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ABSTRACT
Compared to traditional cameras, light field imaging can ad-

ditionally record the direction of incoming light. Based on

this, light fields can be represented in focus stacks that focus

at different depths and all-in-focus images. The refocusing

information of focal stacks can provide supplementary infor-

mation for saliency detection. In this paper, we propose a

novel multi-generator adversarial network for saliency detec-

tion that consists of a cascaded multi-generator and a discrim-

inator. The multi-generator extract saliency features from all-

in-focus images and focal stacks. Besides, we set the pre-

dicted map multiplied by the all-in-focus image as the input

of the discriminator. With this multiplication, we can pre-

serve color and texture information of the salient objects, and

reduce the computational cost. We conduct experiments on

three public datasets. Compared with existing methods, our

method achieves competitive results.

Index Terms— light field, saliency detection, multi-

generator adversarial network, focal stack

1. INTRODUCTION

Saliency detection aims at separating the most relevant ob-

jects from backgrounds. The topic has raised much attention

in the computer vision community [1, 2] and is widely applied

in visual tracking [3] and semantic segmentation [4].

With the success of deep learning techniques, 2D/3D

saliency detection has made great progress based on RGB [5,

6] or RGB-D images [1, 2]. Compared to 2D/3D cameras,

4D light field imaging [7] not only captures the 2D color and

texture information but also records the 2D direction informa-

tion of the incoming light. Based on these characteristics, the

4D light field can be represented in several 2D images, such

as all-in-focus images [8], multi-view sub-aperture images,

and focal stacks [9]. A focal stack is a collection of 2D im-

ages focused at different depth levels. Some focal slices focus

on salient regions while others pay attention to non-salient re-

gions, which suggests that refocusing information may be ef-

fective to separate salient objects from backgrounds. How to

exploit these images needs to be considered.

A few recent works [10, 11, 12] are dedicated to im-

proving 2D hand-crafted features of the light field. These

works focus on exploiting low-level cues, which is diffi-

cult to detect salient objects in complex scenes. There have

been few attempts [13, 14, 15, 16] address saliency detec-

tion benefiting from the hierarchical feature representation

and the weight sharing mechanism of deep convolutional net-

works (DCNs). However,learning from small-scale light field

saliency datasets [12, 13, 17] will lead to high-order incon-

sistency between ground truths and predicted maps. It is

therefore important to develop algorithms that can deal with

saliency detection on small-scale datasets.

Recently, Generative Adversarial Networks (GANs) [18]

provide a unique and promising method to obtain more train-

ing data. In GANs, training is driven by two competing

parts: the generator for synthesizing fake images and the dis-

criminator for distinguishing real and fake images. Recent

works [19, 20] show that saliency detection via GANs can

also achieve state-of-the-art results. However, these methods

only focus on 2D or 3D images. Until now, GANs have not

been used to detect saliency from light fields.

In this paper, we propose a novel light field saliency detec-

tion model based on GANs. As shown in Fig. 1, our method

consists of a cascaded multi-generator for integrating refocus

information and a discriminator. We propose to combine two

content losses with an adversarial loss as our objective func-

tion, and we show this is beneficial to learning the structure

of salient objects. Besides, the all-in-focus image is impor-

tant to the differentiation of the discriminator [6]. Inspired by

cGAN [21], we multiply the saliency map by the all-in-focus

image as the input of the discriminator so that the saliency

region in the all-in-focus image is retained, and the pixel val-

ues of other areas are set to 0. In this way, the texture of

salient objects can be well preserved and the computational

cost can be largely reduced. In terms of metrics, our method

is also superior to state-of-the-art methods on the newly pro-

posed Lytro-Illum dataset [13] and competitive on the other

two Lytro datasets [12, 17].

