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10.1. INTRODUCTION

Global flood model (GFM) initiatives have developed 
rapidly over the past decade and have matured from 
research experiments into usable tools that are reshaping 

our understanding of global flood risk (Ward et al., 2015). 
This chapter explores how GFMs have become a recent 
reality and why they are important. It will also look at the 
different types of GFM, the differences between a GFM 
and more traditional flood modeling and look at some 
examples of how GFMs are being used, including the 
crossovers with insurance catastrophe models. It will 
finish with a look at current GFM credibility and where 
GFMs might develop in the future. The focus in this 
chapter will be mainly on models used to derive flood 
hazard globally, rather than those used for flood fore­
casting; which is a related use and many of the models 
discussed are used for both purposes.

While flooding is often experienced first‐hand as a 
local impact and has traditionally been tackled at the rel­
evant local catchment or reach scale, there is a growing 
understanding that many flood events are connected to, 
or driven by, short‐term and long‐term global weather 
systems (Fan et al., 2015; Hagos et al., 2016). In addition, 

10
Global Flood Models

Mark A. Trigg1, Mark Bernhofen1, David Marechal2, Lorenzo Alfieri3, Francesco Dottori3, Jannis 
Hoch4,5, Matt Horritt1, Chris Sampson6, Andy Smith6, Dai Yamazaki7, and Hongyi Li8

ABSTRACT

Flooding is the most damaging natural hazard, both economically and by population affected. Flood models 
are important tools for evaluating the risks associated with flooding. Historically, the modeling domain has been 
limited in scale; however, advancements in computing power and global data sets have led to the development of 
global flood models (GFMs). This global modeling capability has benefited scientific studies of exposure and 
climate change impact, the insurance industry, and intergovernmental disaster risk reduction efforts. Global 
flood modeling has now progressed beyond its infancy to a point where coordinated and targeted model 
development can take place based on collective studies. This chapter provides a detailed summary of the current 
global flood modeling state‐of‐affairs. It begins with a summary of the history and challenges of GFM 
development. This is followed by a review of current GFMs and their structures, applications, and credibility. A 
section is also dedicated to describing global flood modeling in the context of the insurance catastrophe model, 
an important GFM category that is less visible due to their proprietary nature. The chapter concludes by looking 
to the future and highlighting how GFMs need to improve and the new data sets and methods that could con­
tribute to their continued development.

1 School of Civil Engineering, University of Leeds, Leeds, 
United Kingdom

2 Guy Carpenter and Company GmbH, Munich, Germany
3 Disaster Risk Management Unit, European Commission 

Joint Research Centre, Ispra, Italy
4 Department of Physical Geography, Utrecht University, 

Utrecht, The Netherlands 
5 Deltares, Delft, The Netherlands
6 Fathom Global, Bristol, United Kingdom
7 Institute of Industrial Science, The University of Tokyo, 

Tokyo, Japan
8 Department of Civil and Environmental Engineering, 

University of Houston, Houston, Texas, USA



182  GLOBAL DROUGHT AND FLOOD

due to our increasingly interconnected global community, 
flood events in all parts of the globe are now having 
significant economic and social impacts in all parts of the 
world (Trigg et al., 2013). Together with the extra challenge 
of addressing the effects of climate change, which are felt 
globally, these drivers have led to a need for assessments 
of flood risk at a global scale. This global need has become 
evident on several fronts; scientific studies to simulate the 
impact effects of general circulation modeling, insurance 
catastrophe modeling to understand risk and exposure 
(Bates et  al.,  2018), and intergovernmental efforts in 
disaster risk reduction (UNISDR, 2005, UNISDR, 2009, 
UNISDR,  2011, UNISDR,  2013, UNISDR,  2015b). 
This collective challenge has resulted in the formation 
of  the Global Flood Partnership (GFP), which brings 
together organizations involved on all these fronts. The 
overall objective of the GFP is the development of flood 
observational and modeling infrastructure, leveraging on 
existing initiatives for better predicting and managing 
flood disaster impacts and flood risk globally (De Groeve 
et al., 2015).

10.1.1. The Challenges and History of GFM 
Development

Despite the growing need for a better understanding of 
global flood risk, it was not immediately evident how this 
could be achieved and what a resulting GFM would look 
like. Any GFM needs to be able to provide realistic and 
reliable estimates of flood hazard for a range of probabil­
ities (return periods). For estimates of risk exposure, at a 
bare minimum, flood extent is required, and ideally flood 
depth is also needed to estimate risk from vulnerability. 
These outputs need to be at a sufficient resolution to be 
commensurate with global exposure data sets, which are 
also an active research field.

Traditional flood risk modeling has filled these needs at 
a local scale. However, this requires significant amounts 
of high resolution data and computation resources, as well 
as technical expertise to build and run the models 
(Table 10.1). Scaling this approach up to a global level 
seemed almost an impossible challenge and therefore a 
different approach was required. Thus, multiple parallel 
initiatives emerged from different sectors, leading to a 
rich diversity of GFM approaches, which we detail in the 
next section. However, despite the initial variety, there 
were several common primary challenges to surmount 
for all developers (Sampson et  al.,  2015) and there is 
therefore a common development timeline as data and 
methods became available (Figure 10.1).

The challenges facing developers fall into the following 
five categories: terrain data, channel location and size, 
river discharge, computational efficiency, and automation. 

