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Abstract

In this paper we provide a detailed analysis of the inference
process induced by logical argumentation frameworks. The
frameworks may be defined with respect to any propositional
language and logic, different arguments that represent deduc-
tions in the logic, various support-based attack relations be-
tween arguments, and all the complete Dung-style semantics
for the frameworks. We show that, ultimately, for charac-
terizing the inference process with respect to a given frame-
work, extension-based semantics may be divided into two
types: single-extension and multiple-extension, which induce
respective kinds of entailment relations. These entailments
are further classified by the way they tolerate new informa-
tion (nonmonotonicity-related properties) and maintain con-
flicts among arguments (inconsistency-related properties).

1 Introduction
Since its introduction, formal argumentation has become a
core study in AI (Bench-Capon and Dunne 2007) and has
been used in several real-life applications (Atkinson et al.
2017; Cerutti et al. 2017). It models reasoning processes
by argumentation frameworks, consisting of arguments and
attack relations between them (Dung 1995). In this con-
text, arguments may be logical expressions based on an
underlying logic (i.e., language and inference relation), a
knowledge-base, and a set of rules, in which case the at-
tacks are derived from the structure of the arguments (see
(Besnard et al. 2014; Besnard and Hunter 2018)). Conclu-
sions are derived by determining the extensions of the frame-
work: sets of arguments that can collectively be considered
as acceptable, under different semantics.

It is evident that the nature of argumentation frameworks,
and in particular those that are based on the logical settings
described above (called logical or deductive argumentation;
(Besnard and Hunter 2018)), is affected by several factors,
including the language and the deductive base of the argu-
ments, the way arguments attack each other, the argumenta-
tive semantics, and the method of choosing the conclusions
from the extensions (credulous or skeptical choices). In this
paper we provide an analysis on how the inference proper-
ties of argumentation frameworks are determined by their
above-mentioned ingredients.

A variety of formal properties have been introduced for
evaluating the plausibility of argumentation frameworks

(see, e.g., (Caminada 2018)), most of them are extensively
studied in the literature with respect to different forms of
(logical) argumentation frameworks (see the next section for
some discussion and references). In this paper, we concen-
trate on the properties that refer to the entailment relations
that are induced by the argumentation frameworks. This,
together with some well-known postulates from the litera-
ture of non-monotonic and paraconsistent reasoning (e.g.,
(Rescher and Manor 1970; Kraus, Lehmann, and Magidor
1990)), allow us to classify and characterize a variety of
argumentative entailments and thus analyze the conclusion
making paradigms in logical argumentation. Some of the
new results reported in this paper are the following:

1. We show that, despite the variety of Dung-style seman-
tics for logical argumentation frameworks, once the other
ingredients (namely, the base logic, the types of attacks
and the extension selection method) are fixed, inferences
are determined according to only one factor: whether the
semantics results in a single extension or, possibly, multi-
ple extensions. As we shall see in the sequel, this has far
reaching consequences on the reasoning process.

2. From a different angle, we observe that (once the underly-
ing semantics is determined) the nature of the attack rules
has a crucial effect on the properties of the entailment re-
lations. Here, the main factor is whether the attack is on
a particular assumption of an argument (direct attacks) or
on a set of assumptions (set attacks).

3. We show how the extension selection method, namely
whether any extension or all the extensions are taken into
consideration, affects the inference process.

We start in Section 2 by some references to related works.
Then, in Sections 3 and 4 we recall some basic notions from
logical argumentation and define the scope of our study.
Sections 5 and 6 are the heart of the paper: Item 1 above is
shown in Section 5 through characterization theorems of the
extensions of the frameworks and, as a consequence, of the
induced entailment relations. We also provide in that section
some results on the relations of argumentative entailments
and reasoning with consistent subsets of premises (Rescher
and Manor 1970), as well as relation to the default assump-
tions in (Makinson 2003) and adaptive logics (Batens 2007;
Straßer 2014), extending known results on the subject.
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Items 2 and 3 are shown through some classification re-
sults, in Section 6, that relate argumentative entailments
and general patterns for nonmonotonic reasoning (e.g., those
in (Kraus, Lehmann, and Magidor 1990) and in (Makin-
son 1994)), and study inconsistency maintenance (da Costa
1974; Caminada, Carnielli, and Dunne 2011). Finally, in
Section 7 we discuss our results and conclude.

2 Literature Review
In the context of formal argumentation, postulate-based in-
vestigations of argumentation frameworks play a primary
role, allowing not only to indicate how the ingredients of
the frameworks affect their properties, but also to compare
related approaches to argumentation-based reasoning. For
instance, studies on the properties of attack relations in log-
ical argumentation appear in (Amgoud and Besnard 2010;
Gorogiannis and Hunter 2011; Vesic 2013; Arieli, Borg, and
Straßer 2020). Unlike our case, the discussions in these pa-
pers (except the last one) are concentrated on classical logic
as the base logic of the frameworks, where the supports
of the arguments are assumed to be classically consistent
and the minimal ones that entail the argument’s conclusion
(see also Note 1 below). Several properties of extensions
of logical argumentation frameworks are studied in, e.g.,
(Caminada and Amgoud 2007; Amgoud and Besnard 2010;
Gorogiannis and Hunter 2011; Amgoud 2014; Arieli, Borg,
and Straßer 2020), again (except the last one) with respect
to restricted supports of arguments.

This work provides a broad postulate-based overview, in-
cluding generalizations of existing results as well as new re-
sults on the inferential capabilities of argumentative entail-
ments. The interplay between logical principles concerning
argumentation, on the one hand, and inference principles as
studied in proof theory, on the other hand, is also studied in
(Corsi and Fermüller 2017). In that paper a series of logical
principles of attack relations in argumentation frameworks
is stated, and their collection leads to a characterization of
classical logical consequence relations that only involves ar-
gumentation frameworks. We refer to (Corsi and Fermüller
2017) and (Corsi and Fermüller 2019) for further details.

Studies of inferential behavior of logical argumentation,
and in particular its relation to nonmonotonic reasoning, can
also be found in (Arieli and Straßer 2019, Section 5), in
the context of dynamic proof systems. Similar studies for
ABA and ASPIC systems appear, respectively, in (Čyras and
Toni 2015; Heyninck and Arieli 2020; Heyninck and Straßer
2021) and in (Li, Oren, and Parsons 2018).

An important aspect of argumentative inferences, also
considered and generalized in this paper, is their relation to
reasoning with maximally consistent subsets (Rescher and
Manor 1970). Postulates on this kind of reasoning have
a primary role in several works and may be traced back
to Cayrol (1995). For detailed discussions and surveys on
this subject we refer to (Arieli, Borg, and Straßer 2018;
Arieli, Borg, and Heyninck 2019). Rationality postulates for
other forms of structured argumentation, such as ASPIC+

and ABA systems, can be found, e.g., in (Modgil and
Prakken 2013; Modgil and Prakken 2018) (for ASPIC+

systems) and (Čyras and Toni 2016; Heyninck and Straßer
2021) (for ABA systems).

