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Abstract

Process mining is a family of techniques that can aid
healthcare organizations in improving their processes.
Most existing process mining techniques do not provide
insights into the impact that activities can have on
the process. Some novel techniques try to address
this issue, but these techniques are either not generic
in their approach or cannot provide insights into
complex relations in organizational processes. We
propose a novel and generic approach with the goal
of producing insights into statistical relations within
healthcare processes. We apply the approach on a
public data set on sepsis in an emergency room. We
find that the hospital might optimize its process in two
respects: (1) their cost-benefit balance for patient care
by considering their activities in terms of continuous
monitoring and substance administration, and (2) their
policies on discharging patients as to ensure patients are
not discharged too early and return to the emergency
room.

1. Introduction

Process mining is a popular family of techniques
that uses event log data to visualize and analyze
organizational processes [1]. Also, in the field of
healthcare, process mining techniques have become
increasingly popular in recent years [2, 3]. The
healthcare field offers many opportunities for process
mining to support data-driven analyses to optimize
complex healthcare processes [4]. Many healthcare case
studies (e.g. [5]) have been performed and even new
techniques and methodologies have been proposed (e.g.
[6]). As such, the healthcare domain and process mining
techniques have proven to be a fruitful combination.

However, most process mining techniques focus
on the control-flow perspective, i.e. they focus on
the order in which activities are performed. To
investigate processes from this perspective, a number
of discovery techniques have been proposed over the

years. Prominent examples include the heuristic miner
[7], fuzzy miner [8], and inductive miner [9]. In a
healthcare setting, these techniques can help healthcare
professionals, among others, to understand possible
patient pathways [10]. So-called conformance checking
techniques can also show whether medical guidelines
and procedures are appropriately followed [11].

Once such insights are obtained, natural follow-up
insights are often required to deepen the understanding
of a process. In that light, practitioners are often
interested in finding out how particular actions impact
the patient pathways and their well-being. The
control-flow perspective does not reveal the impact
that actions may have on the process. Recognizing
this, existing process mining techniques have proposed
several alternative ways to uncover these insights.
From a causal mechanisms perspective, a number
of techniques have been proposed that try to find
statistically significant patterns that show the impact
of treatments in processes [12, 13]. Composite state
machine techniques also aim to tackle the problem by
identifying state transitions [14].

Nonetheless, both strands of techniques face some
fundamental limitations that prohibit their applicability
in uncovering the impact of actions on the process.
Firstly, the techniques related to causal mechanisms are
often not generic in their applicability. To exemplify,
the authors of [12] propose a technique that can only
analyze repetitive processes and single actions (rather
than multiple actions). Secondly, the composite state
machine techniques can capture the status of a patient
state and the transition between patient states, but
they cannot show how process activities influence state
transitions. The limitations of the existing process
mining techniques motivate the proposal of a novel
approach to gain an understanding of the complex
healthcare processes. Therefore, we propose a novel
and generic state abstraction approach to generate new
insights in terms of the impact of actions on the
transition between states in organizational (healthcare)
processes. In particular, we propose a statistical
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Figure 1. Simplified sepsis process as a BPMN model

approach to provide insights into the complex relations
that influence the state transitions. We apply this
technique on a public data set on sepsis and uncover
previously hidden relations in the healthcare process.
These new insights can form the basis for the hospital to
improve their sepsis process two ways: (1) to optimize
their cost-benefit balance in patient care, and (2) to
review the way they discharge patients to avoid early
returns to the emergency room.

The rest of the paper is organized as follows. In
Section 2, we illustrate the problem we address in more
detail. In Section 3, we introduce our approach from
a conceptual point of view. In Section 4, we report on
the results of our case study on data from an emergency
room where we show that the proposed approach can
be applied to real-world data and provides us with new
insights on the impact of actions on state transitions. In
Section 5 we discuss related work before in Section 6
we discuss the limitations and conclude the paper.