2. RELATED WORKS

We discuss related work on light field saliency detection from

three aspects, including multi-cue-based methods, DCNs-

based methods, and GANs-based methods.
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Fig. 1. Overview of our model: {G0, G4, G7, G11} is the multi-generator, and every generator follows the structure of Generator. The

outputs {Fake 0, Fake 4, Fake 7} of {G0, G4, G7} are concatenated with FS × 4, FS × 7 and FS × 11 respectively. And then the predicted

saliency (Fake 11) and ground truth (GT) are multiplied by the all-in-focus image as the input of the discriminator.

Multi-cue-based methods. In recent years, multi-cue-

based methods have been proposed for light fields saliency

detection [10, 11, 12]. For example, Li et al. [10] exploited

focusness, depth and objectness cues of the light field to de-

tect salient objects. Zhang et al. [11] proposed to use focus-

ness and depth information to extract the saliency cue. Zhang

et al. [12] explored the role of light field flow information

and location priors in the light field saliency detection. These

methods are dedicated to extracting low-level information.

DCNs-based methods. Compared to traditional saliency

detection methods [11, 12, 17], DCNs-based methods [13,

14, 15, 16] learn high-level semantic features automatically

from light fields. According to the images used, the DCNs-

based methods can be categorized into two categories: multi-

view-based methods [13, 16] and focal-stacks-based meth-

ods [14, 15]. For example, Piao et al. [16] generated multi-

view images from a single view and proposed a multi-view

attention model to predict saliency. Zhang et al. [13] designed

a network to model angular changes (MAC) from multi-view

images. The advantage of the multi-view-based approach is

that it combines perspective information from different an-

gles. However, the performance of these method leaves room

for improvement in complex scenarios, such as scenarios with

high color contrast. The focal-stack-based approaches ex-

plore another research direction. Wang et al. [15] proposed a

two-stream network, one stream for extracting features from

the focal stacks, and another for learning saliency from all-in-

focus images. Zhang et al. [14] proposed an attention mecha-

nism to fuse features of the focal slices. This method utilizes

high-level semantic features to guide the choice of low-level

features.

GANs-based methods. Owing to the strong learning

ability of GANs, many researchers attempt to predict saliency

with GANs [6, 22]. Pan et al. [6] first proposed a saliency

detection model with adversarial training, named SalGAN.

Their network utilizes adversarial loss and a content loss for

back-propagation. Zhang et al. [22] presented gaze prediction

on egocentric videos using GANs. The generator network

consists of two streams: one stream for extracting features of

the foreground and another for the background. Inspired by

these works, we propose a new GANs-based saliency detec-

tion model for light fields. Differing from [6, 22], our network

is designed as a cascaded multi-generator with an encoder-

decoder structure.

3. METHOD

In this paper, we design a novel light field saliency detection

model based on GANs, which learns a mapping from focal

stacks to the saliency map. The proposed network consists of

two parts, as shown in Fig. 1.

3.1. Basic model

Our basic model is built on the structure of GANs [18], but

some changes have been made. Inspired by U-Net [23],

we design the generator as an encoder-decoder structure, as

shown in Fig. 1. In the decoder structure, transposed convo-

lution is used to increase the resolution of the feature maps,

which has been shown to improve the stability of GANs [18].

In DCNs, the input of each layer is susceptible to param-

eters of the previous convolutional layer. This dependency

between front and back layers requires the network to use

a small learning rate and suitable initialization parameters,

which slows down the speed of network convergence. Our ex-
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periments show that adding batch normalization (BN) [24] af-

ter each convolution helps to improve the convergence speed

of the network. Besides, differing from the U-Net [23], we

utilize the Leaky ReLU to increase the nonlinearity for our

network. Finally, we apply the sigmoid activation function in

the last layer of the generator to output predictions.

The discriminator adopts the model of PatchGAN [25],

which penalizes structure at the scale of patches. The input of

the discriminator is the result of multiplying the all-in-focus

image and the saliency map. Through a series convolution

operation, the discriminator tries to classify if each patch of

an input image is real or fake.

3.2. Multi-generator adversarial networks

As mentioned before, different focal slices focus at differ-

ent depths. Our experiments also show that the more focal

slices input, the richer information of saliency the network

can learn. How to use these information needs us to consider.