Our study involves some ideas and notions from proof
theory.1 The main contribution of this work in relation to re-
lated works such as the ones mentioned above is that it pro-
vides a comprehensive presentation of the semantic as well
as the inferential properties of logical argumentation frame-
works, where only minimal (proof-theoretic) requirements
are made on the base logic and very little is assumed on the
form of the arguments. This allows to capture a wide range
of core logics and to base arguments only on deducibility
in the core logic. In our study, we avoid the use of further
conditions (such as conflict dependence and conflict sensi-
tivity that are considered in (Amgoud and Besnard 2010)
and (Vesic 2013)) that are computationally demanding, and
so are rather difficult to verify.

3 Logical Argumentation Frameworks
In the sequel, we denote by L an arbitrary propositional lan-
guage. Sets of formulas are denoted by S, T , finite sets of
formulas are denoted by Γ,∆, formulas are denoted by φ, ψ,
and atomic formulas are denoted by p, q, r, all of which can
be primed or indexed. The set of atomic formulas of L (re-
spectively, the atomic formulas appearing in the formulas of
S) is denoted Atoms(L) (respectively, Atoms(S)). The set
of the (well-formed) formulas of L is denoted WFF(L), the
power set of WFF(L) is denoted ℘(WFF(L)).

Definition 1 (logic). A logic L = 〈L,`〉 consists of a lan-
guage L and a consequence relation ` on ℘(WFF(L)) ×
WFF(L), satisfying: reflexivity (S ` φ if φ ∈ S), mono-
tonicity (if S ′ ` φ and S ′ ⊆ S , then S ` φ), and transitivity
(if S ` φ and S ′, φ ` ψ then S,S ′ ` ψ).

A logic L is assumed to be non-trivial (that is, S 0 φ for
some S 6= ∅ and φ), structural (if S ` φ then {θ(ψ) | ψ ∈
S} ` θ(φ) for every substitution θ), and compact (if S ` φ
then Γ ` φ for some finite Γ ⊆ S).

We shall assume that L contains at least a `-negation op-
erator ¬, satisfying p 6` ¬p and ¬p 6` p (for atomic p), and
a `-conjunction operator ∧, for which S ` ψ ∧ φ iff S ` ψ
and S ` φ. Also, we denote by

∧
Γ the conjunction of all

the formulas in (the finite set) Γ.
Let L = 〈L,`〉 be a logic and let S be a set of L-formulas.

The `-closure of S is the set CNL(S) = {φ | S ` φ}.
We say that S is `-consistent, if there are no formulas
φ1, . . . , φn ∈ S for which ` ¬(φ1 ∧ · · · ∧ φn).

Given a logic L = 〈L,`〉, an L-sequent (a sequent for
short) (Gentzen 1934) is an expression of the form Γ⇒∆,
where ⇒ is a symbol that does not appear in L. An L-
argument is then a single-conclusion sequent, representing
L-entailments:

Definition 2 (argument). Let L = 〈L,`〉 be a logic and
let S be a set of formulas in L. An L-argument (argu-

1The incorporation of proof theoretical concepts and techniques
in order to investigate and implement specific logical argumenta-
tion frameworks is not new. Cf. (Dunne and Bench-Capon 2003;
Grossi 2009; Straßer and Šešelja 2010; Grossi 2011; Arieli and
Straßer 2016; Borg and Straßer 2018; Arieli and Straßer 2019).
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ment for short) is an L-sequent of the form Γ ⇒ ψ,2 where
Γ ` ψ. We say that Γ is the support set of Γ ⇒ ψ (de-
noted Supp(Γ ⇒ ψ)) and that ψ is its conclusion (denoted
Conc(Γ⇒ ψ)). For a set S of arguments, we let Supps(S) =⋃
{Supp(a) | a ∈ S} and Concs(S) = {Conc(a) | a ∈ S}.

An L-argument based on S is an L-argument Γ⇒ ψ, where
Γ ⊆ S . We denote by ArgL(S) the set of all the L-arguments
based on S .

Note 1. It is sometimes assumed that the argument’s sup-
port is `-consistent and/or ⊆-minimal, that is: none of
its proper subsets `-entails the arguments’ conclusion (see,
e.g., (Besnard and Hunter 2009; Amgoud and Besnard
2013)). To keep the presentation as general as possible,
we do not make such restrictions. See also the discus-
sions in (Arieli and Straßer 2015; Arieli and Straßer 2020;
D’Agostino and Modgil 2020).

In what follows we shall assume that the logic L = 〈L,`〉
is equipped with a sound and complete sequent calculus C
for constructing sequents (and so arguments). A sequent is
provable (or derivable) in C if there is a derivation for it in
C. Thus, Γ ⇒ ψ is provable in C iff Γ ` ψ. Note that this
implies, in particular, that for a given set S , all the elements
in ArgL(S) are C-provable.

In structured argumentation it is often distinguished be-
tween two types of premises: strict (i.e., non-attacked) and
defeasible ones (Dung, Kowalski, and Toni 2009; Modgil
and Prakken 2013; Borg 2020). To accommodate this dif-
ference in our setting we consider a `-consistent set of L-
formulas X as strict premises. Their non-defeasible char-
acter will give them a special status when we define argu-
mentative attacks below. To distinguish between X and the
set S of the other premises, we write ArgXL (S) for the set
ArgL(X ∪ S). In particular, Arg∅L(S) = ArgL(S).

Just as arguments are constructed by inference rules in C,
attacks between arguments can be represented by (attack)
rules. Such rules consist of an attacking argument (the first
condition of the rule), an attacked argument (the last condi-
tion of the rule), conditions for the attack (the other condi-
tions of the rule) and a conclusion (the eliminated attacked
sequent). The outcome of an application of such a rule is that
the attacked sequent is ‘eliminated’ (or ‘invalidated’; see be-
low the exact meaning of this). The elimination of a sequent
Γ⇒ φ is denoted by Γ 6⇒ φ.

Definition 3 (attack rules). Given a set X of strict (non-
attacked) formulas, we consider the following attack rules:3

• Defeat (DefX ): for Γ2 6= ∅, Γ2 ∩ X = ∅,
Γ1 ⇒ ψ1 ψ1 ⇒ ¬

∧
Γ2 Γ2,Γ

′
2 ⇒ ψ2

Γ2,Γ
′
2 6⇒ ψ2

• Direct Defeat (DDefX ): for γ 6∈ X ,

2Set signs in arguments are omitted.
3For X = ∅ these are exactly the rules from (Arieli and Straßer

2015; Straßer and Arieli 2019). There, the reader can also find
many other rules. In (Borg 2020) sequent-based argumentation has
been generalized along similar lines, where the left side of a se-
quent is a pair Π | Γ consisting of a set of defeasible premises Π
and a set of strict premises Γ.