The first challenge facing developers was the availability 
of global data with which to build the models. Flood 
models require information about the topography of the 
terrain that controls flooding. It was not until the advent 
and adoption of the Shuttle Radar Topography Mission 
(SRTM) digital elevation data (hereafter DEM), that 
data of sufficient resolution and quality were available 
with a near global coverage. The second challenge, cor­
rectly identifying channel location and size, is inherently 
linked to the first; as the channel is derived from the 
DEM. The HydroSHEDS hydrography data set, devel­
oped using the SRTM DEM, is essential to modeling 
flooding globally. The third challenge was to derive 
extreme flood flows at multiple locations for every river 
on Earth, with limited gauged data. There are two dis­
tinct approaches to solving river discharge in GFMs, 
regionalization growth curve methods using data from 
the Global Runoff Data Center (GRDC) database (Smith 
et  al.,  2015) and land surface modeling of flows from 
global circulation models (GCMs). The latter approach, 
which enables the models to produce nowcasts, forecasts, 
and future predictions also introduces additional uncer­
tainties into the modeling framework. Precipitation, a 
major source of uncertainty in GCMs, often dominates 
the uncertainty of flood simulations in GCM‐driven 
models (Chen et  al.,  2014). The fourth challenge was 
to  be able to computationally model the hydraulics of 
the  flood flows in the rivers and on the floodplains 
with  sufficient speed to undertake this for all rivers, 
for  multiple probability scenarios. This was achieved 
through simplification of the hydraulics and the develop­
ment of rapid parallel computational algorithms (Bates 
et  al.,  2010) and subgrid modeling approaches to solve 
multiscale hydrodynamic processes in rivers and flood­
plains (Neal et  al.,  2012; Wu et  al.,  2014; Yamazaki 
et al., 2011), as well as with the help of continuous com­
putation speed improvements. The final, not insignifi­
cant, challenge for developers was to put these data and 
methods into an automatic functional framework that 
allowed specific hazard and forecasting outputs to be 
generated as required and in a format and resolution that 
was useable.

It should also be noted here that there have been parallel 
efforts to develop regional flood model approaches that 
share similar scale challenges with GFMs but may have 
access to better regional data. For example, the United 
Kingdom has undertaken national risk assessments using 
simple non‐hydraulic methods, due to computational cost 
(Hall et al., 2003), but later used two‐dimensional diffu­
sive wave hydraulic models (Bradbrook et al., 2004, 2005). 
In the United States, the recent focus has been on the 
dynamic, unsteady river routing methods for quasi‐real‐time, 
event‐based flood extent mapping (Adams, 2016).
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Once a GFM is functioning, there may be a number 
of  other secondary follow on challenges that require 
development, depending upon the use intended. Many of 
these are active research areas in themselves and specific 
approaches are outlined in the model detail section. For 
example, most current GFMs do not include infrastruc­
ture that may locally affect flood hazards, e.g., bridges, 
dams, flood defenses, and urban drainage networks. They 
often do not yet include other, maybe only locally impor­
tant, sources of flood hazard other than fluvial (river 
source), such as pluvial, coastal, or groundwater.

The GFM community has succeeded in overcoming 
these primary challenges and in developing a range of 
usable flood models. The rest of the chapter focuses on 
describing the models and their uses in more detail, while 
also looking at their testing and how developers are 
addressing the secondary challenges that will ultimately 
improve their credibility and usability.

10.2. TYPES OF GFM AND SPECIFIC EXAMPLES

The palpable benefit of being able to model flood 
hazard anywhere in the world meant that as soon as the 
necessary inputs for a GFM became available, a number 
of different groups began developing models simulta­
neously. Flood modeling on such a large scale had never 
been undertaken before and brought with it challenges 
that had not previously been encountered. Each model 
developer approached these new challenges differently, 
resulting in a broad selection of GFMs with varying 
model structures.

This section will begin by highlighting the key differ­
ences in model configuration of six well‐known GFMs, 
for which there is extensive documentation. These 
models include U‐Tokyo (previously called CaMa‐UT), a 
research model from the University of Tokyo (Yamazaki 
et  al.,  2011); Centro Internazionale in Monitoraggio 

Table 10.1  Characteristics of Global Flood Models Relative to Traditional Local Flood Models

Characteristic Global flood model Local flood model

Digital elevation 
model (DEM)

Coverage is key, needs to be global. Potentially can 
be composite from different sources but difficulties 
in merging different data sources seamlessly

Best available, typically three‐
dimensional laser scanning (LiDAR)

Geographical coverage Global Typically up to tens of kilometers
Floodplain hydraulics Limited equation base, sacrificing accuracy for 

speed, knowing that errors due to neglecting, 
e.g., advection terms are small compared to 
errors from lower quality DEM. Also related to 
resolution, as larger model cells make some terms 
less significant (see Hunter et al., 2007)

Typically full shallow water

Channel hydraulics Sometimes ignored completely; allowance for 
channel capacity made by, e.g., removing bankfull 
discharge from flow estimate; or simple 
representation in DEM or submodel grid.

Full representation in two‐dimensional or 
as one‐dimensional submodel from 
bespoke topographical survey

Outputs Typically extent only, vertical errors in DEM can 
prevent useful depth prediction

Extent–depth–velocity–duration

Hydrology Regional growth‐curve methods or large‐scale 
landsurface runoff modeling

Led by hydrologist, making best use of 
local data

Defenses Generally undefended scenarios only, except where 
simple relationship used (e.g., GDP to defended 
probability)

Defended/undefended/breaching

Build and run process Fully automated Manual, requiring experienced modelers
Hardware Supercomputer, cluster, and cloud Desktop computer
Flood sources Mostly only fluvial, some now include coastal and 

surface water
Fluvial, coastal, surface water; sometimes 

dam break, groundwater, natural flood 
management, urban drainage systems

Resolution 1 km to ~90 m for two‐dimensional models. 
5–50 km and postprocess downscaling for one‐
dimensioal models.