In this paper, we propose a multi-generator network that

contains four cascaded generators shown in Fig. 1, indi-

cated as {G0, G4, G7, G11}. These generators follow the

structure described in Sect. 3.1. The subscript indicates the

quantity of input focal slices of each generator. G0 is re-

sponsible for extracting features from the all-in-focus image.

{G4, G7, G11} are designed for fusing features from different

number of focal slices and the output of the previous genera-

tor. Specifically, the outputs named {Fake 0, Fake 4, Fake 7}
of {G0, G4, G7} are concatenated with FS × 4, FS × 7, FS ×

11 respectively. To avoid information redundancy and make

full use of refocusing information, we randomly selected the

focal slices based on a certain proportion a. And then the

predicted saliency (Fake 11) and ground truth (GT) are mul-

tiplied by the all-in focus image as the input of the discrimi-

nator.

3.3. Objective

We train our multi-generator model over an adversarial loss

and two content losses. Content loss is often used to calcu-

late the quality of the reconstructed image obtained by the

generator. Our experiments show that the combination of the

adversarial loss and the content loss can obtain better results

than using adversarial loss alone.

The objective function is described in Eq. 1,
∑

i={0,4,7,11}
[αLL1

(Gi) + βLBCE(Gi)] + LGAN (G11, D) (1)

where i = {0, 4, 7, 11}, LL1
(Gi) and LBCE(Gi) represent

the L1 loss and binary cross entropy (BCE) loss for each

generator, α and β are the scale factors for LL1
(Gi) and

LBCE(Gi), LGAN (G11, D) represents the adversarial loss.

Specifically, adversarial loss is defined in Eq. 2,

LGAN (G,D) = min
G

max
D

Ex,y [logD(x, y)] (2)

where x and y represent the input of the generator and the

ground truth. It aims to minimize the loss of the generator (G)

and maximize the discriminator (D) loss so that the predicted

result of the generator closer to the ground truth.

4. EXPERIMENT RESULTS

4.1. Datasets

We evaluate our method both qualitatively and quantitatively

on three light field datasets: LFSD [17], HFUT-Lytro [12],

and Lytro-Illum [13]. The LFSD dataset [17] includes 100

light fields and there is only one salient object in the fore-

ground center. Zhang et al. [12] constructed the HFUT-Lytro

dataset with 255 different light fields. Some of these include

multiple salient objects. The Lytro-Illum dataset [13] pro-

vides 640 light fields. Many of them contain multiple salient

objects either with a similar background or overlapping with

the boundary of salient objects. Each focal stack of Lytro-

Illum [13] contains 11 focal slices and the spatial resolution

of each slice is 540×375. But the number of focal slices de-

coded by LFSD [17] and HFUT-Lytro [12] datasets is much

less than 11. In this paper, we randomly copy the focal slices

of the LFSD [17] and HFUT-Lytro [12] from a small number

to 11 to meet the input requirements of our network.

4.2. Implementation and experimental setup

We implement our method based on the Pytorch frame-

work [26] with Python 3.6 and train it on one TITAN X (Pas-

cal) GPU. The iteration number is set to 200 epochs and a

batch size of 1. The weights in the network are initialized

with a gaussian distribution, whose setting follows zero mean

and standard deviation of 0.02. We set the proportion of fo-

cus slices selection a as 3/11 or 4/11, so that we can select the

focal slices with a roughly equal proportion. As suggested

in [18], we apply the iterative training on GANs, which is

helpful to keep stability for training. After training, we use

the multi-generator to evaluate the network performance on

the testing light fields.

We apply geometric transformations (i.e., mirror and rota-

tion) to augment training data of the Lytro-Illum dataset. Af-

ter data augmentation, the number of training data increases

from 640 to 1920. Every image is resized to 256 × 256 to

leverage the utilization of global information by U-Net [23].