2. Problem Statement

To illustrate the problem we address in this paper,
consider the scenario of a patient being admitted to the
emergency room (ER) of a hospital. In Figure 1 we
visualize such a healthcare process. What we see from
the process model in Figure 1 is that the process starts
when a patient is registered (rp). After registration, the
medical team is required to perform initial blood tests
to gain an understanding of the situation of the patient
(tbv). Then, the medical team faces a decision to admit
the patient to a normal care ward or an intensive care
ward (nw and ic). Next, the medical team performs
a number of activities that have to do with providing
a treatment to a patient in the form of administering
medicine (am). For example, they can administer
antibiotics through an intravenous line (IV). The end of
the process, for most patients, is the discharge from the
ER (pr). However, some patients return to the ER at a
later stage (pra) or pass away (pd).

Process mining techniques can help healthcare
practitioners and managers to obtain better insights into
this process. Based on data logged by IT systems
so-called process discovery techniques can detect and
visualize which specific activities were performed and
in which order these activities were executed. These
activities are often a mix of medical activities (e.g.
treatments) and logistic activities (e.g. transferring
patients). Figure 1 represents the outcome of such
a process discovery technique. We can see that the
resulting process model gives an overview of the main
process flow. This focus on activities and their order is
commonly referred to as the control-flow perspective.

Visualizing the order in which activities are
performed already aids in gaining an overall
understanding of the process. However, it does
not reveal the impact of certain decisions on the process
flow. Given the potential severity of decisions in an ER,
it is very important to understand which decisions lead
to desirable and undesirable outcomes. For example,
doctors may want to understand if admitting a patient
to an intensive care ward (ic) increases or decreases
the chances of that patient needs to return to the ER
at a later stage (pra). To understand such aspects,
several process mining techniques complementing the
control-flow perspective have been developed. We can
identify two relevant research directions in this regard:
(1) causal mechanism, and (2) artifact-centric process
discovery.

Previous research has looked into this phenomenon
from a causal mechanism perspective [12, 13]. One
technique is proposed by the authors of [12]. In
their approach, the authors study repetitive aggressive
behavior of clients by trying to identify statistically
significant patterns in actions of clients, responses
of caregivers, and future aggression of clients.
The technique provides insights into the process of
aggressive behavior, but is limited in its applicability
to other scenarios for two reasons. First, the technique
focuses on repetitive processes. As such, the outcome
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of the process (the effect) must equal the input (action)
of the next iteration of the same process. Second,
the technique only considers the impact of singular
actions, but ignores the possibility of sets of actions.
Given these limitations, we cannot study our sketched
problem setting. The sketched healthcare process is not
a repetitive process as its input (the activities conducted
in the context of the ER) and outcome (the discharge
type) are not equal. Secondly, the activities performed
in the process can also be sets of activities rather than a
single activity, e.g. taking a number of blood tests rather
than a single blood test.

Another research direction that relates to problems
similar to ours are artifact-centric discovery techniques
[14]. These techniques use composite state machines
to capture and visualize different perspectives on a
process and how the relations in a process change. The
advantage of such techniques is that, by using states,
a generic approach is provided. The notion of states
is interesting in this setting as we cannot capture the
status of a patient in terms of activities, only in terms
of states (e.g. pr or pd). In the sketched problem we are
interested in how the process activities (e.g. ic or mw)
influence the state of a patient. However, the composite
state machine techniques do not provide insights into
the activities that impact the state transitions. In the
above problem scenario, we would be able to understand
state transitions, but not the underlying causes for those
transitions.

In sum, to obtain the insights required in our
scenario, existing process mining techniques are either
not sufficiently generic or do not provide insights into
the complex relations. The combination of these two
factors is crucial to aid practitioners and managers in
gaining an in-depth understanding of the process and
to generate actionable insights. In this research, we
introduce a novel approach that explicitly differentiates
between states and actions and automatically discovers
whether (sets of) actions lead to different states.

3. Approach

In Figure 2 we show which steps we take in the
approach. Below, we go into detail on every step.

3.1. Step 1: State-action log

The input for our approach is an event log L that
captures how the considered process was executed.
Formally, we can define L based on the universe of all
events E . The events recorded for a single execution
(i.e., an instance) of the process is called a trace, which
is modeled as a sequence of events. Therefore, we
denote a trace with n events as σ = < e1, . . . , en >,
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Figure 2. Proposed approach

Table 1. Running example sepsis chi-square table.