Γ1 ⇒ ψ1 ψ1 ⇒ ¬γ Γ2, γ ⇒ ψ2

Γ2, γ 6⇒ ψ2

• Undercut (UcutX ): for Γ2 6= ∅, Γ2 ∩ X = ∅,
Γ1 ⇒ ψ1 ψ1 ⇒ ¬

∧
Γ2 ¬

∧
Γ2 ⇒ ψ1 Γ2,Γ

′
2 ⇒ ψ2

Γ2,Γ
′
2 6⇒ ψ2

• Direct Undercut (DUcutX ): for γ 6∈ X ,
Γ1 ⇒ ψ1 ψ1 ⇒ ¬γ ¬γ ⇒ ψ1 Γ2, γ ⇒ ψ2

Γ2, γ 6⇒ ψ2

• Cons. Ucut (ConUcutX ): for Γ2 6= ∅,Γ2∩X = ∅,Γ1⊆X ,
Γ1 ⇒ ¬

∧
Γ2 Γ2,Γ

′
2 ⇒ ψ

Γ2,Γ
′
2 6⇒ ψ

The rules above indicate when the attacker challenges the
attacked argument. For instance, when {p,¬p} ⊆ S , X = ∅
and classical logic (CL) is the core logic, the sequents p⇒ p
and ¬p⇒ ¬p attack each other according to (Direct) Defeat
and (Direct) Undercut. When S = {¬p} and X = {p} the
attack is uni-directional from p ⇒ p to ¬p ⇒ ¬p, since an
argument cannot be attacked in its strict premises.

An argumentation framework is now defined as follows:

Definition 4 (argumentation framework). A (sequent-
based) argumentation framework (AF), based on the logic
L and the attack rules in A, for a set of defeasible premises
S and a `-consistent set of strict premises X , is a pair
AFXL,A(S)=

〈
ArgXL (S),A

〉
whereA ⊆ ArgXL (S)×ArgXL (S)

and (a1, a2) ∈ A iff there is a rule RX ∈ A such that a1

RX -attacks a2.4 The superscript X and/or the subscripts
L,A will be omitted when they are clear from the context or
arbitrary.

Example 1. Consider the modal logic S4 and the let S =
{q, p⊃�r, q ⊃�¬r} and X = {p}. Some arguments in
ArgS4(S) are the following:
a1: p⇒ p a2: q ⇒ q

a3: p, p⊃�r ⇒ �r a4: q, q⊃�¬r ⇒ �¬r
a5: p, p⊃�r, q⊃�¬r ⇒ ¬q a6: p, q, p⊃�r ⇒ ¬(q⊃�¬r)
a7: p, q, q⊃�¬r ⇒ ¬(p⊃�r) a8: q, p⊃�r, q⊃�¬r ⇒ ¬p

Figure 1 depicts (part of) the argumentation framework
for this setting, with direct defeat as the sole attack rule. In
the figure, an arrow from a to b means that a attacks b.

a1

a2

a3a4

a8

a5

a7a6

Figure 1: A representation of the framework of Example 1.

4The attacking and the attacked arguments must be elements of
ArgX

L (S), to prevent “irrelevant attacks”, in which, e.g., ¬p⇒ ¬p
attacks p⇒ p although S = {p}.
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Given an argumentation framework AFXL,A(S), Dung-
style semantics (Dung 1995) can be applied to it, to de-
termine what combinations of arguments (called extensions)
can collectively be accepted from AFXL,A(S).

Definition 5 (extensions). Let AF = AFXL,A(S) =〈
ArgXL (S),A

〉
be an argumentation framework and let S ⊆

ArgXL (S) be a set of arguments. It is said that:
• S attacks a if there is an a′ ∈ S such that (a′, a) ∈ A. The

set of all arguments attacked by S is denoted by S+.
• S defends a if S attacks every attacker of a.
• S is conflict-free (cf) if for no a1, a2 ∈ S, (a1, a2) ∈ A.
• S is a stage (stg) extension ofAF if S∪S+ is⊆-maximal

among the conflict-free sets.
• S is admissible (adm) if it is conflict-free and defends all

of its elements.
• A complete (cmp) extension of AF is an admissible set

that contains all the arguments that it defends.
• The grounded (grd) extension of AF is the ⊆-minimal

complete extension of ArgXL (S).
• A preferred (prf) extension of AF is a ⊆-maximal com-

plete extension of ArgXL (S).
• The ideal (idl) extension of AF is the ⊆-maximal admis-

sible set that is included in each preferred extension.
• A stable (stb) extension of AF is a conflict-free set in

ArgXL (S) that attacks every argument not in it.
• A semi-stable (sstb) extension S of AF is a complete ex-

tension for which S ∪ S+ is ⊆-maximal.
• The eager (egr) extension of AF is the ⊆-maximal ad-

missible set included in every semi-stable extension.
We denote by Extsem(AF) the set of all the extensions of
AF of type sem for some sem ∈ {stg, cmp, grd, prf, idl, stb,
sstb, egr}. The subscript is omitted when it is clear from the
context.

We are now ready to define the entailment relations
that are induced from a given sequent-based argumentation
framework and its semantics.
Definition 6 (entailments). Given an argumentation frame-
work AF = AFXL,A(S) and a semantics sem for it, the fol-
lowing entailment relations are induced from AF :
• Skeptical entailment: S |∼∩,semL,A,X φ if there is an argument
a ∈

⋂
Extsem(AF) such that Conc(a) = φ.

• Weakly skeptical entailment: S |∼e,sem
L,A,X φ if for every

extension E ∈ Extsem(AF) there is an argument a ∈ E
such that Conc(a) = φ.
• Credulous entailment: S |∼∪,semL,A,X φ iff there is an argu-

ment a ∈
⋃
Extsem(AF) such that Conc(a) = φ.

For fixed L,A and sem, it holds that |∼∩,semL,A,X ⊆ |∼
e,sem
L,A,X ⊆

|∼∪,semL,A,X . The superscript X and the subscripts L,A, sem are
omitted in this and other notations when they are clear from
the context or arbitrary. Since the grounded, ideal and ea-
ger extensions are unique (see, e.g., (Baroni, Caminada, and
Giacomin 2018)), |∼∩,semL,A,X , |∼e,sem

L,A,X and |∼∪,semL,A,X coincide for
sem∈{grd, idl, egr}, they are sometimes denoted |∼sem

L,A,X .

Example 2. Consider again the framework of Example 1
and Figure 1. The preferred extensions in this case are:

Arg
{p}
S4 ({q, p⊃�r}), Arg

{p}
S4 ({q, q⊃�¬r}),

Arg
{p}
S4 ({p⊃�r, q⊃�¬r}).

These are also the (semi-)stable extensions of the frame-
work. Thus, although S ∪ X is inconsistent with respect
to `S4, argumentative reasoning is not degenerated in this
case. For instance, it holds that S 6|∼?,sem

S4,{DDef},{p} ψ for any
ψ ∈ S , ? ∈ {∩,e}, and sem ∈ {prf, stb, sstb}, but we do
have that, e.g., S |∼?,sem

S4,{DDef},{p} (p ⊃ �r) ∨ (q ⊃ �¬r)
when ? ∈ {e,∪} and sem ∈ {prf, stb, sstb}.

4 The Scope of Our Study
Despite the diversity of the logics and their sequent calculi
covered in this work, for our results not too many assump-
tions will be made about the actual content of the calculi.
In fact, we only need to assume that the rules of the basic
calculus from Figure 2 are part of (or admissible in) C.