~5 m or less

Catchment size All large rivers. Smallest scale dependent on model, 
i.e., 50–5000 km2

Down to ~1 km2 for fluvial, smaller 
catchments in surface water models

Dynamics Steady state or partially dynamic, but increasingly 
fully dynamic

Fully dynamic
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Ambientale and United Nations Environment Program 
(CIMA‐UNEP), a model developed for the 2015 United 
Nations International Strategy for Disaster Reduction 
(UNISDR) Global Assessment Report (GAR; Rudari 
et  al.,  2015); ECMWF, a model developed by the 
European Centre for Medium‐Range Weather Forecasts 
(Pappenberger et  al.,  2012); GLOFRIS, a model devel­
oped by Deltares (Winsemius et al., 2013); JRC, a model 
developed by the Joint Research Centre in Italy (Dottori 
et  al.,  2016); and Fathom (previously called SSBN), a 
commercial model that arose out of research from the 
University of Bristol (Sampson et al., 2015).

Categorizing GFMs based on their characteristics is 
not a straightforward task. A previous study grouped 
the  models into two types by extreme flow method: 
cascade model types and gauged flow data types (Trigg 
et al., 2016). A schematic of these two model groups is 
shown in Figure 10.2. This section will elaborate on addi­
tional model differences by looking at five different 
aspects: scale characteristics, model forcing, probability 
estimation methods, calibration, and hydraulic methods. 
Before highlighting the differences between the models, it 
should be noted that there are also many common under­
lying data sets, in particular, the HydroSHEDS global 
hydrography data set (Lehner et al., 2008) and the Shuttle 
Radar Topography Mission (SRTM) DEM from which it 

Cascade model type
[U-Tokyo, GLOFRIS, ECMWF, JRC]

Climate reanalysis
data

Global gauged flow
data

Regional flow
frequency analysisLand surface model

Continuous river flow
routing

Flood frequency
analysis

Downscaling or
calculate flood

extents and depths

Calculate flood
extents & depths

Flood flow routing,
rivers & floodplain

Flood flow
mangnitude

Gauged flow data model type
[Fathom, CIMA-UNEP]

Figure  10.2  A simplified schematic of the two main model 
structures used by the six different global flood models (Source: 
Trigg, M. A., Birch, C. E., Neal, J. C., Bates, P. D., Smith, A., 
Sampson, C. C.,  .  .  .  Fewtrell, T. J. (2016). The credibility 
challenge for global fluvial flood risk analysis. Environmental 
Research Letters, 11(9), 094014. Licensed under CCBY 3.0.)
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Figure 10.1  Timeline of global flood model (GFM) development highlighting key data set releases, scientific 
meetings and publications, model releases and testing, and flood events: 1, Bates & De Roo (2000); 2, Hall 
(2014); 3, Rodriguez et al. (2006); 4, Thielen et al. (2008); 5, Lehner et al. (2008); 6, Bates et al. (2010); 7, 
Yamazaki et al. (2011); 8, Neal et al. (2012); 9, Pappenberger et al. (2012); 10, Winsemius et al. (2013); 11, Ward 
et al. (2013); 12, Hirabayashi et al. (2013); 13, Schumann et al. (2014); 14, Wu et al. (2014); 15, Smith et al. 
(2015); 16, Rudari et al. (2015); 17, Ward et al. (2015); 18, Sampson et al. (2015); 19, Dottori et al. (2016); 20, 
Scussolini et al. (2016); 21, Trigg et al. (2016); 22, Yamazaki et al. (2017); 23, Wing et al. (2017); 24, Bernhofen 
et al. (2018). 
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is derived (Rodriguez et al., 2006). This section concludes 
by describing other global hydrology models that may 
also develop into GFMs in the future or add to process 
improvements in GFMs. The GFMs used for insurance 
purposes are described separately, partly due to the lack 
of published information, but also due to the very specific 
risk framework within which they are used.

10.2.1. Scale Characteristic

The scale of GFMs can refer to a number of things: the 
minimum threshold size of rivers that are represented, 
the resolution at which the calculations are carried out, or 
the resolution of the actual flood hazard output. The 
question of scale is something that needs to consider both 
the accuracy and comprehensiveness of the flood hazard 
output alongside the computational efficiency of the model.

Communicating the scale of river representation in 
GFMs is typically done in terms of upstream catchment 
area. The threshold river size considered by the models 
varies significantly, from ~50  km2 (Fathom Global) to 
~5000 km2 (JRC). The GFM output is contingent on the 
input data sets, and often, global data sets are not resolved 
to a level where the smallest rivers can be easily repre­
sented. The coarse (~5000 km2) upstream area threshold 
of the JRC’s model comes as a result of using ERA‐
Interim climatology, where the coarse global resolution 
cannot accurately represent very local precipitation 
(Dottori et al., 2016).

Operating at a coarse resolution is not a detriment to 
these global models but rather a necessity. Many of the 
models run their computations at a coarser scale and 
then downscale these results to the output resolution. 
The process of downscaling makes modeling at such large 
scales more computationally viable (Bates et  al.,  2018). 
The Fathom model, however, no longer downscales and 
runs all calculations explicitly at either 30 m or 90 m res­
olution (depending on the DEM available). This shows 
how far GFMs have come in only a matter of years 
(Sampson et al., 2015). The principle, however, remains 
the same; global models cannot be run at “engineering” 
level resolutions (< 5 m), even if  the data were available.

