n)m(n)ρ

∣

∣

∣

∣

∣

∣

≥ nε



 ≤
Var

(

∑k(n)m(n)
x=1 Yx

)

ε2n2
.

Note that

Var





k(n)m(n)
∑

x=1

Yx





≤ k(n)m(n) +
∑

x 6=y

Cov(Yx, Yy) ≤ k(n)m(n) + k(n)2m(n)2Cov(Y1, Y2).

We can compute

Cov(Y1, Y2) = P(Y1 = 1, Y2 = 1) − P(Y1 = 1)P(Y2 = 1).

To estimate this, we consider two independent exploration processes starting at
vertex 1 and 2 where we couple them once they meet. It can be shown that the
above covariance is then bounded by twice the probability that the two explo-
ration processes meet (compare to [Dur07, Lemma 2.3.4]). Since we consider
the event where both processes will not find more than β log m(n) vertices, the
above is bounded by twice the probability that two sets of β log m(n) vertices
are connected. Following a reasoning similar to [BR15, Lemma 20], we therefore
find that

Cov(Y1, Y2) ≤ 2B2(β log m(n))2

n
.

Altogether, we obtain

Var





k(n)m(n)
∑

x=1

Yx



 ≤ Ck(n)m(n)(log m(n))2

for some constant C > 0. Plugging this into the equation above and using that

limn→∞
k(n)m(n)

n
= 1, we find that

lim
n→∞

P





∣

∣

∣

∣

∣

∣

k(n)m(n)
∑

x=1

Yx − k(n)m(n)ρ

∣

∣

∣

∣

∣

∣

≥ nε



 = 0.
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Putting everything together, we obtain

1

n
|{x||Cx| ≤ β log m(n)}| → ρ

in probability, which implies that

1

n
|{x||Cx| ≥ β log m(n)}| → 1 − ρ

in probability as desired.

5 Difference with standard configuration model

We conclude by considering an example to see the difference between the com-
partment model on the circle and the standard configuration model. This ex-
ample also shows that the condition that the number of vertices m(n) per com-
partments tends to infinity cannot be removed without altering the conditions
on the degree sequence.

More precisely, let D be random variable taking values in the non-negative
integers. Assume that P(D ≤ 1) = p > 0 and E(D(D − 2)) > 0. Let dn be a
degree sequence on n vertices converging to D in the sense of Assumption 2.1
(without the compartments). Let G(dn) be the random graph obtain from the
standard configuration model on n vertices with degree sequence dn. Then (see
e.g. [BR15])

lim
n→∞

L1(G(dn))

n
= 1 − ρ

in probability, where ρ is the extinction probability of the Galton-Watson tree
associated to D as in Remark 2.3. In particular, because E(D(D − 2)) > 0
it holds that ρ < 1. We thus see that with high probability the graph G(dn)
contains a giant component.

We will now prove that under the same conditions, the compartment model on
the circle does not contain a giant component with high probability if we assume
the compartment contain a fixed number of vertices. This is caused only by the
assumption that P(D ≤ 1) > 0.

Proposition 5.1. Let D be a random variable taking values in the non-negative
integers such that P(D ≤ 1) = p > 0. Let dn be a degree sequence sample
independently and uniformly from D. Let Gn be the compartment model on the
circle with degree sequence dn and assume that m(n) = λ ≥ 1 for all n. Then

lim
n→∞

L1(Gn)

n
= 0

in probability.
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Proof. Observe that if all vertices in a compartment have degree 0 or 1, then no
component can cross this compartment. As a consequence, the size of compo-
nents is bounded by the maximum distance between such compartments multi-
plied by λ.
Note that with probability pλ a compartment contains only degree 0 or 1 ver-
tices. Since for different compartments these events are independent, the dis-
tance between such compartments is geometrically distributed with parameter
pλ. Moreover, since λ ≥ 1, we have at most n such intervals.
Let X1, . . . , Xn be independent random variables with a geometric distribution
with parameter pλ. By the above, it follows that the size of the largest compo-
nent is bounded by maxn

i=1 Xi.
Now let ε > 0. Then

P

(

n
max
i=1

Xi ≤ εn
)

=
n
∏

i=1

P(Xi ≤ εn) =
(

1 − (1 − pλ)εn
)n

Now,
lim

n→∞

(

1 − (1 − pλ)εn
)n

= 1.

