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Abstract
The field of NLP has made substantial
progress in building meaning representations.
However, an important aspect of linguistic
meaning, social meaning, has been largely
overlooked. We introduce the concept of so-
cial meaning to NLP and discuss how insights
from sociolinguistics can inform work on rep-
resentation learning in NLP. We also identify
key challenges for this new line of research.

1 Introduction

Variation is inherent to language. Any variety of
language provides its users with a multitude of lin-
guistic forms—e.g., speech sounds, words, gram-
matical constructions—to express the same refer-
ential meaning. Consider, for example, the many
ways of pronouncing a given word or the variety of
words that can refer to a given concept.

Linguistic variation is the primary object of in-
quiry of sociolinguistics, which has a long history
of describing and explaining variation in linguistic
form across society and across levels of linguistic
analysis (Tagliamonte, 2015). Perhaps the most
basic finding of the field is that linguistic variation
allows for the expression of social meaning, infor-
mation about the social background and identity
of the language user. Such sociolinguistic varia-
tion adds an additional layer of meaning onto the
basic referential meaning communicated by any
utterance or text. Understanding the expression
of social meaning based on linguistic variation is
a crucial part of the linguistic knowledge of any
language user, drawn upon continuously during
both the production and processing of natural lan-
guage. The relationship between variation and so-
cial meaning, however, has only begun to be ex-
plored computationally (e.g., Pavalanathan et al.
(2017)). Studies have shown, for example, that
words, capitalisation, or the language variety used
can index political identity (Shoemark et al., 2017;
Stewart et al., 2018; Tatman et al., 2017).

Despite general acceptance of the link between
linguistic variation and social meaning in linguis-
tics, NLP has largely ignored this relationship. Nev-
ertheless, the importance of linguistic variation
more generally is increasingly being acknowledged
in NLP (Nguyen et al., 2016). NLP tools are usu-
ally developed for standard varieties of language,
and therefore tend to under-perform on texts writ-
ten in varieties that diverge from the ‘standard’,
including language identification (Blodgett et al.,
2016), dependency parsing (Blodgett et al., 2016),
and POS tagging (Hovy and Søgaard, 2015).

One approach to overcoming the challenges
posed by linguistic variation is text normalisation
(Han and Baldwin, 2011; Liu et al., 2011). Normal-
isation transforms non-standard texts into a more
standardised form, which can then be analysed
more accurately using NLP models trained on stan-
dard language data. Text normalisation, however,
removes rich social signals encoded via sociolin-
guistic variation. Other approaches have also been
explored to improve the robustness of NLP mod-
els across society, such as adapting them based on
demographic factors (Lynn et al., 2017) or social
network information (Yang and Eisenstein, 2017).

Linguistic variation, however, should not simply
be seen as a problem to be overcome in NLP. Al-
though variation poses a challenge for robust NLP,
it also offers us a link to the social meaning be-
ing conveyed by any text. To build NLP models
that are capable of understanding and generating
natural language in the real world, sociolinguis-
tic variation and its role in creating social meaning
must be incorporated into our models. For example,
over the last few years, research in NLP has been
marked by substantial advancements in the area of
representation learning, but although Bisk et al.
(2020) and Hovy (2018) have recently argued that
the social nature of language must be considered
in representation learning, the concept of social
meaning is still largely overlooked.
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In this paper, we therefore introduce the concept
of social meaning to NLP from a sociolinguistic
perspective (Section 2). We reflect on work on rep-
resentation learning in NLP and how social mean-
ing could play a role there (Section 3), and we
present example applications (Section 4). Finally,
we identify key challenges moving forward for this
important and new line of research in NLP for the
robust processing of meaning (Section 5).

2 Social meaning

People use language to communicate a message.
The same message can be packaged in various lin-
guistic forms. For example, someone might say
‘I’m not coming, pal’. But they could also refer to
their friend as ‘mate’, ‘buddy’, ‘bruv’, or ‘bro’ for
instance. Or they could say ‘I am not coming’ or ‘I
ain’t comin’ to express that they are not joining that
friend. With each of these options, or variants, the
language user communicates the same referential
meaning, that is, they refer to the exact same en-
tity, action or idea in the real or an imagined world.
The only difference is the linguistic form used to
encode that message. To put it simply: these are
different ways of saying the same thing (Labov,
1972).