Observed Normal discharge Deceased Readmission Total
Normal ward 350 50 90 490
Intensive care 350 150 60 560
Total 700 200 150 1,050

Expected Normal discharge Deceased Readmission Total
Normal ward 326.7 93.3 70.0 490
Intensive care 373.3 106.7 80.0 560
Total 700 200 150 1,050

where each event e ∈ σ is part of E . However, for the
purpose of our analysis, we require an adapted notion
of such a traditional event log. Therefore, we build the
state-action log. Specifically, we need to distinguish
which events from a trace σ represent states and which
events from σ represent actions that lead to state
changes. To this end, we introduce a function α, which
returns for each e ∈ E whether e represents a state or an
action. To illustrate this, consider the trace σ1 = < rp,
tbv, daw, nw, am, pr >, which represents a possible
trace according to the process shown in Figure 1. As
pointed out above, we are particularly interested in the
impact of the activities conducted in the ER on the
discharge type (pre, pra, or pd). Therefore, we define
α in such a way that it maps the three discharge types to
states and all other events to actions. As a result, we can
analyze whether and which activities lead to one or the
other discharge type.

Due to the complexity of real-world processes, the
definition of α requires input from domain experts. This
means that we ask the user to define which events
represent actions according to our definition. While
this is certainly associated with some effort, it makes
sure that our technique can detect practically relevant
relationships.

3.2. Step 2: Statistical analysis

Once the state-action log is created, the approach
moves to the analysis step in which we perform
statistical tests to discover significant relations. Here,
we perform chi-square tests, which are subject to a
number of assumptions. This step is followed by
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post-hoc tests. The Chi-square test is a well-established
statistical test proposed halfway in the last century [15].
The Chi-square test has many advantages [16], the main
reasons for its use in this approach are: (1) it is very
robust due to its non-parametric nature (i.e. it does
not make assumptions about data distribution), (2) the
computation of the statistic is relatively easy and fully
transparent, (3) the test provides rich information, and
(4) the test is very suitable for in-depth post-hoc tests.

The test takes two inputs: (1) a set of observed
behavior for two categorical variables, and (2) the chi(χ)
distribution. The categorical variables in the context
of our approach are the state and the action. The data
that is used in the chi-square test represents how often
each combination of state and event are observed in
reality. This is referred to as the observed frequency.
The observed frequencies are converted into an n × m
table where n represents the number of action sets and
m represents the number of states. This is called the
observed frequency table, see for example the top of
Table 1. Based on this table the chi-square distribution
is introduced. In our example scenario we have two
actions; admission to normal ward and admission to
intensive care unit, and we have three states; normal
discharge, deceased, and readmission. Table 1 shows
artificially generated data for illustrative purposes.

The chi-square distribution is used to calculate the
expected frequency for each cell (i.e. combination of
action and response). The expected frequency calculator
takes the distribution and the observed frequency grand
total and total of each column and row. Using these
number the following formula is applied: N r×Nc

E[s][a] where

Nr equals the expected row total, Nc equals the column
total and E[s][a] equals the grand total.

Take for example the action normal ward and state
normal discharge. The observed frequency is 350. The
expected frequency is calculated based on the column
total (700), row total (490) and grand total (1,050).
Applying the formula on the example gives: 490×700

1050 =
326.7 The result of this exercise is represented in a
separate table called the expected frequency table, see
the bottom of Table 1.

Now, the chi-square test compares the difference
between the observed and expected frequency for each
cell. These differences are all summed and result in the
chi-square score. The formula used for this is:

χ2
c =

(Os1,a1 − Es1,a1)
2

Es1,a1
+ ....+

(Osn,an − Esn,an)
2

Esn,an

(1)
In the formula, Osn,an describes the observed value and
Esn,an describes the expected value for a combination
of state and action where 1 to n denote the individual

action or state. If we apply this formula on our
example case for all the combination of states and
actions, i.e. from state normal discharge (ND) to state
readmission (R) and for action normal ward (NW) and
action intensive care (IC). This results in the following
equation:

χ2
3 =

(OND,NW−END,NW )2

END,NW
+ ...+

(OR,IC−ER,IC)2

ER,IC

(2)
We know from Table 1 that there are three states and two
actions, so the degrees of freedom: c = (3 − 1) × (2 −
1) = 3.

