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ABSTRACT
In AI and law, systems that are designed for decision support should
be explainable when pursuing justice. In order for these systems
to be fair and responsible, they should make correct decisions and
make them using a sound and transparent rationale. In this paper,
we introduce a knowledge-driven method for model-agnostic ratio-
nale evaluation using dedicated test cases, similar to unit-testing
in professional software development. We apply this new quantita-
tive human-in-the-loop method in a machine learning experiment
aimed at extracting known knowledge structures from artificial
datasets from a real-life legal setting. We show that our method
allows us to analyze the rationale of black box machine learning
systems by assessing which rationale elements are learned or not.
Furthermore, we show that the rationale can be adjusted using
tailor-made training data based on the results of the rationale eval-
uation.
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1 INTRODUCTION
In AI and Law, explainability is a key requirement in system design,
due to the need for the justification of decisions. For machine-
supported decisions, this is encoded in the GDPR’s right to ex-
planation. Four types of explanations can be distinguished, all of
which have been applied to AI and Law [Atkinson et al. 2020a]:
contrastive explanations [Ashley 1990; Rissland and Ashley 1987;
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Verheij 2003a], selective explanations [Atkinson et al. 2020b; Ver-
heij 2003b], probabilistic explanations [Vlek et al. 2016] and social
explanations [Atkinson et al. 2020b; Gordon 1995; Hage et al. 1993].

This requirement of explainability is problematic for the ap-
plication of central machine learning techniques in law. Neural
networks, for example, are known to perform well, but behave like
a black box algorithm. Hence, explanation techniques have been
developed to ‘open the black box’ (cf. LIME [Ribeiro et al. 2016],
SHAP [Lundberg and Lee 2017]). Even in the domain of vision
(where the successes of deep learning are especially significant),
the necessity of such methods is underpinned by studies regarding
adversarial attacks that show that slight perturbations of images,
invisible to the human observer, can radically change the outcome
of a classifier [Goodfellow et al. 2015].

In this paper, we therefore evaluate black box machine learning
methods with a focus on proper explainability, and not only in
terms of accuracy as in the standard machine learning protocol. We
are in particular interested in evaluating the discovered rationale
underlying decisions, where the rationale is the knowledge struc-
ture that can justify a decision, such as the rule applied. We aim
to measure the quality of rationale discovery, with an eye on the
possibility of improving rationale discovery.

Our work builds on a study investigating whether neural net-
works are able to tackle open texture problems [Bench-Capon 1993]
(also investigated in [Možina et al. 2005; Wardeh et al. 2009]). To
measure and possibly improve rationale discovery, we create dedi-
cated test datasets, on which a machine learning system can only
perform well if it has learned a particular component of the knowl-
edge structure that defined the data. The idea is similar to how unit
testing works in professional software development: we define a
set of cases, targeting a specific component, in which we know
what the answer should be, and compare that to the output that
the system gives.

In order to focus on what is methodologically feasible, we do not
use natural language corpora (such as conceptual retrieval [Grab-
mair et al. 2015], argument mining [Mochales Palau and Moens
2009; Wyner et al. 2010] or case prediction [Ashley 2019; Brüning-
haus and Ashley 2003; Medvedeva et al. 2019]). Instead we work
with datasets of artificial decisions with known underlying gener-
ating rationale. Other earlier discussions of neural networks in law
are [Hunter 1999; Philipps and Sartor 1999; Stranieri et al. 1999].

2 REPLICATION EXPERIMENT
The first step towards developing our method for rationale evalua-
tion was replicating the study by Bench-Capon [1993]. This was
done using modern, widely-used neural network methods and with

235

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/


ICAIL’21, June 21–25, 2021, São Paulo, Brazil Steging et al.

significantly larger datasets, in order to reaffirm that the claims
made in 1993 still hold today. The study introduces a fictional legal
domain, where the eligibility for a welfare benefit for elderly citi-
zens is determined by the conjunction of six independent conditions.
Artificial datasets were generated specifying personal information
of elderly citizens with their eligibility for the welfare benefit. Mul-
tilayer perceptrons were trained and tested on these datasets, and
managed to achieve high accuracy scores (above 98%).