Although this variation in form does not change
the referential meaning of the message, it is not
meaningless in itself. Variation in form can also
carry information about the social identity of a lan-
guage user (Eckert, 2008), which sociolinguists call
the social meaning of linguistic variation. For ex-
ample, Walker et al. (2014) define social meaning
as all social attributes associated with a language
feature and its users. These social attributes can be
highly diverse and relate to any aspect of identity
a language user may want to express through their
linguistic output.

Linguistic variation can express broad social at-
tributes like national background or social class.
Saying ‘I left the diapers in the trunk’ rather than
‘I left the nappies in the boot’, may suggest that the
speaker is American rather than British. But lin-
guistic variation can also be far more fine-grained
and can be called upon directly by language users
to construct local identities. A famous example is
Labov (1972)’s groundbreaking study on Martha’s
Vineyard, a small island off the northeast coast of
the US. Labov found that within the small island
community there were differences in the way peo-
ple pronounced the diphthongs /ay/ (as in ‘right’)

and /aw/ (as in ‘house’). The study shows that a
more centralised pronunciation of the diphthongs
was used by local fishermen who opposed the rise
in tourism from the mainland on the island. Con-
versely, islanders who were more oriented towards
mainland culture used a more standard American
pronunciation for these diphthongs. The pronuncia-
tion of these sounds was thus used in this particular
community to express the local social meaning of
island identity.

The social meaning of linguistic variation is not
fixed. Over time, a linguistic variant can develop
new meanings and lose others, while new forms
can also emerge. A single linguistic feature can
also be associated with multiple social meanings.
Which of those meanings is activated in interaction
depends on the specific context in which that in-
teraction takes place. Campbell-Kibler’s research
on the social meaning of the pronunciation of -ing
in the US (e.g., ‘coming’ vs. ‘comin’) shows, for
instance, that the variation can be linked to both
social and regional identity. For example, velar
pronunciation ‘coming’ sounds urban, while alveo-
lar pronunciation ‘comin’ is perceived as sounding
Southern (Campbell-Kibler, 2007, 2009, 2010).

Information about the speaker can also influence
the social meaning attached to variation in -ing pro-
nunciation. Experiments show that when a speaker
is presented as a professor, they sound knowledge-
able when using the velar pronunciation, while if
the same speaker is presented as an experienced
professional, they are perceived as knowledgeable
when using the alveolar variant (Campbell-Kibler,
2010). The collection of social meanings a linguis-
tic feature could potentially evoke is referred to as
the indexical field of that feature (Eckert (2008),
for a theoretical discussion of indexicality, see Sil-
verstein (2003)).

As the above examples suggest, social mean-
ing can be attached to various types of linguistic
features. In the friend, nappy and boot examples,
there is variation on the level of the lexicon, while
the ‘I ain’t comin’ example shows morphosyntac-
tic variation (‘ain’t’ vs. ‘am not’) and variation in
pronunciation (‘comin’ vs. ‘coming’). A language
or language variety as a whole can also carry social
meaning. Think of the choice to use a standard
variety or a local dialect to signal one’s regional
background or the use of loans from foreign lan-
guages to come across as cosmopolitan or fashion-
able (Vaattovaara and Peterson, 2019).
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It is also important to acknowledge that there
are other types of linguistic variation—and other
traditions that analyse variation within linguistics—
including variation across communicative contexts,
as is commonly analysed in corpus linguistics (i.e.
register variation) (Biber, 1988; Biber and Conrad,
2009). For example, research on register variation
has shown that texts that are intended to concisely
convey detailed information, like academic writ-
ing, tend to have very complex noun phrases, as
opposed to more interactive forms of communica-
tion, like face-to-face conversations, which tend
to rely more on pronouns. Crucially, register vari-
ation depends on the communicative goals, affor-
dances, and constraints associated with the context
in which language is used, as opposed to the social
background or identity of the individual language
users, although the relationship between social and
situational variation is also complicated and not
fully understood (Eckert and Rickford, 2002; Fine-
gan and Biber, 2002).

Linguistic variation and the expression of social
meaning is thus a highly complex phenomenon,
and one that sociolinguists are only beginning to
fully grasp despite decades of research. Neverthe-
less, we argue that language variation and social
meaning must be considered when building NLP
models: not simply to create more robust tools, but
to better process the rich meanings of texts in gen-
eral. Moreover, we believe that methods from NLP
could contribute substantially to our understanding
of sociolinguistic variation.