χ2
3 = (350−326.7)2

326.7 + ...+ (60−80.0)2

80.0 = 51.56
(3)

If the observed and expected frequency values are
sufficiently different, a large test score is returned. The
next step is to check which pairs of observed and
expected frequency are sufficiently different. This step
is quite complex and describes how the chi-test score
is compared to the chi-distribution, see [17] for more
details. The larger the chi-square test score, the more
likely it is a significant score. In this study we test on
the alpha = 0.05 level. If the chi-square test score is
significant, this indicates that there is at least one set
of actions for which we observe a significantly different
frequency of states than expected. In the example above,
the p-value is 6.4 ∗ 1012 which is well below the alpha
level of 0.05. Thus, we can conclude that there is a
significant relation between at least one set of actions
and states.

The chi-square test is subject to a number of data
assumptions, which need to be checked [16]. Most
assumptions have to do with the way the data is collected
and stored. They can only be manually checked by the
analyst. However, one assumption relates to the sample
size and can be automatically checked. Specifically, the
assumption states that in the expected frequency table in
80% of the cells a minimum value of 5 must be present.
In this work, we apply a heuristic selection criterion to
test this. If the assumption is not met, an NA value is
returned and no further test results are returned.

The next step in the analysis is to perform
post-hoc tests. The goal is to determine which
specific combinations of sets of actions and states are
significantly related. To that end, a detailed statistic
called the adjusted standardized residual (ASR) is
calculated [18]. The ASR standardizes the difference
between the observed and expected frequency using the
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following formula:

ASR =
Os1,a1 − Es1,a1√

Es1,a1 ∗ (1− Es1,a1

Nc
) ∗ (1− Es1,a1

Nc
)

(4)

To apply it to our example case scenario, let us consider
the state action combination of normal discharge and
normal ward:

ASR =
350− 326.7√

326.7 ∗ (1− 326.7
700 ) ∗ (1− 326.7

700 )
= 5.70

(5)
With the ASR score, three metrics are produced: (1)
its significance, (2) its value, and (3) its size. In the
analysis part of the algorithm, only the significance of
the ASR is used. The ASR score is then normalized and
compared to a standardized p-value score (critical score)
[18]. The significance of the ASR score determines if it
has a significant impact on the overall chi-square test
score. In the example scenario above, the 5.70 score is
significant. If the test result is significant, this means
that the tested combination of state and set of actions is
significantly related. Below, we will go into detail about
how the graphical representations are created for all logs
in which at least one ASR score is significant.

As we perform multiple statistical tests on the same
data set we have to correct for the multiple comparisons
problem [19]. The multiple comparisons problem states
that with each test we increase the chance of finding
something by chance. To counteract this, we adjust
the p-value we set as significance barrier with the
Bonferroni correction [20]. The test corrects the p-value
according to the following formula: p = alpha

n where
alpha is the significance level, n equals the number of
tests, and p equals the new p-value used for testing.
Applying this on the running example, we perform tests
on each cell (n=6) and test on a 0.05 alpha level. Thus:
p-value = 0.05

6 = 0.008.

3.3. Step 3: Graph creation

The goal of the graph creation is to visualize the
uncovered statistical relations from the analysis step.
Existing work of [12] proposes a technique to visualize
statistical relations in process mining. In this work, we
build on that particular visualization technique. The aim
of graph creation is to increase the understandability of
the graph to the end-user. To that end, the significance,
value, and size of the ASR and the frequencies of the
arcs are used to create graphical representations.