To see this, note that

log
(

(

1 − (1 − pλ)εn
)n
)

= n log
(

1 − (1 − pλ)εn
)

≈ n(1 − pλ)εn,

which goes to 0 since 0 < (1 − pλ)ε < 1.
Using the above, we find that

lim
n→∞

P

(

n
max
i=1

Xi ≤ εn
)

= 1

Collecting everything, it follows that

lim
n→∞

P

(

L1(Gn)

n
> ε

)

≤ lim
n→∞

P

(

n
max
i=1

Xi > nελ−1
)

= 1 − lim
n→∞

P

(

n
max
i=1

Xi ≤ nελ−1
)

= 0.

We conclude that

lim
n→∞

L1(Gn)

n
= 0

in probability.

Remark 5.2. Following the same reasoning, one can actually show that Propo-
sition 5.1 also holds when m(n) = λ log n as long as λ < − 1

log p
. This proves

that at least for some degree distributions D it is actually necessary for m(n)
to tend to infinity in order to see a giant component. This also underpins the
idea that there is an interplay between the assumptions on the degree sequence
and compartment for the emergence of a giant component.
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Remark 5.3 (Percolation). As a consequence of the results in this section, we
find that percolation for the circle model with fixed size compartments looks
very unusual. Indeed, if we independently keep edges with probability p < 1,
then the probability that a vertex in the resulting graph has degree at most 1 is
greater than 0. The argument above then shows that this graph does not have a
giant component. From this it follows that the percolation threshold is p∗ = 1.

A Appendix: Concentration inequalities

In this appendix we obtain the vector-valued extension of the classical result on
concentration inequalities by McDiarmid. This is a special case of the results in
[Kat+21]. Since we do not need such generality, we state McDiarmid’s theorem
([McD+89]) for completeness and derive the vector-valued extension from this.

Theorem A.1. Let f : R
n → R be a function and X1, . . . , Xn independent

real-valued random variables. Let c1, . . . , cn be constants such that

sup
x1,...,xi,x′

i
,...,xn

f(x1, . . . , xi, . . . , xn) − f(x1, . . . , x′
i, . . . , xn) ≤ ci.

Then for every ε > 0 we have

P(|f(X1, . . . , Xn) − E(f(X1, . . . , Xn))| ≥ ε) ≤ 2 exp

(

− ε2

2
∑n

i=1 c2
i

)

.

We will prove a similar estimate when F is vector-valued. For x ∈ R
d we denote

by ||x||∞ the sup-norm of x, i.e.,

||x||∞ = max
i=1,...,n

|xi|.

We obtain the following extension of McDiarmid’s theorem.

Theorem A.2. Let F : Rn → R
d be a function and X1, . . . , Xn independent,

real-valued random variables. Let c1, . . . , cn be constants such that

sup
x1,...,xi,x′

i
,...,xn

||F (x1, . . . , xi, . . . , xn) − F (x1, . . . , x′
i, . . . , xn)||∞ ≤ ci.

Then for every ε > 0 we have

P(||F (X1, . . . , Xn) − E(F (X1, . . . , Xn))||∞ ≥ ε) ≤ 2d exp

(

− ε2

2
∑n

i=1 c2
i

)

.

Proof. For every j = 1, . . . , d we can apply Theorem A.1 to Fj : Rn → R, the
j-th component of F . This gives us that

P(|Fj(X1, . . . , Xn) − E(Fj(X1, . . . , Xn))| ≥ ε) ≤ 2 exp

(

− ε2

2
∑n

i=1 c2
i

)

.
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We can now estimate

P(||F (X1, . . . , Xn) − E(F (X1, . . . , Xn))||∞ ≥ ε)

= P (|Fj(X1, . . . , Xn) − E(Fj(X1, . . . , Xn))| ≥ ε for some j = 1, . . . , d)

≤
d
∑

j=1

P(|Fj(X1, . . . , Xn) − E(Fj(X1, . . . , Xn))| ≥ ε)

≤ 2d exp

(

− ε2

2
∑n

i=1 c2
i

)

,

which completes the proof.
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