To avoid overfitting, we train our network on the Lytro-

Illum dataset with 5-fold cross-validation as[13]. During

training, we randomly divide data into five equal parts, one

of which is used as the test, and the rest is used as the training

data. We take the average of the five evaluation results as our

evaluation result.

4.3. Evaluation Metrics

In this paper, we evaluate our method with four measures: Fβ-

measure (F-measure), Mean Absolute Error (MAE), weighted

Fω
β -measure (WF-measure) [27] and Structure-measure (S-

measure) [28]. F-measure is calculated from precision and
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Table 1. Quantitative evaluation results of the influence of

focal slices on the Lytro-Illum dataset

Method F-measure WF-measure MAE S-measure

2D IN 0.782 0.740 0.072 0.804

FS 6 0.824 0.791 0.055 0.842

FS 11 0.835 0.807 0.049 0.857

Table 2. Quantitative evaluation results of the loss combina-

tion on the Lytro-Illum dataset

Method F-measure WF-measure MAE S-measure

CON LOSS 0.833 0.807 0.051 0.853

AD LOSS 0.530 0.478 0.194 0.603

Ours 0.845 0.817 0.049 0.857

recall, as shown in in Eq. 3 where β2 is set to 0.3 as suggested

in [29].

Fβ =
(1 + β2)Precision×Recall

β2 × Precision+Recall
(3)

WF-measure [27] takes the inter-pixel dependence into

account and introduces a weight function into the F-measure.

MAE shows the per-pixel difference between a predicted

saliency map and the corresponding ground truth. The above

three metrics compute errors at the pixel level and usually ig-

nore the structural similarity between the predicted map and

the ground truth. For this purpose, S-measure [28] is pro-

posed. It is defined in Eq. 4

S = α× So + (1− α)× Sr (4)

where α is set to 0.5, So and Sr represent the global similar-

ity for salient objects and similarity of block regions in the

saliency maps, respectively.

4.4. Ablation Studies

To verify the design choices, we conduct some experiments

on ablated versions of our model. Results are reported on the

Lytro-Illum dataset [13]. For a fair comparison, 5-fold cross-

validation is applied as [13].

Influence of focal slices. To explore the role of focal

slices in our approach, we compare the 2D all-in-focus im-

age (2D IN) with different focal slices (FS 6, FS 11) using

the basic model. Compared to the 2D input, the depth in-

formation of focal slices is useful to separate salient objects

from complex backgrounds as shown in Table 1 and Fig. 2.

Additionally, comparing FS 6 and FS 11, input more slices,

the network can learn more saliency information. We fur-

ther visualize the gradients and features of 2D IN and FS 11

from the pre-trained model by extracting back-propagation

parameters of the first layer [30], as shown in Fig. 3. From

the vanilla back-propagation saliency (BP) [31], we find that

FS 11 can guide the network to focus more on salient objects.

Besides, focal stacks can separate the salient objects from the

background more effectively as presented in the visual fea-

Table 3. Quantitative evaluation results of the influence of the

discriminator on the Lytro-Illum dataset

Method F-measure WF-measure MAE S-measure

NO AF 0.828 0.798 0.06 0.843

Ours 0.845 0.817 0.049 0.857

Fig. 2. Qualitative comparisons of predicted saliency maps.

(a) All-in-focus, (b) GT, (c) 2D IN, (d) FS 6, (e) FS 11, (f)

CON LOSS, (g) AD LOSS, (h) NO AF, (i) Ours.

tures, which is due to the contribution of depth information of

focal stacks.

Effect of loss function. To understand the role of each

loss, we conduct ablation studies about only adversarial loss

(AD LOSS), only content losses (CON LOSS), and both of

them. From Table 2 and Fig. 2, we can see that edges of the

salient objects can be better preserved by adding the content

loss.

Input of the discriminator. In experiments, we investi-

gate different inputs of the discriminator and their influence

on final performance. From Table 3, we observe that all met-

rics are improved by more than 1% by introducing the all-in-

focus image than saliency map input (NO AF). Results sug-

gest that color and texture information of salient objects have

a positive effect on saliency detection.