The significance determines which arcs need to be
drawn for each node. If the ASR value is significant,
an arc is drawn. If the ASR value is insignificant, no
arc is drawn. The value of the ASR can be either
positive or negative and determines its direction. The
direction of the ASR cannot be negative as that would
indicate a non-significant value and thus no arcs would
be drawn. If the ASR value is positive, a solid arc
is drawn to indicate a positive relational direction. If
the ASR value is negative, a dotted arc is displayed to
indicate a negative relational direction. Returning to
the example scenario described in the previous section,
a 5.70 significant score would result in a solid arc to
indicate a positive relational direction between normal
ward and normal discharge. In practical terms, after
a normal ward, we see an increased likelihood that a
normal discharge follows.

The size of the ASR value corresponds with the
thickness of the arcs. In total there are six thickness
classes, three for positive and three for negative values.
These classes are based on the maximum and minimum
ASR values and the critical value. A simple algorithm
calculates the difference between the maximum and
the critical score (usually |2.57|) and determines three
equally large ranges for three classes. The classes reflect
the effect size of the relation. A thicker arc means a
stronger relation. In our case, 5.70 is the largest ASR
value. Thus, it would be represented as a thick solid arc
in the graphical representation.

Note that a thicker dotted arc means a stronger
negative relation. To exemplify, a thick dotted arc
between a set of actions and a state reflects that there is
(highly) decreased likelihood that this state occurs after
that set of actions. Finally, the observed and expected
frequencies that are calculated in the second step are
displayed on each drawn arc. This helps to gain an
understanding as to the prevalence of each combination
of state and action.

If we apply this approach on the running example,
as depicted in Table 1, we get the representation that
can be found in Figure 3. Here, we see for example
that admission to a normal ward (n = 490) (slightly)
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Figure 4. Multi-perspective process model used for

decision mining on the sepsis process data in [21].

increases the chances of a normal discharge (observed =
350, expected = 350) and (largely) decreases the chances
that the patient deceases (observed = 50, expected =
93). In addition, the same analysis can be applied for
the cases that are admitted to the intensive care unit.
Finally, we see that readmission is not included in the
graph, which means that it has no effect on either normal
discharge or death of a patient.

4. Case study

The goal of this section is to twofold: (1) to
demonstrate the applicability of the proposed approach
in a real-world scenario, and (2) to generate new insights
into the complex relation between state and action.
To this end, the sepsis data from [21] is used in this
research. Below, we will first go into detail on the data
set and its characteristics. As will be explained below,
the data can be analyzed in multiple ways. Therefore,
we present two different ways to create a state-action
log based on the sepsis event log in the pre-processing
section. First, we present the results where we look
into the effect of continuous monitoring and substance
administration of a patient on the way a patient is
discharged. Then, we present the results where we

look into the impact of the decisions of the medical
team on whether or not the patient returns to the ER
room. Here, we study two main decision moments:
(1) to which type of ward the patient is admitted, and
(2) in what way the patient is discharged. The goal
of looking into these challenges is to show that our
approach can produce new work hypotheses that can
be used to enhance the understanding of healthcare
processes. Ideally, these insights form a starting point
of a collaboration effort with healthcare practitioners
and/or managers to uncover and understand the complex
relations in their healthcare processes.

4.1. Case study data & context

The data for this project was collected in another
study in which the researchers collaborated with a
medium-sized regional hospital in the Netherlands [21].
The project was aimed at studying the trajectories
of emergency room patients, more specifically, those
patients with symptoms for sepsis. Sepsis is a
life-threatening condition where the body reacts to an
infection by damaging its own tissue. Sepsis requires
continuous monitoring and a treatment with antibiotics.
Data was taken from three systems: emergency room,
laboratory, and other ward. This data was anonymized
and combined into one data warehouse after which an
event log in XES format was created. In total, the
log contains traces for 1,050 cases and 15,214 events
that are recorded in 1.5 years of patient records (from
November 2013 to June 2015). The log contains 16
unique activities and 846 distinct variants. More details
on the data and its collection can be found in [21].

The event log contains sixteen activities: three
activities for the registration and triaging, three activities
for taking certain blood measures for patient monitoring
(leucocytes, CRP, and lactic acid), two activities for
administration of substances to the patient (IV liquid and
IV antibiotics), two activities for admission or transfer
to normal ward or intensive care unit (admission NC
or IC), five types of discharge (activities release A-E)
from the hospital, and one activity capturing if patients
returned to the ER at a later stage (within 28 days).