[Ref]
φ⇒ φ

[Cut]
Γ1 ⇒ ψ,Π1 Γ2, ψ ⇒ ∆2

Γ1,Γ2 ⇒ Π1,∆2

[LMon]
Γ⇒ ∆

Γ, φ⇒ ∆
[RMon]

Γ⇒ Π
Γ⇒ Π, φ

[¬⇒]
Γ⇒ Π, ϕ
¬ϕ,Γ⇒ Π

[⇒¬]
ϕ,Γ⇒ Π

Γ⇒ Π,¬ϕ

[∧⇒]
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆
[⇒∧]

Γ1 ⇒ Π1, ϕ Γ2 ⇒ Π2, ψ
Γ1,Γ2 ⇒ Π1,Π2, ϕ ∧ ψ

Figure 2: Rules that are part of (or admissible in) the calculus C
(in the case that C is single-conclusioned Π, Π1 and Π2 should be
empty and ∆ and ∆2 contain at most one formula).

The first four rules correspond to the properties of conse-
quence relations (Definition 1): reflexivity [Ref], transitivity
[Cut] and monotonicity [LMon, RMon]; The other four rules
refer to the behavior of negation in the left-hand side of se-
quents [¬⇒], in the right-hand side [⇒¬], and similar rules
for conjunction ([∧⇒] and [⇒∧], respectively).
Example 3. Gentzen’s sequent calculus LK for classical
logic, its single-conclusion variation LJ for intuitionistic
logic, as well as their extensions to modal logics (includ-
ing the base logic S4 in Examples 1 and 2), are some well-
known calculi for base logics that are covered by our study.

In what follows we shall examine three types of attacks in
argumentation frameworks: set, dir and con.
Definition 7 (types of attacks). A set A of of attack rules
may be of one of the following types:
set: attack rules in which an argument is attacked on a

(sub)set of its support, and where at least one of the rules
is Undercut or Defeat (i.e., A ∩ {DefX ,UcutX } 6= ∅),

dir: nonempty sets of direct attack rules (that is, ∅ 6= A ⊆
{DDefX ,DUcutX }),
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con: dir-type set of rules that also contain ConUcut (that is,
{ConUcutX } ( A ⊆ {ConUcutX ,DDefX ,DUcutX }).

Note 2. Any set of attacks from Definition 3 for which
A \ {ConUcut} 6= ∅ falls in one of the three types above.
Moreover, these types are disjoint.

Our results will apply to completeness-based semantics.
Definition 8 (completeness-based semantics). A seman-
tics sem (e.g., one of those in Definition 5) is completeness-
based, iff for every argumentation framework AF it holds
that Extsem(AF) ⊆ Extcmp(AF).
Note 3. By their definitions, complete, grounded, and pre-
ferred semantics are all completeness-based relative to any
type of attacks. Since it can be shown that every stable,
semi-stable, ideal, and eager extension is always complete
(see, e.g., (Baroni, Caminada, and Giacomin 2018)), the
same holds for these semantics. In general, stage extensions
need not be complete. However, the following result shows
that for the three types of attacks in Definition 7, also stage
semantics is completeness-based. Therefore, in this paper,
we will call stage semantics completeness-based as well.
Proposition 1. If AF is a framework with attacks of one of
the types in Definition 7, then Extstb(AF) = Extstg(AF).

Proof outline. The direction Extstb(AF) ⊆ Extstg(AF) is
trivial. For the converse, we note that any framework with
attacks of a type in Definition 7 has a stable extension.5 Sup-
pose then that E ∈ Extstg(AF) and let E ′ ∈ Extstb(AF).
Since E ′ is conflict-free and E ′ ∪ E ′+ = Arg(AF), and
since E ′ ∪ E ′+ is ⊆-maximal among the conflict-free sets,
also E ∪ E+ = Arg(AF). Thus, E ∈ Extstb(AF).

Notation 1. We denote by CMP the set of completeness-
based semantics, and by ME (respectively, by SE) the sub-
set of multiple-extension (respectively, single-extension) se-
mantics, namely:6

• CMP = {cmp, prf, stb, sstb, stg, grd, idl, egr},
• ME = {prf, stb, sstb, stg},
• SE = {grd, idl, egr}.

In what follows we then consider argumentation frame-
works based on any propositional logic L with a sound and
complete sequent calculus C, in which the rules in Figure 2
are admissible, any set of assumptions (strict and/or deafea-
sible) in the language of the logic, any set of attack rules A
of any one of the three types given in Definition 7, and any
semantics sem in CMP. To the best of our knowledge, this
variety has not been considered previously in the literature.

5 Characterizations of Extensions and
Entailment Relations

In this section we characterize the extensions in Definition 5
and the entailment relations in Definition 6, induced by ar-
gumentation frameworks with attacks of the types described
in Definition 7. For this, we need the following notations of
different types of consistent sets of formulas.

5E.g., by Theorem 2 and the existence of preferred extensions.
6The exclusion of cmp from ME is explained in Note 4.

Notation 2. For a logic L, a set S of formulas and a `-
consistent set X of formulas, we say that S is `X -consistent
if S ∪ X is `-consistent. We denote.
• CSXL (S) is the set of the `X -consistent subsets of S ,

and MCSXL (S) consists of the ⊆-maximal elements in
CSXL (S).

• ΩXL (S) = {ω | ω ⊆ ℘(S)} is the set of subsets of ℘(S),
satisfying the following two requirements:

a) the elements of ω are pairwise `X -consistent: Ti ∪ Tj
is `X -consistent for every Ti, Tj ∈ ω.

b) for every finite T ∈ ℘(S) there is a T ′ ∈ ω such that
either T ⊆ T ′ or T ∪ T ′ is `X -inconsistent.

For ω ∈ ΩXL (S), we let ArgXL (ω) =
⋃
T ∈ω ArgXL (T ).

We are now ready for the first characterization result. For
X = ∅, the first item in the following theorem, for pre-
ferred and stable semantics, is known from the literature (see
(Arieli, Borg, and Straßer 2020)); the other items are new.

Theorem 1. Given an argumentation frameworkAFXL,A(S)
based on a logic L, a set A of attack rules that are of type
† ∈ {dir, con, set}. It holds that:

1. Extsem(AFXL,A(S)) = {ArgXL (T ) | T ∈ MCSXL (S)}
when † ∈ {dir, con} and sem ∈ ME.

2. Extsem(AFXL,A(S)) = {ArgXL (ω) | ω ∈ ΩXL (S)}
when † = set and sem ∈ ME.

3. Extsem(AFXL,A(S)) = {ArgXL (FreeXL (S))}
when † ∈ {con, set} and sem ∈ SE, and where FreeXL (S)
is the set of formulas from S that are not part of any ⊆-
minimal `X -inconsistent subset of S .

4. Extsem(AFXL,A(S)) = {ArgXL (T )}
when † = dir and sem ∈ SE, and where S> = {φ ∈
S | φ is `X -consistent} and T = S> in case S> is `X -
consistent and T = ∅ otherwise.

Proof outline. We show here Item 4, leaving the other items
to the full version of the paper.

We denote: S> = {φ ∈ S | φ is `X -consistent}. Let
Extsem(AFXL,A(S)) = {E} and S⊥ = S \ S>. Note that
for each φ ∈ S⊥, there is a Ξ ⊆ X such that Ξ ⇒ ¬φ ∈
ArgXL (∅) attacks any argument a with φ ∈ Supp(a). Also,
ArgXL (∅) ⊆ E , since these arguments have no attackers.