The scale of GFMs is likely the characteristic that will 
see the most improvement over the coming years. As 
computational capacity improves through faster proces­
sors and parallelization, so too global data sets will see 
advancements in terms of accuracy and resolution; mak­
ing it possible to accurately model the flood hazard of 
even the smallest streams at some point.

10.2.2. Model Forcing

Global flood models can be most easily categorized by 
their method for generating extreme flood flows. Models 
are either forced by climate reanalysis data or by global 

gauge data. The two methods for forecasting extreme 
flows differ significantly. See Figure 10.2 for a useful visu­
alization of this model categorization and the different 
stages in analysis that occur as a result of beginning with 
an extreme flow methodology.

Those models forced by climate data combine a climate 
reanalysis data set with a land surface model to predict 
extreme flows. Climate reanalysis data sets contain mea­
surements of global climate data that are collected and 
stored at a constant time step (often 6–12  h) over an 
extended period (30–40 years for the GFMs in question) 
(Dee et al., 2016). These rainfall data, along with other 
relevant climate data, are input into a land surface model 
that simulates the land surface response to the climate 
forcing (Pappenberger et al., 2012) and outputs the resul­
tant rainfall discharge and volume.

The GFMs not forced by climate data are forced 
instead by regionalized analysis of global gauge data. 
The premise for these models is that the discharges mea­
sured in well‐monitored catchments can be transferred to 
unmonitored catchments that share similar characteris­
tics. The GFMs use data from sources like the Global 
Runoff Data Centre (GRDC), which collects discharge 
data from 9500 stations globally. Catchments are then 
categorized based on their Koppen‐Geiger climate 
classification (Kottek et al., 2006) and their rainfall char­
acteristics. The behavior of similarly characterized 
gauged catchments is used to derive ungauged catchment 
flows so that extreme flows can then be calculated for all 
global catchments (Rudari et al., 2015; Smith et al., 2015).

10.2.3. Probability Estimation Methods

In order for GFMs to model flooding of a specific 
return period, some form of flood probability estimation 
needs to take place. All the models apply a Gumbel distri­
bution (Generalized Extreme Value distribution Type I) 
to their forcing data to estimate the return period magni­
tude. The models differ, however, in the flood component 
that is output as a result of this probability estimation.

The JRC, Fathom, and CIMA‐UNEP models return 
probability discharges. These discharges are then used as 
input for a hydraulic model, which simulates the flood 
extent and depth in the catchment for the given return 
period flow (Dottori et  al.,  2016; Rudari et  al.,  2015; 
Sampson et  al.,  2015). The ECMWF and U‐Tokyo 
models return probability flood depths, derived from the 
Gumbel frequency analysis of river water storage, which 
is calculated by passing the climate forcing data through 
a river routing scheme. These probability flood depths are 
calculated for each river cell and are used to determine 
whether the surrounding cells are flooded or not 
(Pappenberger et al., 2012; Yamazaki et al., 2011). The 
GLOFRIS model operates under a similar “flooded cell” 
probability scheme, but uses flood volume instead of 
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flood depth to determine the probability of cell inunda­
tion (Ward et al., 2013; Winsemius et al., 2013).

10.2.4. Calibration

A major difference between GFMs and reach‐scale 
flood models is the level to which they are calibrated. 
Reach‐scale flood models are often calibrated against a 
multitude of different measurements and observations 
from historical flood events, these include: gauge flow 
records, gauge water level measurements, flood depth, 
flood extent, and flood frequency (Huxley & Ryan, 2016). 
Data availability, in addition to the scale and global appli­
cability of GFMs, limits the feasibility of conventional 
flood model calibration. Variables traditionally derived at 
a regional scale through calibration, such as flow rough­
ness parameter Manning’s n, are either calculated based on 
a relationship with streamflow (Wu et al., 2017) to account 
for the relationship between roughness and flooded vegeta­
tion (Soong et  al.,  2012), or determined based on basin 
characteristics (Rudari et  al.,  2015), previous studies 
(Dottori et al., 2016), or kept constant in the global domain 
(Winsemius et al., 2013; Yamazaki et al., 2011).

Many of the GFM input data sets have undertaken 
some form of correction. The forcing data sets for almost 
all of the models have received bias correction and the 
underlying SRTM‐based (Rodriguez et  al.,  2006) 
HydroSHEDS DEM (Lehner et  al.,  2008) has in some 
cases received vegetation canopy and urban bias correction 
(Dottori et  al.,  2016; Sampson et  al.,  2015; Yamazaki 
et  al.,  2012). Bias correcting the underlying DEM is of 
vital importance, as these areas of vegetation and high 
urban concentration see consistent elevation overestima­
tion. This incorrect terrain representation, in turn, natu­
rally affects the accuracy of the modeled flood extent.

10.2.5. Hydraulic Method

Central to each GFM is a hydraulic model that simu­
lates, to varying degrees of complexity, the physics of 
fluid flow. To operate globally, these models often need to 
make assumptions about flow physics that simplify the 
governing equations, thereby considerably reducing com­
putation time. Information about the set‐up of each 
model, including the most up to date hydraulic method, is 
provided in Table 10.2.