3 Representing social meaning

Distributed representations map a word (or some
other linguistic form) to a k-dimensional vector,
also called an embedding. Sometimes these rep-
resentations are independent of linguistic context
(Mikolov et al., 2013; Pennington et al., 2014), but
increasingly they are contextualised (Devlin et al.,
2019; Peters et al., 2018). These representations are
shown to capture a range of linguistic phenomena
(Baroni et al., 2014; Conneau et al., 2018; Glad-
kova et al., 2016). A key question in the develop-
ment of representations is what aspects of meaning
these representations should capture. Indeed, re-
cent reflections have drawn attention to challenges
such as polysemy and hyponymy (Emerson, 2020)
and construed meaning (Trott et al., 2020). How-
ever, even though Bender and Lascarides (2019,
p.20) note that ‘[l]inguistic meaning includes so-

How are you
doing?

How are you
doin?

How are you
doinggg?

Figure 1: With all three utterances, the author asks how
someone is doing, but the spelling variants carry dif-
ferent social meanings. For example, how should a
spelling variant like doin be represented? Providing it
the same representation as doing would result in a loss
of social meaning associated with g-dropping.

cial meaning’, social meaning has been overlooked
in the development of meaning representations, al-
though a few recent studies have suggested that the
embedding space can already exhibit patterning re-
lated to sociolinguistic variation, even when learn-
ing is based on text alone (e.g., Niu and Carpuat
(2017); Nguyen and Grieve (2020); Shoemark et al.
(2018)).

3.1 Example: Spelling variation

One clear example comes from spelling, where
deviations from spelling conventions (e.g., 4ever,
greattt, doin) can create social meaning (Eisenstein,
2015; Herring and Zelenkauskaite, 2009; Ilbury,
2020; Nini et al., 2020; Sebba, 2007). Androut-
sopoulos (2000), for example, discusses how non-
conventional spelling in media texts can convey
social meanings of radicality or originality. Fur-
thermore, a close textual analysis by Darics (2013)
shows that letter repetition can create a relaxed
style and signal ‘friendly intent’. An immediate
question is therefore how to handle spelling varia-
tion when building representations (Figure 1).

Current research on representation learning that
considers spelling variation is primarily motivated
by making NLP systems more robust. For exam-
ple, Piktus et al. (2019) modify the loss function
to encourage the embeddings of misspelled words
to be closer to the embeddings of the likely correct
spelling. Similarly, motivated by ‘adversarial char-
acter perturbations’, Liu et al. (2020) aim to push
embeddings closer together for original and per-
turbed words (e.g. due to swapping, substituting,
deleting and inserting characters).
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Although approaches to making models robust
to spelling variation are useful for many applica-
tions, they necessarily result in the loss of the social
meaning encoded by the spelling variants. Many of
the operations (such as deleting characters) used to
generate adversarial perturbations are also frequent
in natural language data. In a recent study focused
on a small set of selected types of spelling varia-
tion, such as g-dropping and lengthening, Nguyen
and Grieve (2020) found that word embeddings
encode patterns of spelling variation to some ex-
tent. Pushing representations of spelling variants
together therefore resembles efforts to normalise
texts, carrying the same risk of removing rich social
information (Eisenstein, 2013).

3.2 Moving forward
So far, we have highlighted that linguistic forms
(e.g., spellings, words, sentences) with different so-
cial meanings should not receive the same represen-
tation when social meaning is relevant to the task at
hand. Drawing on Section 2, we now highlight key
considerations for social meaning representations:

Social meaning can be attached to different
types of linguistic forms Especially for evalua-
tion, comparing representations for forms with the
same referential meaning but potentially different
social meanings would be the most controlled set-
ting. However, in many cases this can be challeng-
ing. For example, paraphrases rarely have exactly
the same referential meaning; to what extent we
can relax this constraint remains an open question.
Generally, it is easier to keep referential meaning
constant when analysing spelling variation com-
pared to other forms of variation. Spelling varia-
tion may thus be a good starting point but variation
on other levels should also be considered.

Linguistic variation can index local identities
Research on linguistic variation in NLP has mainly
focused on broad demographic categories (e.g., na-
tion, sex, age) (Nguyen et al., 2016). These have
often been modeled as discrete variables, although
Lynn et al. (2017) show how treating variables
as continuous can provide advantages. To repre-
sent the rich social meanings of linguistic varia-
tion, representations likely must be continuous and
high dimensional. Moreover, rather than imposing
static social attributes onto people, it may be more
desirable to let highly localised social meanings
emerge from the data itself (e.g., see Bamman et al.
(2014b)).