Suppose first that S> is `X -consistent. It can be easily
verified that ArgXL (S>) is conflict-free. Assume that some
b ∈ ArgXL (S) attacks some a ∈ ArgXL (S>). Thus, Supp(b)∩
S⊥ 6= ∅ and hence b is attacked by ArgXL (∅). So, ArgXL (S>)

is defended by ArgXL (∅). Since ArgXL (∅) ⊆ E and by the
completeness of E , ArgXL (S>) ⊆ E . We have already seen
that any argument a′ with Supp(a′)∩S> 6= ∅ is attacked by
E , and so E = ArgXL (S>).

Suppose now that S> is `X -inconsistent and let Γ be a fi-
nite `X -inconsistent subset of S>. Assume for a contradic-
tion that ArgXL (∅) ( E . Since by the definition of sem, E is
contained in every stable extension and by Item 1, it follows
that

⋃
{Supp(a) \ X | a ∈ E} ⊆

⋂
MCSXL (S) = FreeXL (S).

Let a ∈ E with Supp(a) \ X 6= ∅ and let φ ∈ Supp(a) \ X .
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Thus, for some Ξb ⊆ X , b = Γ ∪ Ξb ⇒ ¬φ attacks a.
Hence, there is a c = ∆ ⇒ ψ ∈ E that attacks b. So there
is a γ ∈ Γ for which ψ ⇒ ¬γ is derivable, and by [Cut],
∆ ⇒ ¬γ is also derivable. Hence (∆ ∪ {γ}) \ X is `X -
inconsistent. Thus there is a minimally `X -inconsistent set
Θ ⊆ (∆∪{γ})\X , and since ∆\X ⊆ FreeXL (S), Θ = {γ},
i.e., γ is `X -inconsistent. Hence, Ξ ⇒ ¬γ is derivable for
some Ξ ⊆ X , which is a contradiction to γ ∈ S>. Alto-
gether, this shows that E = ArgXL (∅).

Theorem 1 implies that we are essentially dealing with
only two sub-classes of completeness-based semantics:

Theorem 2. LetAF be a logical argumentation framework
whose set of attacks is of type dir, con or set. Then:

1. Extprf(AF)=Extstb(AF)=Extsstb(AF)=Extstg(AF),
2. Extgrd(AF)=Extidl(AF)=Extegr(AF).

Theorem 2 can also be expressed in terms of entailment
relations. For this, we shall somewhat modify the notations
of the entailments in Definition 6 and sometimes use the ab-
breviation |∼?,sem

L,†,X , where † ∈ {set, dir, con}, sem ∈ CMP

and ? ∈ {∩,e,∪}. Thus, instead of explicitly mentioning
the set A of attack rules, we indicate (by † ∈ {set, dir, con})
what type of attack rules are taken into consideration.

In these notations, Theorem 2 indicates that for every
fixed † ∈ {dir, con, set} and ? ∈ {∩,e,∪}, we actually
have two different argumentative entailments of the form
|∼?,sem

L,†,X : one for sem ∈ ME and the other one for sem ∈ SE.
This is formalized in the next corollary.

Corollary 1. Let † ∈ {dir, con, set} and ? ∈ {∩,e,∪}.
For every sem ∈ ME the entailments |∼?,sem

L,†,X are the same.
Likewise, for all sem ∈ SE, |∼?,sem

L,†,X coincide.

Note 4. To simplify the presentation, i.e., in order to avoid
too many case distinctions, we have not listed cmp among
the semantics in SE and in ME. However, we note that
|∼?,cmp

L,†,X = |∼?,sem
L,†,X either when ? = ∪ and sem ∈ ME, or

when ? ∈ {∩,e} and sem ∈ SE. Thus, implicitly, reason-
ing with sem = cmp is covered (here and in what follows)
as well.

The next results relate argumentative entailments and
consistency-based ones. The first result shows a correspon-
dence between argumentative entailments and inference by
maximally consistent sets of the premises (Rescher and
Manor 1970; Makinson 2003) (see also (Arieli, Borg, and
Straßer 2018) and (Arieli, Borg, and Heyninck 2019)). For
this, we recall the following entailments:

Definition 9 (MCS-based entailments). Let L = 〈L,`〉 be
a logic, S a set of L-formulas and X a `-consistent set of
L-formulas. The following entailments are defined in a way
similar to those in Definition 6:

• S |∼∩,mcs
L,X φ iff φ ∈ CNL(

⋂
MCSXL (S) ∪ X )

• S |∼e,mcs
L,X φ iff φ ∈

⋂
T ∈MCSX

L (S) CNL(T ∪ X )

• S |∼∪,mcs
L,X φ iff φ ∈

⋃
T ∈MCSX

L (S) CNL(T ∪ X )

Note 5. The family of entailments in Definition 9 covers,
for instance, those proposed under the name default assump-
tions in (Makinson 2003) or (in view of the characteriza-
tion in (Van De Putte 2013)) adaptive logics (Batens 2007;
Straßer 2014) that have lower limit logics with adequate se-
quent calculi of the type in Figure 2.

We now relate the entailments in Definitions 6 and 9.
A result similar to the next proposition is given in
(Arieli, Borg, and Heyninck 2019), but only for DUcut∅
and ConUcut∅ as the attack rules and just for sem ∈
{grd, prf, stb}. Here we generalize the setting to every
logic in which the rules from Figure 2 are admissible, every
completeness-based semantics, and every framework whose
attacks are of type dir, con or set.

Theorem 3. The following equivalences hold:

1. S |∼∪,semL,†,X ψ iff S |∼∪,mcs
L,X ψ for every † ∈ {con, set, dir}

and sem ∈ ME ∪ {cmp}.
2. S |∼∩,semL,†,X ψ iff S |∼∩,mcs

L,X ψ for every † ∈ {con, set} and
sem ∈ CMP.

3. S |∼∩,semL,†,X ψ iff S |∼∩,mcs
L,X ψ for † = dir and sem ∈ ME.

4. S |∼e,sem
L,†,X ψ iff S |∼e,mcs

L,X ψ for every † ∈ {con, dir} and
sem ∈ ME.

5. S |∼e,sem
L,†,X ψ iff S |∼∩,mcs

L,X ψ for every † ∈ {con, set} and
sem ∈ SE ∪ {cmp}.

Proof outline. Item 1: Suppose first that S |∼∪,mcs
L,X ψ. Thus,

there is a maximal `X -consistent subset T of S for which
T ,X ` ψ. It can be shown (see, e.g., (Arieli, Borg, and
Straßer 2020, Lemma 10)) that ArgXL (T ) ∈ Extcmp(AF).
Since L is finitary and by the completeness of C, there is an
argument Γ⇒ ψ ∈ ArgXL (T ). Thus, S |∼∪,semL,†,X ψ.