The CIMA-UNEP model is the only GFM that oper­
ates in one‐dimension, solving Manning’s equation (10.1) 
at regular points along the centerline of the river channel 
(Rudari et al., 2015):

	 Q
A
n

R S2 3 1 2/ / 	 (10.1)

where Q is the channel flow [L3 T−1], R is the hydraulic 
radius [L], So is the channel slope [L/L], A is channel 
cross‐sectional flow area [L2], and n is Manning’s rough­
ness coefficient [T L1/3]. One‐dimensional flow represen­
tation is one of the simplest forms of flood modeling, but 
while it is computationally efficient, it can falsely repre­
sent connectivity in floodplains and cannot model the 
floodplain flow well, unless it is parallel to the main river 
channel (Neelz & Pender,  2009). However, on the large 
scales of global flood models it appears to perform 
reasonably well considering its limitations (Bernhofen 
et al., 2018).

The remaining flood models all operate in two dimen­
sions, solving some simplified form of the shallow‐water 
equations, as the computational cost of running the full 
physics solvers would make modeling infeasible with such 
large domains. The full one‐dimensional shallow‐water 
equations for momentum and continuity are given in 
equations (10.2) and (10.3), respectively, below:
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where Qx is the flow in the x direction [L3 T−1], A is the 
cross‐sectional flow area [L2], h is the water depth [L], z is 
the bed elevation [L], g is the acceleration due to gravity 
[L T−2], n is Manning’s roughness coefficient [T L 1/3], R is 
the hydraulic radius [L], t is time [T], and x is the distance 
in the x Cartesian direction [L].

Channel flow is calculated in the two‐dimensional 
models using kinematic wave, diffusive wave, or inertial 
simplifications of the shallow‐water equations. The kine­
matic wave simplification, which is used in the GLOFRIS 
model, assumes that local and convective acceleration (the 
first and second terms of equation  10.2) are negligible 
and  simplifies the water‐slope term (term three in 
equation 10.2) to consider only bed gradient (z) and not 
water depth (h). It retains the friction‐slope term (term 
four in equation 10.2). The diffusive wave simplification 
differs from the kinematic wave simplification in that it 
includes water depth (h) in the water‐slope term. This 
allows backwater effects to be simulated in models that 
apply the diffusive wave simplification. The inertial sim­
plification to the shallow‐water equations is an adapted 
form of the diffusive wave simplification that incorporates 
local acceleration (term one in equation 10.2) into the for­
mulation (Bates et al., 2010). The remaining models have 
either updated their models to (U‐Tokyo and ECMWF), 
or have always employed (Fathom and JRC), a form of 
the inertial simplifications for their hydraulic simulations.



Table 10.2 Global Flood Model Details

Model Climate forcing
Land surface 
model River routing Floodplain Flood frequency Downscaling

Output data 
resolution

GLOFRIS (Deltares, VU 
Amsterdam, University 
of Utrecht, PBL)

EU‐WATCH 
reanalysis 
1960–1999

Hydrological 
model PCR‐
GLOBWB, 0.5°

Kinematic 0.5° 30 arc s SRTM model Flood volume
Gumbel 

distribution for 
1960–1999

Volume redistribution 
30 arc s SRTM 
model

30 arc s ~900 m

U‐Tokyo (U‐Tokyo, 
JAMSTEC)

JRA‐25 reanalysis 
1979–2010 + GPCP 
raingauge 
correction

MATSIRO‐GW 
energy and 
water balance 
(1°)

Inertia 0.25° Subgrid topography 
upscaled from 
3 arc s HydroSHEDS 
and SRTM

Water level
Gumbel 

distribution for 
1979–2010

Flood depth 
downscaled onto 
18 arc s DEM

18 arc s ~540 m

HTESSEL + CaMa‐Flood 
(ECMWF)

ERA‐Interim 
reanalysis 
1979–2014

HTESSEL, T255 
(~80 km)

Three methods: 
kinematic, 
Inertia(×2)

0.25°

Subgrid topography 
upscaled from 
3 arc s HydroSHEDS 
and SRTM

Flood depth
GEV distribution 

for 1979–2014

Depth downscaled 
onto 18 arc s DEM

18 arc s ~540 m

JRC GloFAS, ERA‐Interim 
reanalysis 
1980–2013

HTESSEL LISFLOOD‐
Global (0.1°) + 
inertia (30 arc s)

Subgrid topography 
upscaled from 
3 arc s HydroSHEDS 
and SRTM

Gumbel 
distribution for 
1980–2013

N/A 30 arc s ~900 m

Fathom Regional FFA from 
global gauge data

N/A Inertia
1 or 3 arc s

MERIT or 1 s mixed 
(e.g., NED)

From FFA N/A 3 arc s
~90 m
Or 1 s (~30 m)

CIMA‐UNEP, GAR2015 Regional FFA from 
global gauge data + 
ECEarth bias 
corrected

Continuum 
model to 
improve FFA

Manning’s at 
multiple points

Reconditioned 
HydroSHEDS and 
SRTM

From FFA, GEV 
fitting

Native at 3 arc s 3 arc s
~90 m

Source: Trigg, M. A., Birch, C. E., Neal, J. C., Bates, P. D., Smith, A., Sampson, C. C., . . . Fewtrell, T. J. (2016). The credibility challenge for global fluvial flood risk analysis. 
Environmental Research Letters, 11(9), 094014. Licensed under CCBY 3.0.
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Out of channel, or floodplain flow, in the GFMs is 
modeled in two dimensions; and while most solve some 
simplified form of the two‐dimensional shallow‐water 
equations, the GLOFRIS model represents out of bank 
floodplain flow using a simple water‐level/volume rela­
tionship. Although floodplain flow in the GLOFRIS 
model is technically modeled in two dimensions, the volume 
distribution approach does not represent conservation 
of  momentum. This approach is often referred to as 
“pseudo‐two‐dimensional” because it omits any flow 
physics in two dimensions (Evans et  al.,  2007; Neelz & 
Pender,  2009). The remaining models solve floodplain 
flow using the two‐dimensional shallow‐water equations, 
which take the same general form as the one‐dimensional 
equations but in two directions, and apply the same sim­
plifications as outlined above for one dimension.