Using special test datasets, it was shown that the neural net-
works were unable to properly learn the first and the last of the
six conditions. Furthermore, the networks performed significantly
worse when ineligibility was caused by the failure of only a sin-
gle condition. The training data was therefore altered such that
ineligible people only failed on a single condition, rather than on
multiple conditions as in the original training dataset. By making
these adjustments to the training dataset, the neural networks were
able to learn conditions more adequately, while maintaining similar
accuracy scores. However, even after adjustment, the conditions
that defined the data were not learned perfectly.

In our replication, we discovered that even with more data and
modern, commonly used neural networks, the nets are still un-
able to learn all six conditions that define eligibility, despite high
accuracies (99%). Using two dedicated datasets (as also defined
in [Bench-Capon 1993]), it was shown that the nets still did not
learn condition the first and last condition. The rationale of the
nets is therefore not sound, despite high accuracies. Just as in the
original study, adjusting the training data based on expert knowl-
edge of the domain significantly improves the rationale of the net
without seriously impacting the accuracy.

Additionally, we created a simplified version of the domain, con-
taining only the first and last condition, to see how well the net-
works are able to extract a simplified rationale. In this domain, the
networks were able to learn both conditions.

The methods and results of the replication experiment as well
as its variations, can be found in detail in [Steging et al. 2021].

3 TORT LAW: DOMAIN AND DATASETS
Following up on the fictional welfare benefit domain, we study
a non-fictional legal setting, namely Dutch tort law. This domain
uses only Boolean variables, but allows for exceptions to underlying
rules. This section describes the underlying knowledge structure
of the Tort Law domain using logic, from which we will generate
datasets to train a series of neural networks. These networks will
subsequently be analysed using a method we propose for assessing
the quality of their rational discovery. To this endwe need two types
of datasets for the purpose of testing. The first are standard test
sets sampled from the complete domain to evaluate the accuracy
of the networks. The second type is a dedicated test set designed
to target a specific aspect of the domain knowledge. This section
describes all datasets we use.

3.1 Domain
Our domain concerns Dutch tort law: articles 6:162 and 6:163 of the
Dutch civil code that describe when a wrongful act is committed
and resulting damages must be repaired. This ‘duty to repair’ (𝑑𝑢𝑡 )
can be formalised as follows:

Figure 1: Arguments and attacks (A) and their elementary
propositions (B) in Dutch tort law [Verheij 2017].

𝑑𝑢𝑡 (𝑥) ⇐⇒ 𝑐1 (𝑥) ∧ 𝑐2 (𝑥) ∧ 𝑐3 (𝑥) ∧ 𝑐4 (𝑥) ∧ 𝑐5 (𝑥)
𝑐1 (𝑥) ⇐⇒ cau(𝑥)
𝑐2 (𝑥) ⇐⇒ ico(𝑥) ∨ ila(𝑥) ∨ ift (𝑥)
𝑐3 (𝑥) ⇐⇒ vun(𝑥) ∨ (vst (𝑥) ∧ ¬jus(𝑥)) ∨ (vrt (𝑥) ∧ ¬jus(𝑥))
𝑐4 (𝑥) ⇐⇒ dmg(𝑥)
𝑐5 (𝑥) ⇐⇒ ¬(vst (𝑥) ∧ ¬prp(𝑥))

where the elementary propositions are provided alongside an argu-
mentative model of the law in Figure 1 [Verheij 2017], and condi-
tions 𝑐2 and 𝑐3 capture the legal notions of unlawfulness (unl) and
imputability (imp) respectively.

Compared to the fictional welfare domain in [Bench-Capon 1993]
and our replication variations [Steging et al. 2021], the Dutch tort
law domain is captured in 5 conditions for duty to repair (dut), based
upon 10 Boolean features. Each condition is a disjunction of one
or more features, possibly with exceptions. The feature capturing
a violation of a statutory duty (vst) is present in both condition 𝑐3
and 𝑐5, rendering these dependent.

3.2 Datasets
We generate four different types of datasets, each for different
purposes.1 For most types of datasets, the generating process is
at least partly stochastic and repeated for every repetition of an
experiment. Using the same type of dataset, for example in training
and testing a neural network, does therefore not mean that the
exact same dataset was used in both training and testing. Table 1
shows an overview of the datasets of the tort law domain.