In their project, the authors of [21] mainly focus on
three challenges: (1) conformance checking in terms
of adherence to medical guidelines, (2) uncovering the
various trajectories that patients can flow through, and
(3) to discover decision rules to detect returning patients
[21]. They create a process model depicted in Figure
4 to study these challenges. For our work, we aim
to expand on this work by focusing on the latter two
challenges. These two challenges are of interest as
the impact of certain actions can influence both the
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Table 2. The mapping from activities to states and actions of analyses
Activities mapped to states Activities mapped to actions

Analysis 1 ‘ER Registration’, ‘Admission NC’,
‘Admission IC’, ‘Release A’, ‘Release B’,
‘Release C’, ‘Release D’, ‘Release E’

‘Lactic Acid’, ‘IV Liquid’, ‘IV
Antibiotics’, ‘CRP’, ‘Leucocytes’

Analysis 2 ‘ER Registration’, ‘return ER’ ‘Admission NC’, ‘Admission IC’, ‘Release
A’, ‘Release B’, ‘Release C’, ‘Release D’,
‘Release E’

trajectory of a patient as well as the patient return rate
of patients to the ER. As for the patient trajectories, the
authors describe the various types and frequencies of the
paths that patients can take [21]. They also indicate that
some paths are more desirable than others. In this light,
it is interesting to determine if there are certain actions
that lead to a more desirable patient path. However, from
the work of [21] no insights can be obtained from their
findings as to which specific actions impact the path of
the patient.

The first challenge addresses the patient trajectories,
turning to the second challenge where the authors focus
on patients returning to the ER. The authors of the
original study try to apply decision mining techniques
[22, 23] to discover if there were certain rules that
could give insights into whether or not a patient would
return to the ER within a certain time frame. Ideally,
rules would be discovered that helped doctors gain
insights into which actions to perform or decisions
to take in order to reduce the number of returning
patients. However, the authors could not find any such
rules based on, amongst others, triage documentation
and values from metrics taken. In this work we
will expand on the challenge of returning patients by
studying if monitoring the patient continuously and/or
administrating substances through IVs is correlated with
a lower likelihood of the patient returning to the ER.

4.2. Pre-processing

As explained in our approach, we try and tackle
two challenges: (1) patient trajectories, and (2) patients
returning to the ER. For each challenge we create a
corresponding state-action log by mapping the activities
to the set of states and the set of actions. For this
cases study, we created two state-action logs, one for
each analysis. For the first analysis, we mapped the
ER registration, admission, and discharge activities as
states and considered the tests and the medicines as the
actions. This mapping allows us to find whether the
lab tests and the medicines have any influence on the
admissions (to IC or NC) and the type of discharge.
For the second analysis, we mapped the admission and

Figure 5. Sepsis analysis when we use metrics as

actions and discharge type, admission type and

registration as states

discharge activities to actions and the ‘ER Registration’
and ‘return ER’ activities as states. This mapping allows
us to find whether the admission to IC or NC and
the discharge types have any influence on the patient
returning to the hospital or not. The concrete mapping
is listed in Table 2. In the following sections, we discuss
the results found.

4.3. Continuous monitoring & substance
administration

As mentioned previously, one of the challenges in
the ER room is to find out how doctors can influence the
trajectories of patients. In that respect, we developed
a log where we are interested in the states: ward type
and discharge type. Ward type can be either normal
ward (Admission NC) or intensive care (Admission IC).
Discharge type can be one of five types categorized as
release A - release E. Finally, there can be patients still
in the ER at the time of data collection; this should
result in a nan (No return to ER). Next to the states
we are interested in the actions that can impact the state
transitions: CRP, Leucocytes, Lactic acid, IV liquid, and
IV antibiotics.

The first three actions are all decisions of the medical
team to (continuously) monitor a patient’s status through
blood tests. The blood tests (CRP, leucocytes, and
lactic acid) are performed almost by default when a
patient is admitted to the ER and has a slight fever.
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These tests are also performed regularly after a patient
has been admitted to the hospital to check whether an
applied treatment is working or not and may serve as a
grounding to discharge patients. The last two actions
regarding an IV refer to the decision of the medical
team to administer substances to the patient. We can
see in Figure 4 that these patient pathways exist, but
we are interested in determining the impact of taking
these blood tests and administering substances. The
results from our approach can be split into two parts:
(1) the relations visible in the graph, and (2) the lack of
expected relations.