Some of the models are also able to incorporate fea­
tures below the model grid resolution into the simulation. 
This subgrid representation can either explicitly include 
channels as in the Fathom and JRC GFMs, or incorpo­
rate subgrid scale topography through parameterization 
(Yamazaki et al., 2011), as in the ECMWF and U‐Tokyo 
GFMs. The ability to model subgrid processes is impor­
tant in a global flood modeling context, as it allows sim­
ulations to run at a coarse, computationally efficient, 
resolution while still capturing the relevant floodplain 
connectivity and inundation dynamics.

10.2.6. Other Relevant Models

Another field that is starting to impact the GFM 
scene  is that of global hydrology models (Schellekens 
et al., 2017), which have the potential, if  tuned to high‐
flow regimes, to represent flood regimes.

One example of a global modeling framework that is 
similar to the models described so far is the Dominant 
River Tracing‐Routing Integrated with VIC Environment 
(DRIVE) model (Wu et  al.,  2014). The DRIVE model 
applies the kinematic wave or diffusion wave equations 
both to dominant rivers at grid level and to tributaries at 
subgrid level. The DRIVE model is the core component 
of the Global Flood Monitoring System (GFMS, http://
flood.umd.edu/). The GFMS is a NASA‐funded experi­
mental system using real‐time TRMM Multi‐satellite 
Precipitation Analysis (TMPA) and Global Precipitation 
Measurement (GPM) Integrated Multi‐satellitE Retrievals 
for GPM (IMERG) precipitation maps, as input to the 
DRIVE model. The DRIVE model runs on a quasiglobal 
(50°N–50°S) grid for hydrological runoff and routing 
simulations. Flood detection and intensity estimates are 
based on 15  years of retrospective model runs with 
TMPA input, with flood thresholds derived for each grid 
location using surface water storage statistics. The GFMS 
flood forecast range is 5 days, and the DRIVE model also 

includes a routine for determining forecast‐based inunda­
tion extent at 1 km.

The Model for Scale Adaptive River Transport 
(MOSART) is also an example of a global hydrology model 
that has the potential to model floods and has been used 
to study surface water dynamics of the Amazon basin (Luo 
et al., 2017). The MOSART was developed as a scalable 
framework for representing and studying riverine dynamics 
of water, energy, and biogeochemistry cycles across local, 
regional and global scales from an integrated human–Earth 
system perspective (Li et al., 2013, 2015). The MOSART 
receives runoff inputs from the land component of an 
Earth system model or a land surface model, routes the 
runoff across hillslopes into tributary channels (within each 
spatial unit such as a latitude/longitude grid or subwater­
shed) then through river networks which connect all spatial 
units within a study domain. The kinematic wave method 
is used for the routing of runoff over hillslopes and in the 
channels with relatively steep topography, and a diffusion 
wave method is used for the channels with flat topog­
raphy or those prone to inundation (Luo et al., 2017).

Finally, it is worth mentioning the risk‐modeling 
framework developed by Arnell and Gosling (2016). These 
authors assessed global river flood risk under climate 
change (flood‐prone population and flood damage) using 
a global hydrological model with climate scenarios derived 
from 21 climate models, together with projections of future 
population. Flood hazard was calculated considering 
change in the flood frequency and magnitude.

10.3. APPLICATIONS OF GLOBAL FLOOD MODELS

Global flood models are multifaceted: they have applica­
tions in many different fields related to research, planning, 
insurance, commercial use, and emergency support. Here 
we present a description of some of their main applica­
tions, which are also summarized in Table 10.3.

10.3.1. Flood Hazard Mapping

Many areas of the globe still lack reliable spatial 
information about the location and extent of flood‐prone 
areas; this absence has been one of the main drivers 
behind the development of GFMs. The main advantage 
of using GFMs to characterize flood hazard is that 
resulting estimates are derived in a consistent way, using 
input data sets of the same accuracy and with the same 
modeling framework. This consistent approach provides 
a more realistic picture of exposure (Wing et al., 2018). 
Flood hazard evaluation is typically undertaken by 
deriving inundation maps for a range of return periods, 
although some GFMs calculate hazard from continuous 
climatological or meteorological information. These maps 
can be produced either for research (Dottori et al., 2016; 
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Pappenberger et  al.,  2012; Sampson et  al.,  2015; Ward 
et al., 2013) or commercial purposes, and some models 
are used for both (Sampson et al., 2015).

Global flood models are now also being used at a 
national scale, incorporating more accurate local data into 
their framework. Fathom have recently released a United 
States model that uses national U.S. Geological Survey 
(USGS) elevation data along with other national data 
sets to produce flood hazard output at 30 m resolution 
(Wing et  al.,  2017). They used the same approach in 
Belize, incorporating local data into their model to pro­
duce national flood hazard maps (http://www.charim.
net/; Trigg et al., 2017; Ward et al., 2015).