With 10 Boolean features there are 210 = 1024 possible unique
cases that can be generated from the argumentation structure of
the tort law domain in Figure 1. Each case has a corresponding
outcome for dut, indicating whether or not there is a duty to repair
someone’s damages.
1The Jupyter notebooks used for generating the data can be found in the following
Github repository: https://github.com/CorSteging/DiscoveringTheRationaleOfDecisions
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Table 1: An overview of the tort law datasets. Datasets
marked with an asterisk are used for testing purposes only.
For each type of dataset, the size and label distribution is
given.

T/F label
Dataset Size distribution
Regular 5,000/500 50%/50%
Unique* 1024 10.94%/89.06%
Unlawfulness* 168 66.67%/33.33%
Imputability* 128 87.5%/12.5%

The unique dataset contains these 1024 unique instances for
the 10 features plus the label. In this dataset, there are 912 instances
where dut is false and 112 instances where dut is true (10.94%).

The regular type datasets are generated such that dut is true
in exactly half of the instances. The sets are regular in the sense
that balanced label distributions are common in machine learning
problems. These regular datasets are generated by sampling uni-
formly from the subset of cases from the unique dataset, such that
each possible case is represented equally within the 50/50 label
distribution. In a typical machine learning experiment, only a sub-
set of the possible cases is typically available and presented to a
network, upon which the network will have to learn to generalize
to all possible cases. In addition to generating regular type datasets
with 5,000 cases, we therefore also generate smaller regular type
datasets with only 500 instances; the latter contains 35.35% of the
unique instances.

In the tort law domain we focus on the notions of unlawfulness
(𝑐2) and imputability (𝑐3) to assess whether the networks are able
to discover conditions in the data. For each of the two conditions,
we create a dedicated dataset.

The Unlawfulness dataset is the subset of the unique dataset in
which the features for the unlawfulness condition 𝑐2 can take on
any of their values, while the other features have values that are
guaranteed to satisfy the remaining conditions. Whether or not
there is a duty to repair is therefore solely determined by whether
or not condition 𝑐2 is satisfied. All combinations of values of the
other features are considered. The Unlawfulness dataset therefore
consists of 168 unique instances, of which 66.66% have a positive
𝑑𝑢𝑡 value.

The Imputability dataset is a similar subset of the unique dataset,
but now the features for the imputability condition (𝑐3) can take on
any value, except that the value of vst must be such that condition
𝑐5 is satisfied. The value of 𝑑𝑢𝑡 (𝑥) is now completely dependent on
whether or not condition 𝑐3 evaluates to true. Due to the interde-
pendency of conditions 𝑐3 and 𝑐5, the Imputability dataset only has
128 unique instances, 87.5% of which have a positive 𝑑𝑢𝑡 value.

4 EXPERIMENTAL SETUP AND RESULTS
In this section we describe and motivate the experiments we per-
formed for the tort law domain and report on their results.

4.1 Experiments
We decide to use neural networks like in [Bench-Capon 1993].
The method is model-agnostic, however, meaning that it can be

applied to any other machine learning model as well. We assume
that assessing and improving rationale discovery is relevant only
for models that perform well on their respective task. Our first step,
after training the above mentioned neural networks, is therefore
to evaluate their performance on typical test sets in terms of the
standard accuracy measure. Subsequently we will evaluate the
performance of the networks on the dedicated, knowledge-driven
test sets that were specifically designed for assessing the networks’
quality of rationale discovery.

4.1.1 Neural network architectures. Similar to the original experi-
ments, three multilayer perceptrons were used with one, two and
three hidden layers, respectively [Bench-Capon 1993]. The nets
all have 10 input nodes, corresponding to the number of features
and a single output node, representing duty to repair. The node
configuration (i.e. number of nodes per layer) of each network is as
follows:
• One hidden layer network: 10-12-1
• Two hidden layer network: 10-24-6-1
• Three hidden layer network: 10-24-10-3-1

We use the MLPClassifier of the scikit-learn package [Pedregosa
et al. 2011], the sigmoid function as the activation function, the
Adam stochastic gradient-based optimizer [Kingma and Ba 2015],
with a constant learning rate of 0.001. A total of 50,000 training
iterations are used with a batch size of 50. Recall that the focus
of this study is not on creating the best possible classifier, but to
assess rationale discovery.