In Figure 5 we can see the statistically significant
relations between the actions and the states. What we
observe in the figure is that 656 cases are admitted to
the normal care ward, roughly 60% of the population.
In line with expectations, we can observe that two
of the continuous monitoring actions are significantly
related to the further trajectory of the patient: CRP
and leucocytes. The CRP test refers to a c-reactive
protein test; the leucocytes test is a white blood cell test.
These are tests to check if the patient is reacting to an
inflammation.

In Figure 5 we can observe that performing these
tests are related to a higher probability of release type A
(normal discharge) and release type D (transfer to other
care facility). Especially release type A is common,
we observe that this follows CRP and leucocytes in 459
cases where we would only expect 372 cases based on
the statistical tests. In addition, performing these two
tests is related to a lower probability of readmission to
the normal care ward, this is observed 121 times where
we would expect 192 cases. In short, the results show
that monitoring a patient’s blood values is related to a
higher probability of a normal discharge of that patient,
which is a desired outcome for all parties involved. This
is not so surprising, as the results of these tests are used
to determine whether a patient can be discharged or not.

What cannot be observed from the figure is that there
are a number of relations that are expected, but were
not found. First, we would expect to see a similar
pattern for all blood tests and substance administration.
Interestingly, the other blood test (lactic acid) and the
administration of liquid and/or antibiotics through an IV
do not have a significant impact on the patient pathway.
These three actions are performed when the medical
team estimates that the patient’s condition is severe.
Therefore, we would expect it to have a relation with the
admission to the IC and/or to other types of discharges.
However, no such relation is found in the data. It
seems worthwhile to collaborate with domain experts to
further investigate the effect of these actions on patient
well-being. The goal of such a project could be to

Figure 6. Sepsis analysis when we use registration

and return as states, and admission type and

discharge type as actions

optimize the cost-benefit balance for the care for these
patients.

4.4. Medical team decisions

The second challenge relates to the return of patients
after they leave the ER. Previous work could not identify
rules to determine what factors play a role in the return
of patients [21]. To follow up on this challenge, we
investigate whether the decisions made by the medical
team to admit a patient to a normal or intensive care
unit and how the patient is discharged has an impact
on the return of patients. As such, the states for this
challenge are: registration and return to ER or nan (no
return to ER). In turn, the actions are: admission type
and discharge type. From the original process model in
Figure 4 we can see that the return of patients happens
in almost a third of the cases (27.8 %), but we cannot
infer what might cause a patient to return.

In Figure 6 we can see the statistically significant
relations between the states and actions. What we can
observe is that admitting the patient to the normal care
ward and having a normal discharge (Release A) is a
relatively frequent pathway for patients: it is observed
for roughly half the patients (585 out of 1,050 cases).
If we look at the impact of these actions, we see that
they are related to a higher probability of a patient
returning to the ER. We observe that this happens 234
times whereas we expect it to happen 164 times. In
addition, these actions are related to a lower likelihood
of patients not returning to the ER. This is observed 351
times versus the expected 421 times.

A similar pattern shows if a patient is not only
admitted to the normal ward (Admission NC), but also
the intensive care (Admission IC) followed by a normal
discharge (Release A). The patient is, again, more likely
to return to the ER and less likely to not return to the
ER. This patient pathway is considerably less common,
but is still observed for roughly 10% of the patient
population.

This is an interesting finding as it indicates that there
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is a group of patients that seem to be doing relatively
well. This is indicated by the fact that they are admitted
to a normal ward and discharged normally. However,
a subgroup of this patient group might not be doing
so well in reality as they return to the ER. This points
to the fact that symptoms might be overlooked during
the first admission that come into play at a later stage.
Further research should look into this patient population
to identify which patient characteristics are associated
with this to lower the return of patients. Gaining insights
into this can result in better care for the patients as their
pathology can be improved. In turn, this reduces both
costs for the hospital and patients.