10.3.2. Flood Risk Analysis

A further step in the use of GFMs is using the flood 
hazard maps as an intermediate step to produce flood 
risk estimates at a global scale. Typically, risk is expressed 
considering expected annual economic losses and 
expected annual number of people potentially affected 
(UNISDR, 2015a). These analyses can focus on current 
risk, how risk has changed historically, and how risk may 
change as a result of future climate and socioeconomic 
change. Risk estimates characterizing present risk condi­
tions often do so at country level. The CIMA‐UNEP 
model was used to predict average annual losses at 
national level for the GAR 2015 report (Rudari 
et  al.,  2015). Similarly, GLOFRIS is integrated into an 
online tool, AQUEDUCT (http://floods.wri.org/), which 
allows end users to easily interact with flood hazard maps 
and assess impacts such as urban damage, affected GDP, 
and affected population at the country scale.

Historical data sets can be incorporated into flood risk 
analysis to evaluate changes in vulnerability and risk over 

time. Databases such as the History Database of the 
Global Environment (HYDE) provide gridded time series 
of population and land use changes. Combining these 
time series with flood hazard maps reveal historical 
trends in flood risk exposure (Jongman et  al.,  2012; 
Tanoue et al., 2016).

Those models forced by climate data (as outlined in the 
previous section) benefit from the fact that future climate 
scenarios can be easily simulated within the model frame­
work. Studies investigating future flood risk also incor­
porate socioeconomic and demographic changes into 
their analyses, as these are seen as equally contributory to 
future risk. The JRC, GLOFRIS, and U‐Tokyo models 
have all been integral to high impact research studies 
predicting future flood risk under various climatic, 
demographic, and socioeconomic projections (Alfieri 
et al., 2017; Dottori et al., 2018; Hirabayashi et al., 2013; 
Winsemius et al., 2016).

The flexible, semiautomatic framework of GFMs also 
lends them useful to flood management scenario mod­
eling. The models can be run under different defense sce­
narios and coupled with exposure data sets to provide a 
cost‐benefit analysis of various management schemes 
(Ward et al., 2017).

10.3.3. Flood Forecasting

Given the computational burden of deriving inunda­
tion maps, GFMs are currently not applied for real‐time 
flood forecasting. The GFMS is a flood forecasting 
model that shares a similar framework to GFMs. 
However, instead of being forced by historical climate or 
gauge data, it is forced instead by real‐time satellite‐based 
precipitation data (Wu et  al.,  2014). The previously 
described global flood hazard models can quasiforecast 

Table 10.3  Different Possible Applications of Global Flood Models with Referenced Examples

Category Model References

Flood hazard mapping ECMWF Pappenberger et al. (2012)
JRC Dottori et al. (2016), data.jrc.ec.europa.eu/collection/floods
GLOFRIS Ward et al. (2013)
Fathom (SSBN) Sampson et al. (2015)

Flood risk analysis (climate change) CIMA‐UNEP UNISDR (2015)
GLOFRIS Ward et al. (2013) Winsemius et al. (2016)
JRC Alfieri et al. (2017)
U‐Tokyo Yamazaki et al. (2011); Hirabayashi et al (2013); Tanoue et al 

(2016); Dottori et al., 2018
Fathom Sampson et al. (2015)
CAT models

Flood forecasting GFMS Wu et al. (2014)
GloFAS Alfieri et al. (2013)

Source: Adapted from Alfieri, L., Cohen, S., Galantowicz, J., Schumann, G. J.‐P., Trigg, M. A., Zsoter, E. Salamon, P. (2018). 
A global network for operational flood risk reduction. Environmental Science & Policy, 84, 149–158.
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flooding by producing and using static inundation maps 
as reference scenarios to evaluate potential flood‐prone 
areas and flood impacts according to forecasts. The GFM 
modeling frameworks are already automated and built 
for speed, in the future we will likely see these frameworks 
used in forecasting over large scales. This potential use 
presents one the most promising GFM development 
areas in the near future.

10.3.4. Insurance Exposure

A key application for GFMs is in modeling insurance 
exposure. Some of the GFMs we have covered already, 
such as those developed by Fathom, are being used to 
inform insurance companies about the exposure of their 
portfolio. The bulk of this insurance exposure analysis is 
undertaken within specialized insurance catastrophe 
model frameworks. The commercial nature of these 
models means that there is little published literature 
about their development and structure. The next section 
provides a summary of the current “public” state of 
knowledge for these commercial examples of GFMs.

10.4. INSURANCE CATASTROPHE MODELS

The insurance and reinsurance industry started consid­
ering natural catastrophe (CAT) models in the late 1980s 
at a time when modeling companies first appeared. The 
use of CAT models by property (re)insurers has grown 
since then. They are now commonly used for portfolio 
management (e.g., accumulation control, analysis of the 
key risk drivers) and risk transfer (e.g., structuring and 
pricing of risk transfer through reinsurance or alternative 
solutions). Property (re)insurers are also expected by reg­
ulators to use CAT models in their risk management 
processes.

The CAT models are designed to quantify the financial 
impact of catastrophic scenarios for the risk carrier. Both 
the frequency and the severity of the scenario (also called 
“event”) are estimated. One of the specificities of CAT 
models is that they adopt different financial perspectives 
for the loss computation: economic losses but also insured 
losses or reinsured losses, depending on the interest of 
the  risk carrier. The structure of CAT models can be 
described in four main modules.

1. The hazard module: this is the core of CAT models 
and it contains information specific to the peril.

2. The exposure module: all relevant information from 
the (re)insurance portfolio is captured. This includes the 
location of the properties; but also the occupancy, 
building type, and sums insured.

3. The vulnerability module: hazard intensities are 
translated into potential damages based on the local 
hazard, the physical characteristics of the properties at 

risk, and the values insured by coverage (e.g., building, 
content, or business interruption). Vulnerability functions 
are one of the main sources of uncertainty in flood risk 
models (Metin et al., 2018) because of the large variabil­
ities in damages. Vulnerability functions are therefore 
typically described with an uncertainty distribution 
around the mean damages.