4.1.2 Training and performance testing. The three types of neural
networks are trained and tested on all combinations of different
datasets from Table 1. Every combination of training dataset and
testing dataset is evaluated in terms of the accuracy of the resulting
network on the test data. Because some of the datasets are stochas-
tic (each generated dataset is slightly different), the whole process
of data generation, training and testing is repeated 50 times. The
mean classification accuracies along with their standard deviations
are reported. To assess the rationale discovery capabilities of all the
trained networks, we study their performance on the dedicated test
sets for unlawfulness and imputability conditions. Performance is
measured both quantitatively, using standard accuracy, and qual-
itatively by a more detailed comparison of actual and expected
outcomes.

4.2 Results
Table 2 shows the mean classification accuracies over 50 runs, to-
gether with their standard deviations, for the different combinations
of training and testing sets in the tort law domain. The table includes
the quantitatively measured performance on the two dedicated test
sets.

We can evaluate how well conditions 𝑐2 (unlawfullness) and 𝑐3
(imputability) are learned. For these conditions, the network should
output 1 in cases from the Unlawfulness dataset where the case is
unlawful (𝑐2), or in the Imputability dataset where the case can be
imputated to a person (𝑐3); otherwise the output should be 0. The
mean output of the 3 layer network over 50 runs for the two training
sets on the Unlawfulness and Imputability datasets is presented in
Table 3.
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Table 2: The accuracies obtained by the neural networks in the tort law domain.

Trained on all instances Trained on smaller dataset
General Unique Unlawfulness Imputability General Unique Unlawfulness Imputability

1 hidden layer 100±0 100±0 100±0 100±0 98.45±0.5 97.24±0.89 92.8±3.47 91.22±4.04
2 hidden layers 100±0 100±0 100±0 100±0 99.03±0.44 98.27±0.78 95.71±3.1 94.38±3.84
3 hidden layers 99.86±0.37 99.76±0.66 99.67±1.83 99.5±1.56 98.23±0.72 96.83±1.28 92.96±5.33 91.45±3.51

Table 3: Mean network output on the Unlawfulness and Im-
putability datasets versus the logical evaluation of the un-
lawfulness resp. imputability conditions.

Trained on all instances Trained on smaller dataset
Unlawfulness Output Unlawfulness Output
False 0 False 0.018
True 1 True 1
Imputability Output Imputability Output
False 0 False 0.875
True 1 True 1

5 DISCUSSION
5.1 Standard Accuracy
Standard accuracy is measured to see whether the learned models
are able to solve the classification problem, regardless of whether
or not they discovered the rationale underlying the data. We find
accuracies of 100% or near 100% for networks trained on all in-
stances (see Table 2). When presented with all unique instances,
the networks with one and two hidden layers are able to perfectly
predict the outcome from Dutch tort law, and the network with
three hidden layers can create a very close approximation.

Presenting a neural network with all available cases is in practice
often infeasible. If it is possible, then a simple lookup table rather
than a neural network would most likely suffice. For this reason,
we also trained the networks on a subset of only around 35% of the
unique instances (see Table 2). As expected, the accuracies of the
networks on the general test sets drop, but only slightly (to 98-99%).
Even on the unique test set, accuracies remain around 96%. This
suggests that it is possible for the models to approximate tort law
with a small subset of the unique cases.

5.2 Rationale Discovery
Looking at the performance of the networks on the dedicated test
sets partially exposes how well the rationale is captured by the
network. We designed these test sets such that each one targets a
single condition from the domain. In addition to considering the
accuracy on these dedicated test sets, we qualitatively evaluate the
rational discovery capabilities of the networks by comparing their
outputs with the actual outputs we would ideally expect for the
different domains.

Recall that on the Imputability dataset, networks should output 1
if the act is imputable to the person, and 0 otherwise; on the Unlaw-
fulness dataset, the networks should output 1 if the case is unlawful,
and 0 otherwise. Table 3 shows how well the networks were able
to internalize the notions of unlawfulness and imputability. When
trained on all instances, the mean output of the networks is 0 if the

logical evaluation of unlawfulness is false, and 1 if it is true, which is
exactly what it should do. Networks trained on all instances attain
a perfect score on the Imputability dataset as well. This can also
be seen in Table 2, where the networks score 100% accuracy on
the Unlawfulness and Imputability datasets after training on all
instances.