Social meaning is highly contextual The same
form can have different social meanings depend-
ing on context. Furthermore, variation can also
occur at the semantic level (Bamman et al., 2014a;
Del Tredici and Fernández, 2017; Lucy and Bam-
man, 2021). Contextual representations are there-
fore more suitable than static representations. Our
proposed line of work also raises challenges about
what should be considered context for learning rep-
resentations. For learning social meaning, linguis-
tic context alone is not sufficient. Instead, the social
and communicative context in which utterances are
produced must be considered as well.

4 Applications

Because the expression of social meaning is a fun-
damental part of language use, it should be taken
into consideration throughout model development,
but it is especially relevant for computational so-
ciolinguistics (Nguyen et al., 2016) and computa-
tional social science (Lazer et al., 2009; Nguyen
et al., 2020). Examples where social meaning is
especially important are:

Conversational systems Research on text gener-
ation has long recognised that the same message
can be said in different ways, and that style choices
depend on many factors, such as the conversation
setting and the audience (Hovy, 1990). There is a
large body of work on generating text in specific
styles (e.g., Edmonds and Hirst (2002); Ficler and
Goldberg (2017); Mairesse and Walker (2011)). An
example are conversational systems that generate
text in consistent speaker styles to model persona
(Li et al., 2016). Rich representations of social
meaning and linguistic variation could support the
development of conversational systems that dynam-
ically adjust their style depending on the context
including the language used by interlocutors, con-
structing unique identities in real time, as individu-
als do in real world interactions (Eckert, 2012).

Abusive content detection Systems to automat-
ically detect abusive content can contain racial
biases (Davidson et al., 2019; Sap et al., 2019).
The task is challenging, because whether some-
thing is abusive (e.g., apparent racial slurs) depends
strongly on context, such as previous posts in a con-
versation as well as properties of the author and
audience. Considering social meaning and varia-
tion would facilitate the development of systems
that are more adaptive towards the local social con-
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text (going beyond developing systems for major
demographic groups). This would more generally
also be relevant to other tasks where interpretation
is dependent on social context.

Exploration of sociolinguistic questions NLP
methods can support (socio)linguistic research, e.g.
methods to automatically identify words that have
changed meaning (Hamilton et al., 2016) or words
that exhibit geographical variation (Nguyen and
Eisenstein, 2017). Likewise, if computational meth-
ods could discover forms with (likely) similar or
different social meanings, these forms could then
be investigated further in experimental perception
studies or through qualitative analysis.

5 Challenges

5.1 Learning

Corpora such as Wikipedia and BookCorpus (Zhu
et al., 2015) are often used to learn representations.
However, it is likely that corpora with more collo-
quial language offer richer signals for learning so-
cial meaning. Text data may already allow models
to pick up patterns associated with social meaning,
as Bender and Lascarides (2019, p.20) note about
social meaning that ‘it is (partly) derivable from
form’. Social and communicative context can pro-
vide additional signals, for example by including
information about author (Garimella et al., 2017; Li
et al., 2018), geography (Bamman et al., 2014a; Co-
cos and Callison-Burch, 2017; Hovy and Purschke,
2018), social interaction (Li et al., 2016), or social
network membership (Yang and Eisenstein, 2017).
Furthermore, as argued by Bisk et al. (2020), static
datasets have limitations for learning and testing
NLP models on their capabilities related to the so-
cial nature of language. Instead, they argue for a
‘learning by participation’ approach, in which users
interact freely with the system (Bisk et al., 2020). A
key challenge is that although we know that social
meaning is highly contextual, we would need to
seek a balance between the richness and complex-
ity of the context considered and computational,
privacy and ethical constraints.

Another key challenge is that usually different
aspects of meaning are encoded in one representa-
tion. Future work could potentially build on work
on disentangling representations, such as work by
Akama et al. (2018), Romanov et al. (2019) and
recent work motivated by Two-Factor Semantics
(Webson et al., 2020).

5.2 Evaluation

Although there are many datasets to evaluate NLP
models on various linguistic phenomena (Warstadt
et al., 2019, 2020; Wang et al., 2018), such datasets
are missing for social meaning. Collecting eval-
uation data is challenging. First, relatively little
is known about the link between social meaning
and textual variation. Sociolinguistics has tradi-
tionally focused on the social meaning of phonetic
features and to a lesser extent on grammatical and
especially lexical features (Chambers, 2003). So-
cial meaning making through spelling variation has
received even less attention (exceptions include
Leigh (2018)). Hence, research approaches would
need to be (further) developed within sociolinguis-
tics to allow for reliable measurement of social
meanings of under-researched types of language
variation such a spelling variation. One concrete
avenue would be to extend and adapt traditional
methods like the speaker evaluation paradigm, in
which respondents indirectly evaluate accent vari-
ation, to be suitable for variation in written com-
munication. Data generated by building on such
approaches could then in turn serve as the basis for
developing evaluation datasets for NLP models.