For the converse, suppose that S |∼∪,semL,†,X ψ. Thus, there
is an E ∈ Extcmp(AF) with a Γ ⇒ ψ ∈ E . It can be shown
(see, e.g., (Arieli, Borg, and Straßer 2020, Lemma 4)) that
Γ \ X is a `X -consistent subset of S . By the soundness of
C, Γ ` ψ. Thus, there is a maximal `X -consistent subset T
of S for which T ,X ` ψ, and so S |∼∪,mcs

L,X ψ.
Item 2 for ME-semantics and Item 3 follow from the

fact that FreeX (S) =
⋂

MCSX(S), together with the fact
that if AF is of type dir or con, and if sem ∈ ME, then
Extsem(AF) = {ArgXL (T ) | T ∈ MCSXL (S)}. Item 2 for
sem ∈ SE follows from Item 3 of Theorem 1. Item 4 is a
straightforward generalization to every ME-semantics of a
similar result shown in (Arieli, Borg, and Straßer 2020) for
sem ∈ {prf, stb}. Item 5 follows from Item 2, as for single-
extension semantics, |∼e,sem

L,†,X and |∼∩,semL,†,X coincide (concern-
ing sem = cmp, this follows from Note 4).

Example 4. Consider the sets S = {q, p⊃�r, q⊃�¬r}
andX = {p} from Example 1. We have that: MCS

{p}
S4 (S) ={

{q, p⊃�r}, {q, q⊃�¬r}, {p⊃�r, q⊃�¬r}
}
.

Thus, S 6|∼?,mcs
S4,dir,{p}ψ for any ψ ∈ S and ? ∈ {∩,e}, while

S |∼?,mcs
S4,dir,{p} (p ⊃ �r) ∨ (q ⊃ �¬r) where ? ∈ {e,∪}. By
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Theorem 3, it is not a coincidence that these are the same
results as those in Example 2, obtained for any sem ∈ ME
of the framework in Example 1 (and Figure 1).

To complete the characterization in Theorem 3 to the
other entailments, we need the following notations:

Definition 10 (Ω-entailments). Let L = 〈L,`〉 be a logic.
For sets S,X of L-formula, Ω = ΩX(S) denotes the set that
is considered in the second bullet of Notation 2. We define:

• S |∼∩,ΩL,X φ iff φ ∈ CNL

(⋂
ω∈Ω

⋂
T ∈ω T ∪ X

)
.

• S |∼e,Ω
L,X φ iff φ ∈

⋂
ω∈Ω

⋃
T ∈ω CNL(T ∪ X ).

• S |∼∪,ΩL,X φ iff φ ∈
⋃

ω∈Ω

⋃
T ∈ω CNL(T ∪ X ).

The following result immediately follows from Defini-
tion 10 and Item 2 of Theorem 1.

Theorem 4. For † = set, sem ∈ ME, and ? ∈ {∩,e,∪}, it
holds that S |∼?,sem

L,†,X ψ iff S |∼?,Ω
L,X ψ.

6 Entailments Classifications
We now examine properties of the entailment relations. We
distinguish between properties that are concerned with non-
monotonic reasoning and those for inconsistency handling.

6.1 Principles for Nonmonotonic Reasoning
Monotonicity is a substantial characteristic of a reasoning
process, as it determines whether inferences remain valid
in the presence of new information. In this section we
check which argumentative entailments have this property,
and those who lack it are examined with respect to com-
mon patterns of nonmonotonic reasoning that have been
identified and studied in the literature (see, e.g., (Gabbay
1985; Shoham 1988; Kraus, Lehmann, and Magidor 1990;
Lehmann and Magidor 1992; Makinson 1994)).

First, we show that credulous entailments with respect to
multiple extension semantics are in fact monotonic.

Proposition 2. Every entailment of the form |∼∪,semL,†,X , where
sem ∈ ME and † ∈ {dir, con, set}, is monotonic.

Proof. We show that |∼∪,mcs
L,X is monotonic, and so the propo-

sition follows by Item 1 of Theorem 3.
Suppose that S |∼∪,mcs

L,X ψ. Then there is a maximal `X -
consistent subset T of S for which T ,X ` ψ. Consider
S ∪ S ′. Clearly, T is a `X -consistent subset of S ∪ S ′, and
so there is a maximal `X -consistent subset T ′ of S ∪ S ′
such that T ⊆ T ′. By the monotonicity of `, we have:
T ′,X ` ψ, thus S,S ′ |∼∪,mcs

L,X ψ.

Note 6. The last proposition does not hold for sem ∈ SE.
Indeed, Extsem(AF∅CL,A({p})) = {ArgL(p)} for every A

and sem, while Extsem(AF∅CL,A({p,¬p})) = {ArgL(∅)} for
any sem ∈ SE. Thus, for such sem we have that for every
† ∈ {dir, con, set}, p |∼∪,semL,†,∅ p while, p,¬p 6|∼∪,semL,†,∅ p.

We now turn to nonmonotonic entailments. It is com-
mon to examine such entailments according to the following
properties:

Definition 11. Let L = 〈L,`〉 be a propositional logic and
let |∼ ⊆ ℘(WFF(L))×WFF(L). We say that |∼ satisfies:

`-cautious reflexivity (`-cR): φ |∼φ for a `-consistent φ.
`-right weakening (`-RW): S |∼φ and φ`ψ imply S |∼ψ.
`-left logical equivalence (`-LLE): If S, φ |∼ σ, ψ ` φ,
and φ ` ψ, then S, ψ |∼ σ.

cautious monotonicity (CM): If S |∼ φ and S |∼ ψ, then
S, φ |∼ ψ.

cautious cut (CC): If S |∼ ψ and S, ψ |∼ φ, then S |∼ φ.
or (Or): If S, φ |∼ σ and S, ψ |∼ σ, then S, φ ∨ ψ |∼ σ.
rational monotonicity (RM): If S |∼ ψ and S 6|∼ ¬φ, then
S, φ |∼ ψ.

Since the rule Or is defined in terms of a disjunction con-
nective ∨, in what follows we suppose that, in addition to
the rules in Figure 2, the two rules in Figure 3 are part of (or
admissible in) the sequent calculus C.

[∨⇒]
Γ, φ⇒ ∆ Γ, ψ ⇒ ∆

Γ, φ ∨ ψ ⇒ ∆
[⇒∨]

Γ⇒ φ, ψ,∆
Γ⇒ φ ∨ ψ,∆

Figure 3: Rules for disjunction

The properties in Definition 11 are often gathered for clas-
sifying systems for nonmonotonic inference.

Definition 12. We say that an entailment |∼ is:

• `-cumulative, if it satisfies `-cR, `-RW, `-LLE, CM, CC.
• `-preferential, if it is `-cumulative and satisfies Or.
• `-rational, if it is `-preferential and satisfies RM.

Table 1 summarizes the classification of the argumenta-
tive entailments according to their components.

|∼∩,semL,†,X |∼e,sem
L,†,X |∼∪,semL,†,X

cumulativity, † ∈ {con, dir} CMP CMP SE

cumulativity, † = set CMP SE∗ SE

preferentiality, † = con – ME –

preferentiality, † = dir SE∗ CMP SE

preferentiality, † = set – – –

rationality, † ∈ {set, con} – – –

rationality, † = dir SE∗ SE∗ SE

monoton., † ∈ {dir, con, set} – – ME∗

Table 1: Summary of the properties of nonmonotonic inference.
Cells with an asterisk apply also to sem = cmp (see Note 4).

We leave the proofs of the positive parts of Table 1 to the
full paper. Below, we show some negative results in terms of
counter-examples, all of them are considered w.r.t. L = CL.