5. Related Work

As discussed in the problem statement, causal
process mining techniques related closely to the problem
we set out to tackle in this paper. To discover causal
mechanisms in process models often decision rule or
root cause approaches are proposed [13, 24, 25]. The
authors of [13] propose an exemplary case of such a
decision rule mining technique. They develop a model
in a financial context in which they use uplift trees to
determine for which subgroups of clients a specified
treatment has an effect. Although this technique
produces valuable input, the technique heavily relies on
the definition of subgroups. This is not always a suitable
approach as it can be that there is a specific process for a
(largely) uniform subgroup of patients. No insights can
be generated into the effectiveness of treatments.

Another limitation that this approach poses becomes
clear when we consider the output these techniques
produce. The output of the decision rule mining
techniques are often declarative in the sense that they
produce a set of rules described in text format which
serves as guideline to optimize decision making in the
process (e.g. [13]). In other work on causal mining, the
output of causal mining techniques is more imperative in
the sense that the authors propose a more graphical style
output (e.g. [12]). Existing research has shown benefits
for each type of output, but conclude that a hybrid
form is optimal for maximizing the understandability
of a process [18]. In turn, this should increase the
effectiveness of turning process mining results into
actionable insights [4].

In the present work we present a novel approach that
addresses these limitations. Our approach is generic in
the sense that it is flexible in its formalization of state
and action. In addition, our approach produces graphical
representations (i.e. process models) with declarative
elements (i.e. statistical relations and annotations) as
output. This ensures that the approach is: (1) applicable

to a wider spectrum of problem scenarios, and (2)
that the results that are produced better can be used
to support the interpretation and communication of the
findings. To the best of our knowledge, no such
approach or techniques have been previously proposed.

6. Conclusion

In this paper we proposed a novel approach to
discover the statistical relations between states and
actions. This work combined two main approaches to
propose an approach that is both generic and identifies
complex relations in organizational processes. The
approach is generic in the sense that it can deal with
a wide range of scenarios, as long as we can identify
states and actions. The generic applicability stems from
the flexibility in the concepts of states and actions. To
exemplify, an action can consist of a single or multiple
activities. In the latter case, the action can be defined
in different ways, for example, as a set or sequence of
activities. The limitation of such a generic approach
is that it requires manual work to define such actions
and states. Ideally, this is done through a collaboration
between process analyst and domain expert.

We used a case study for two purposes: (1) to test
the applicability of our approach, and (2) to generate
new insights into complex relations. The case study
concerned a public data set on 1,050 patient with
sepsis that were admitted to the emergency room in
a Dutch hospital. We applied the approach to tackle
two remaining questions regarding patient pathways
and patient return rates. First, the approach aimed
to identify those actions that have an influence and
are related to a desired patient pathway. Thereby
optimizing the cost-benefit balance in the care of
patients. Second, the approach was used to determine
what actions in the processes are related to higher or
lower probabilities of patients returning to the ER at
a later stage. Ultimately providing new insights into
which patients are susceptible to early return to the ER
room with sepsis symptoms.

There are two main limitations to the proposed
approach: (1) domain knowledge is required to define
actions and states, (2) the approach cannot confirm
that the relations are causal relations. As for the first
limitation, the technique is not automated in the sense
that it can detect states and actions. Ideally, this would
be the case as it would decrease the burden on the
involvement of domain experts. A brute force approach
is an alternative, here one would try and map the
activities in the process in all possible combinations
of states and actions. However, this would severely
escalate the multiple comparisons problem.
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The second limitation concerns the fact that the
approach discovers potential causal relations. It shows
that there is a relation between a state and an action, but
cannot guarantee that this relation is causal. In order
to do that, a number of others steps need to be taken.
For example, possible confounding variables need to be
checked and a number of other independence criteria
need to be met (i.e. exchangeability, positivity, and
consistency) [13].

In future work we will focus on the notion of
causality by including additional tests and checks
into the approach such that it can be automatically
detected. In addition, we will address the problem of
automatically detecting states and actions from a given
event log.
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