Second, collecting data is challenging due to the
highly contextual nature of social meaning (Sec-
tion 2). The same form can take on different social
meanings and how a particular form is perceived
depends on a variety of factors, including social
and situational attributes of both the audience and
the speaker or writer. However, carefully collected
experimental data should at least be able to lay bear
the social meanings that language users collectively
associate with a certain linguistic form (i.e. its in-
dexical field). This should give an overview of the
social meaning potential language users have at
their disposal to draw on in a specific situation.

6 Conclusion

Despite the large body of work on meaning repre-
sentations in NLP, social meaning has been over-
looked in the development of representations. Fully
learning and representing the rich social meanings
of linguistic variation will likely not be realised
for years to come. Yet even small steps in this di-
rection will already benefit a wide array of NLP
applications and support new directions in social
science research. With this paper, we hope to en-
courage researchers to work on this challenging but
important aspect of linguistic meaning.
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Ethical considerations

We will now discuss a few ethical considerations
that are relevant to our proposed line of research.
In this paper, we have discussed how language vari-
ation should be a key consideration when building
and developing meaning representations. Labels
such as ‘standard’, ‘bad’ and ‘noisy’ language used
to describe language variation and practices can re-
produce language ideologies (Blodgett et al., 2020;
Eisenstein, 2013). As an example, non-standard
spellings are sometimes labeled as ‘misspellings’,
but in many cases they are deployed by users to
communicate social meaning. A different term,
such as ‘respellings’, may therefore be more ap-
propriate (Tagg, 2009). Furthermore, even though
there has been increasing attention to performance
disparities in NLP systems and how to mitigate
them, Blodgett et al. (2020) point out that they
should be placed in the wider context of reproduc-
ing and reinforcing deep-rooted injustices. See
Blodgett et al. (2020) for a discussion on different
conceptualizations of ‘bias’ in NLP and the role of
language variation.

Our paper also complements the discussion by
Flek (2020). Recognising that language variation
is inherent to language, Flek (2020) argues for per-
sonalised NLP systems to improve language un-
derstanding. The development of such systems,
however, also introduces risks, such as stereotypi-
cal profiling and privacy concerns. See Flek (2020)
for a discussion on ethical considerations for this
line of work.

In this paper, we have argued for considering
language variation and social meaning when build-
ing representations. However, such research could
potentially also support the development of applica-
tions that can cause harm. Long-standing research
in sociolinguistics has shown rich connections be-
tween language variation and social attributes, in-
cluding sensitive attributes such as gender and eth-
nicity (e.g. Eckert (2012)). One may take that as
a motivation to build automatic profiling systems.
However, as discussed in Section 2, sociolinguists
have emphasised the highly contextual nature of so-
cial meaning (the same linguistic feature can have
different social meanings) and the agency of speak-
ers (language is not just a reflection of someone’s
identity, but can be actively used as a resource for
identity construction). Profiling systems tend to
impose categories on people based on broad stereo-
typical associations. They fail to recognise the rich

local identities and agency of individuals. Besides
privacy concerns, misclassifications by such sys-
tems can cause severe harms.

Another ethical consideration is the training data.
Data with colloquial language will likely offer
richer signals for training, which could be aug-
mented with information about the social and com-
municative context. Online sources such as Twitter
and Reddit may be attractive given their size and
availability of fine-grained social metadata. How-
ever, the use of large-scale online datasets (even
though it is ‘public’) raises privacy and ethical con-
cerns. We recommend following guidelines and
discussions surrounding the use of online data in so-
cial media research—not only regarding collecting
and storing data, but also how such data is shared,
and how analyses based on such data are reported
and disseminated (Fiesler and Proferes, 2018; Zook
et al., 2017; Fiesler et al., 2020). One key step is
documenting the datasets (Bender and Friedman,
2018; Gebru et al., 2018). In addition, social biases
in these datasets can propagate into the learned rep-
resentations (Bolukbasi et al., 2016; Caliskan et al.,
2017), which may impact downstream applications
that make use of these representations.
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