Concerning cumulativity, the next example shows that CC
is violated for |∼e,sem

L,set,∅ when sem ∈ ME.
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Example 5. Let S = {ψ1, ψ2, ψ3}, where ψ1 = p ∧ s,
ψ2 = q ∧ (s ⊃ t), and ψ3 = ¬(p ∧ q) ∧ (q ⊃ s) ∧ (s ⊃ t).
For every S-based framework with set-attacks, we have the
following stable (preferred, semi-stable, stage) extensions:
E1 = ArgCL({ψ1, ψ2}),
E2 = ArgCL({ψ2, ψ3}),
E3 = ArgCL({ψ1, ψ3}),
E4 = ArgCL({ψ1}) ∪ ArgCL({ψ2}) ∪ ArgCL({ψ3}).
Therefore, S |∼e,sem

CL,set,∅ s but S |6∼e,sem
CL,set,∅ t.

We now let S ′ = S ∪ {s}. This time, the stable (preferred,
semi-stable, stage) extensions are:
E ′1 = ArgCL({ψ1, ψ2, s}),
E ′2 = ArgCL({ψ2, ψ3, s}),
E ′3 = ArgCL({ψ1, ψ3, s}),
E ′4 = ArgCL({ψ1, s}) ∪ ArgCL({ψ2, s}) ∪ ArgCL({ψ3, s}).
Therefore, S ′ |∼e,sem

CL,set,∅ t.

The next example, taken from (Benferhat, Dubois, and
Prade 1997), shows that CC is also violated by |∼∪,mcs

L,∅ .
Thus, by Theorem 3 it follows that cumulativity, prefer-
entiality and rationality are violated by |∼∪,semL,†,∅ for every
† ∈ {con, set, dir} and sem ∈ ME.

Example 6. Let S = {p ∧ q,¬p ∧ r}. Then MCS∅CL(S) =
{{p∧q}, {¬p∧r}}, and so S |∼∪,mcs

CL,∅ q, but S |6∼∪,mcs
CL,∅ q∧r.

Let now S ′ = S ∪ {q}. In this case MCS∅CL(S ′) = {{p ∧
q, q}, {¬p ∧ r, q}}, thus S ′ |∼∪,mcs

CL,∅ q ∧ r.

Next we show that Or fails for |∼∩,mcs
L,∅ . It follows, then,

(by Items 2 and 3 of Theorem 3) that |∼∩,semL,†,∅ is not prefer-
ential when † ∈ {con, set} or when † = dir and sem ∈ ME.
By the same example (together with Item 5 of Theorem 3),
|∼e,sem

L,†,∅ is not preferential also when † ∈ {con, set} and
sem ∈ SE.
Example 7. Let S = {¬p,¬q,¬p ⊃ r,¬q ⊃ r}. Then:

• S, p |∼∩,mcs
CL,∅ r, since MCS∅CL(S ∪ {p}) = {{p,¬q,¬p ⊃

r,¬q ⊃ r}, {¬p,¬q,¬p ⊃ r,¬q ⊃ r}} and so⋂
MCS∅CL(S ∪ {p}) = {¬q,¬p ⊃ r,¬q ⊃ r},

• S, q |∼∩,mcs
CL,∅ r, since MCS∅CL(S ∪ {q}) = {{¬p, q,¬p ⊃

r,¬q ⊃ r}, {¬p,¬q,¬p ⊃ r,¬q ⊃ r}} and so⋂
MCS∅CL(S ∪ {q}) = {¬p,¬p ⊃ r,¬q ⊃ r},

• S, p ∨ q 6|∼∩,mcs
CL,∅ r, since MCS∅CL(S ∪ {p ∨ q}) =

{{p ∨ q,¬p,¬p ⊃ r,¬q ⊃ r}, {p ∨ q,¬q,¬p ⊃ r,¬q ⊃
r}, {¬p,¬q,¬p ⊃ r,¬q ⊃ r}}, and so

⋂
MCS∅CL(S ∪

{p ∨ q}) = {¬p ⊃ r,¬q ⊃ r}.
As Table 1 shows, rationality fails for |∼?,sem

L,†,X for ? ∈
{∩,e}, unless † = dir and sem = SE. E.g., by the next
example and Theorem 3, RM is violated by entailments of
the form |∼e,sem

L,†,∅ where † ∈ {con, dir} and sem ∈ ME.

Example 8. We show that RM doesn’t hold for |∼e,mcs
L,∅ . For

this, consider again classical logic as the base logic and let
S = {r, p ∧ q ∧ ¬r, (p ∧ r) ⊃ ¬q, ¬p ∧ q}. We have:
MCS∅CL(S) = {{r, (p ∧ r) ⊃ ¬q,¬p ∧ q}, {p ∧ q ∧ ¬r, (p ∧
r) ⊃ ¬q}}. Only one of the two sets in MCS∅CL(S) implies

¬p, while both of them imply q. Thus, S |∼e,mcs
L,∅ q and

S 6|∼e,mcs
L,∅ ¬p. Now, MCS∅CL(S ∪ {p}) = {{r, (p ∧ r) ⊃

¬q,¬p ∧ q}, {p ∧ q ∧ ¬r, (p ∧ r) ⊃ ¬q, p}, {r, p, (p ∧ r) ⊃
¬q}}. It follows that S, p 6|∼e,mcs

L,∅ q, and so RM is violated.

6.2 Principles for Inconsistency Handling
A primary goal of argumentation theory is to tolerate con-
flicting arguments. Such arguments may originate from con-
tradictory information, thus argumentative entailments (un-
like classical logic entailment, for instance) should not be
‘explosive’, namely: an inconsistent set of premises should
not imply any conclusion whatsoever. In this section we
study different properties for rational reasoning in the pres-
ence of inconsistency. We start by introducing some nota-
tions and notions:

• We denote by S1 ‖ S2 that the sets S1 and S2 are syntac-
tically disjoint, that is, Atoms(S1) ∩ Atoms(S2) = ∅.

• We say that a set S s.t. Atoms(S) ( Atoms(L) is con-
taminating (w.r.t. |∼X ), if for every S ′ s.t. S ∪X ‖ S ′ and
every L-formula φ, it holds that S |∼X φ iff S,S ′ |∼X φ.

Definition 13. Let X ⊆ WFF(L) be `-consistent, |∼X ⊆
℘(WFF(L)) ×WFF(L), and ` ⊆ ℘(WFF(L)) ×WFF(L)
be a consequence relation in the sense of Definition 1. The
following are properties that |∼X may satisfy:

• conservative `X -consistency: for every `X -consistent set
S of L-formulas and every L-formula ψ it holds that
S |∼X ψ iff S ∪ X ` ψ.
• paraconsistency (da Costa 1974): for every distinct p, q ∈

Atoms(L) it holds that p,¬p 6|∼∅ q.
• non-interference (Caminada, Carnielli, and Dunne 2011):

for every two sets S1,S2 of L-formulas, and every L-
formula φ such that S1 ∪ {φ} ∪ X ‖ S2, it holds that
S1 |∼X φ iff S1,S2 |∼X φ.

• crash-resistance (Caminada, Carnielli, and Dunne 2011):
there is no |∼X -contaminating set of L-formulas.