4.5. Comparison with state-of-the-art

We compare our method to state-of-the-art light field saliency

detection methods: LFS [17], WSC [10], DILF [11], Multi-

cue [12], MAC [13], DeepLFSV [16], MOLF [14], DL-

LFSD [15]. Following WSC [10], we train our network on

the Lytro-Illum dataset [13] and evaluate it on LFSD [17] and

HFUT datasets [12] with 5-fold cross-validation.

The quantitative results on three light field datasets are

shown in Table 4. We can find that our method outperforms

most methods on the Lytro-Illum dataset. Comparing with

the recent state-of-the-art method MAC [13], our method im-

proves F-Measure by 3.4% and WF-Measure by 6.2% on the

Lytro-Illum dataset. However, the performance is not so well

on LFSD and HFUT datasets. The main reason is that the

number of focal slices is limited in these two datasets. When

testing on these two datasets, the multi-generator network

may ignore the depth information because of the usage of the

same copies.
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Fig. 3. Visualization of 2D IN and FS 11. (a) All-in-focus, (b) GT,

(c) Prediction, (d) BP, (e) 13th layer, (f) 16th layer, (g) 19th layer.

In last five columns, the odd rows represent 2D IN and even rows

represent FS 11. The features of the 13th layer, 16th layer, and 19th

layer are extracted from the first convolutional filter.

Fig. 4. Comparison with other advanced methods on three datasets.

(a) All-in-focus, (b) GT, (c) Ours, (d) MAC, (e) DL-LFSD, (f)

MOLF, (g) DeepLFSV, (h) Multi-cue, (i) DILF, (j) WSC, (k) LFS.

Fig. 4 shows qualitative visual comparisons with other ap-

proaches. Our predicted results are very close to the ground

truths in various challenging scenarios.

4.6. Failure cases

Although our method can achieve excellent results in many

challenging scenes, there is still room for improvement in

some complex scenes. For example, there are some diffi-

culties in extracting saliency from similar backgrounds, and

salient objects with complex shapes, as shown in Fig. 5.

The reason for the better performance of Multi-cues [12] and

DILF [11] in these cases is that these methods explicitly use

the depth prior map. Due to the limited number of focal

slices in HFUT and LFSD datasets, our network cannot ex-

ploit enough refocus information, as shown in the last two

examples of Fig. 5. Additionally, methods based on DCNs

Fig. 5. Some failure cases are shown in this figure. These scenes

are selected from three different datasets. (a) All-in-focus, (b) GT,

(c) Ours, (d) MAC, (e) DL-LFSD, (f) MOLF, (g) DeepLFSV, (h)

Multi-cue, (i) DILF, (j) WSC,(k) LFS.

focus on extracting global information and ignore the differ-

ences between local regions.

In the future, it will be very promising to design a DCNs

method that can combine background prior knowledge from

the depth map or super-pixel algorithms. Super-pixel in im-

age segmentation refers to irregular pixel blocks with similar

texture, color, brightness, and other characteristics. Most of

these small areas retain effective information for image seg-

mentation and generally do not destroy the boundary infor-

mation of objects. Also, if a large-scale light field saliency

dataset can be established, it will be more helpful to improve

the generalization ability of light field saliency model.

5. CONCLUSION

In this paper, we propose a novel multi-generator adversarial

network to detect salient objects from focal stacks. Addition-

ally, we adopt a strategy of combining the adversarial loss and

two content losses for training. We verify that the joint loss

is beneficial to learning the structure and edge information of

salient objects. Comprehensive quantitative and qualitative

show that our method is competitive to the existing methods

on the Lytro-Illum dataset. Specifically, our approach can bet-

ter preserve salient object boundaries and capture high con-

trast information. Although the performance of our method is

lower on the other two tested datasets, it provides a new fea-

sible method to segment the salient objects with refocusing

information.
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