With less data, however, accuracies drop to around 92-95% for
the Unlawfulness dataset and 91-94% for the Imputability dataset.
This accuracy may still seem high, but we should take into account
the label distributions (66.67-33.33% and 87.5-12.5%, respectively).
Table 3 shows that networks still perform perfectly on cases in
which the unlawfulness and imputability conditions evaluate to true.
When the conditions are false, however, mistakes are made. The
average output of networks on the Unlawfulness dataset increases
to 0.018, which should be 0, meaning that networks classify some
lawful cases as unlawful. In the Imputability dataset, the mean
output increased more drastically to 0.875 when imputability is
false, meaning that in 87.5% of the instances in which the act is
not imputable to a person, the network incorrectly decided that it
should be. This means that despite high accuracy on the general
test set, the networks largely ignored the concept of imputability.

5.3 A Method for Rationale Evaluation
Although our experiments and discussion focused on specific ex-
ample domains and neural networks, our approach for rationale
evaluation can be interpreted as a general method independent of
the machine learning algorithm applied. Building on the results of
this paper, we therefore proposes a knowledge-driven method for
model-agnostic rationale evaluation, consisting of three distinct
steps:

(1) Measure the accuracy of a trained system, and proceed if the
accuracy is sufficiently high;

(2) Design dedicated test sets for rationale evaluation targeting
selected rationale elements based on expert knowledge of
the domain;

(3) Evaluate the rationale through the performance of the trained
system on these dedicated test sets.

The first step is based on the assumption that efforts for assessing
and possibly improving the rationale discovery capabilities of a
learned model are only taken if the general performance of the
model is already considered good enough. Here we assume per-
formance is measured using accuracy, but other measures can be
employed as well and the threshold of what is considered good
enough may vary per domain and application.

The second step in our method depends on domain knowledge.
Hence the method effectively is a quantitative human-in-the-loop
solution for rationale evaluation.
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In the third step, performance is again evaluated, by now not
only considering accuracy but also examining model output and
expected output in terms of the dedicated test sets.

The method does not currently specify how the dedicated test
sets are constructed. We aim to further operationalize the rationale
evaluation method by using information about the knowledge in
the domain, and the distribution of examples, for instance building
on Bayesian networks. Subsequently, the information gained by
using this rationale evaluation method can be used to improve the
rationale of the system by adjusting the training data accordingly,
such as in [Bench-Capon 1993] and our replication variants [Steg-
ing et al. 2021], effectively allowing us to impose sound rationale
discovery.

6 CONCLUSION
The work in this paper was inspired by Bench-Capon’s 1993 paper
that investigated whether neural networks are able to tackle open
texture problems. The conclusions were that trained networks can
perform very well in terms of accuracy, even though some condi-
tions from the domain are not learned [Bench-Capon 1993]. Similar
results were found when we repeated the experiments with larger
training datasets, in order to ensure that the original conclusions
about conditions that were not learned are not due to a lack of data.

The idea of constructing test cases to test specific conditions
inspired us to propose a method for assessing rationale discovery
capabilities by designing dedicated test datasets and to evaluate per-
formance on these knowledge-driven test sets, combining quantita-
tive and qualitative evaluation elements in a hybrid way. Adjusting
the training dataset based on this evaluation methods demonstrates
that the rationale can be improved using knowledge-driven tailor
made training sets [Bench-Capon 1993; Steging et al. 2021].

In the real life tort law domain, with a non-fictional knowledge
structure and different characteristics, a similar pattern can be
observed as before: the networks failed to learn the independent
condition that defines imputability, despite high accuracies on the
general test set.

This study therefore reaffirms the conclusions from previous
work, while simultaneously introducing a model-agnostic method
for assessing rationale discovery capabilities of machine-learned
black box models, using dedicated test datasets designed with ex-
pert knowledge of the domain. In future research, we aim to further
detail and extend our method such that by employing it, the sound-
ness of the rationale underlying system decisions becomes tangible,
and its quality can be asserted. Based on this evaluation, the train-
ing data of the black-box systems can be altered to improve their
rationale. Further expanding upon this design method will bring
us closer to AI that is both explainable and responsible.
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