For non-interference we need the following definition:

Definition 14 (uniformity). A logic L = 〈L,`〉 is said to be
uniform (Łos and Suzsko 1958; Urquhart 2001), if for every
two sets of L-formulas S1,S2 and a formula φ such that S2

is both `-consistent and syntactically disjoint from S1∪{φ},
it holds that S1 ` φ iff S1,S2 ` φ.

Table 2 summarizes the results concerning inconsistency
handling properties of argumentative entailments.

Below are proofs for some of the results in Table 2. We
start with conservative consistency.

Proposition 3. Let L = 〈L,`〉 be a logic. For every
? ∈ {∩,e,∪}, sem ∈ CMP and † ∈ {set, dir, con}, the
entailment |∼?,sem

L,†,X satisfies conservative `X -consistency.

Proof. Let S be a `X -consistent set of L-formulas. Sup-
pose first that there is an a ∈ ArgXL (S) such that some
b ∈ ArgXL (S) attacks a. Thus Conc(b) ⇒ ¬φ is deriv-
able, where φ ∈ Supp(a) for † = dir and † = con, and

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

59



|∼∩,semL,†,X |∼e,sem
L,†,X |∼∪,semL,†,X

conservative `X -consistency CMP CMP CMP

paraconsistency, X = ∅ CMP CMP CMP

non-interference, † ∈ {con, set} CMP CMP ME∗

non-interference, † = dir ME ME ME∗

crash-resistance, † ∈ {con, set} CMP CMP ME∗

crash-resistance, † = dir ME ME ME∗

Table 2: Summary of the results about inconsistency handling. For
non-interference and crash-resistance L is assumed to be uniform.
By Note 4, cells with an asterisk apply also to sem = cmp.

φ =
∧
Supp(a) for † = set (note that b is not a ConUcut-

attacker, since S is `X -consistent). Thus, by [Cut], we de-
rive Supp(b)⇒ ¬φ. By [¬⇒], the fact that φ⇒ ¬¬φ is C-
derivable, and [Cut], we derive Supp(b), φ⇒ . So, by [∧⇒]
and [⇒¬], the sequent⇒ ¬(

∧
Supp(b) ∧ φ) is derivable, a

contradiction to the `X -consistency of S . Thus ArgXL (S) is
conflict-free, and so, Extsem(AFXL,A(S)) = {ArgXL (S)} for
every sem ∈ CMP.

Let now Γ ⇒ φ ∈ ArgXL (S). Then Γ ` φ by the sound-
ness of C, and by the monotonicity of ` (Def. 1), S∪X ` φ.
Hence, |∼?,sem

L,†,X⊆ `X (where `X = {(T , ψ) | T ∪ X ` ψ}).
Now, suppose that S `X φ. By the completeness of C for
L, and since L is finitary, there is Γ ⊆ S , such that Γ ⇒
φ ∈ ArgXL (S). Since Extsem(AFXL,A(S)) = {ArgXL (S)}
for every sem ∈ CMP, we have that S |∼?,sem

L,†,X φ. Thus,
`X ⊆ |∼?,sem

L,†,X . Altogether, `X = |∼?,sem
L,†,X .

As shown in Table 2, all the argumentative entailment re-
lations considered here are paraconsistent. Below, we give a
proof for cases where the attacks are of type set or con.

Proposition 4. For every sem ∈ CMP, ? ∈ {∩,e,∪} and
† ∈ {set, con}, the entailment |∼?,sem

L,†,∅ is paraconsistent.

Proof. Let sem be a completeness-based semantics, S =
{p,¬p} and let q 6= p. There is no a ∈ ArgL({p}) ∪
ArgL({¬p}) such that Conc(a) = q (otherwise, a is either
⇒ q, or p ⇒ q, or ¬p ⇒ q, and by monotonicity and struc-
turality we get that each case implies that ¬p ` p, which
contradicts ¬ being a negation). Suppose that there is some
b ∈ ArgL(S), such that Conc(b) = q. Then Supp(b) = S .
Note that one can derive the argument ⇒ ¬(p ∧ ¬p) by
[Ref], [¬⇒], [∧⇒] and [⇒¬] in C, and that this argument
attacks b by ConUcut, Ucut or Def. Thus, b is attacked
when † ∈ {set, con} and it cannot be defended. Therefore,
S |6∼?,sem

L,†,∅ q.

Proofs of non-interference are rather lengthy, thus they
are omitted. For the proofs, the base logic needs to be uni-
form (Definition 14), which is indeed the case for the vast
majority of the logics considered in the literature. Under

this assumption, in our setting (as defined in Section 4) non-
interference implies crash-resistance.

As indicated in Table 2, the only skeptical entailments
(i.e., when ? ∈ {∩,e}) for which both non-interference and
crash resistance are violated, are those where † = dir and
sem ∈ SE. We show this in the next example.
Example 9. Let S1 = {p} and S2 = {q,¬q}. It is easy to
see that for every sem ∈ SE and ? ∈ {∩,e}, it holds that
S1 |∼?,sem

L,dir,∅ p while S1,S2 |6∼?,sem
L,dir,∅ p. Note also that {q,¬q}

is a contaminating set in these cases.

7 Discussion and Conclusion
The primary goal of this paper is to provide an outlook on
logic-based argumentative reasoning and its nature. We have
done so in two senses:

a) Characterizations of Dung-type extensions according to
the frameworks’ components (Theorems 1 and 2) and ac-
cordingly identifications of the induced entailment rela-
tions (Theorems 3 and 4).

b) Classifications of the argumentative entailments accord-
ing to the way they tolerate revised information and con-
tradictory data (as summarized in Tables 1 and 2).

These results complete the picture, provided by some earlier
works, to all the standard completeness-based Dung-style
semantics and for the main types of attack rules. As a result,
in addition to the obvious factors that affect the reasoning
process (such as the base logic underlying the arguments at
hand), we are now able to identify other factors, some of
which were not so evident so far. Below we summarize some
of our findings:

1. Theorem 1 vindicates the strong connection between ar-
gumentative inferences and reasoning with maximally
consistent subsets. Yet, this correlation is kept either for
multiple-extension semantics with attack rules of type dir
or con, or for single-extension semantics with attack rules
of type con or set. For the other combinations of seman-
tics and attack rules the relation to reasoning with consis-
tent subsets of the premises is more subtle.

2. By Corollary 1, the primary consideration concerning the
chosen semantics, in relation to the entailments that are
induced by the underlying framework, is whether it allows
a single extension or multiple extensions.

3. At least as far as plausible reasoning with inconsis-
tent premises is concerned, Table 2 shows that multiple-
extension semantics are superior to single-extension ones.
However, as shown in Table 1, only single-extension se-
mantics with direct attack rules assure rational patterns of
non-monotonic reasoning.

4. As expected, inferences are significantly affected by the
type of reasoning under consideration (namely, credulous
versus skeptical). For instance, only credulous reasoning
with multiple-extension semantics yields monotonic en-
tailments, while the other entailments are non-monotonic.

Future work involves, among others, the study of more ex-
pressive formalisms, based e.g. on first-order logics, and for-
malisms that incorporate priorities among arguments.
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