4. The financial module: insured and reinsured losses 
are computed based on the (re)insurance terms and con­
ditions. All the CAT model vendors have developed their 
proprietary CAT modeling platforms that include a 
financial module. Model users run the set of stochastic 
events on their portfolio of policies and obtain from 
the platform the list of losses for different financial per­
spectives and by stochastic event. In the past few years, a 
new initiative largely driven by the (re)insurance industry 
has developed an open source loss modeling platform: 
OASIS (https://oasislmf.org/) Loss Modeling Framework 
(LMF). The main objectives of the OASIS initiative are 
to improve risk assessment through more models by 
providing the modeling platform, more transparency, and 
innovation.

There are three main categories of companies devel­
oping CAT models: the modeling companies that license 
their products to insurers, reinsurers, and reinsurance 
brokers; the reinsurance brokers that provide their CAT 
models as part of their service to their clients (insurance 
companies) or license them; and some large insurance 
and reinsurance companies that use their CAT models 
internally.

Flood events in a CAT model stochastic event set are 
defined as flood footprints. The local hazard intensity of 
those footprints is generally the flood depth. Other indi­
cators are usually not modeled. Three main components 
are necessary to build those stochastic footprints: flood 
hazard maps, stochastic precipitation and discharge sce­
narios, and flood defense information. The final foot­
prints run in the CAT models are a combination of these 
three components. The flood hazard maps are used to 
translate the precipitation and discharge scenarios into 
flood footprints by taking into account the local flood 
defense systems.

10.4.1. Flood Hazard Mapping

The objective with flood hazard mapping in the context 
of financial loss assessment is to have comprehensive 
and  detailed flood hazard maps for different return 
periods, typically six return periods between 20 years and 
1000 years. However, the challenges when mapping flood 
hazard are the resolution required and the spatial cov­
erage. In fact, local topography conditions can signifi­
cantly influence the damages sustained in the properties. 
Furthermore, it is estimated that around 30% of the 
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National Flood Insurance Program (NFIP) claims in 
the  United States are located outside of the 100‐year 
flood zones (Wojtkiewicz et al., 2013). A standard flood 
mapping strategy has been adopted to overcome these 
two difficulties.

Detailed topography data are used as topography is one 
of the main drivers for accurate flood mapping (Bhuyian & 
Kalyanapu, 2018). The nationally complete digital eleva­
tion data range in resolution from 5 m (e.g., in the United 
Kingdom) or 10 m (e.g., in the United States) to 90 m in 
other countries (e.g., in Asia). The resolution of the digital 
elevation data is, however, limited by the availability and 
cost of high‐resolution topography data at very large 
scales, and by the run time cost of the hydraulic model. 
Developers of GFMs will often vary the digital elevation 
data used from country to country depending on the quality 
of data available at a national level.

The flows are propagated along the river network 
in order to obtain the extent and depth of the flooding 
by  using hydraulic models solving the shallow‐water 
equations. Different modeling solutions have been chosen: 
one‐dimensional or two‐dimensional hydraulic models, 
or a combination of both types of hydraulic model.

The flood frequency analysis approach is often applied 
to derive design discharges at all river locations for a set 
of return periods. Alternative techniques can also be used 
because of the global scale of some of the modeling. The 
rationale behind those alternative approaches is to make use 
of precipitation data, as they are common and more com­
prehensive than discharge data in some parts of the world.

The analysis of historical insurance claims data from 
floods shows that a significant proportion of  those 
claims come from outside of the large river floodplains. 
Consequently, both fluvial flooding and surface water 
flooding are modeled, and the fluvial flood maps cover the 
large and the small rivers draining a few square kilometers.

Some companies have developed global flood hazard 
map products based on the specifications and approaches 
described above. Those companies use approaches that 
they can apply anywhere, paralleling the GFMs described 
in the rest of the chapter.

10.4.2. Stochastic Precipitation and Discharge 
Scenarios

Realistic scenarios reproducing dependences across 
catchments are important to properly assess potential 
financial impacts for a (re)insurance company. These sce­
narios can be developed at the country or at the regional 
level and cover several countries.

The stochastic scenarios need to include both precipi­
tation and river discharges in order for the CAT model 
to  estimate claim amounts from both flood types. 
Precipitation modeling is the first component of the 

modeling chain for the stochastic scenarios in most of the 
models. In countries where tropical cyclones are present, 
precipitation is modeled as tropical cyclone induced and 
nontropical cyclone induced. This requires a realistic 
catalogue of tropical cyclones tracks.

Temperature modeling is usually carried out along with 
precipitation to account for snow accumulation and 
snowmelt in the runoff generation process for relevant 
regions. The precipitation and temperature simulations 
then drive rainfall‐runoff models to compute river dis­
charges at all river locations. The precipitation, tempera­
ture, and hydrological modeling can be carried out on a 
continuous basis or as event based.

A key parameter for the evaluation of financial losses 
under reinsurance contracts is the definition of an event. It 
is often found in reinsurance contracts that a natural event 
has a physical definition, for instance that a flood event 
must come from a single weather system, but also has a 
maximum duration. This maximum duration is called the 
hours clause, and current practice in the United States is 
for this to be 168 h; clauses of 504 h are also common in 
Europe. However, those clauses are not necessarily stan­
dard and can differ from one contract to another even for 
the same territory. This means that if the travel time of the 
flood wave along a river system is long enough, flooding 
can happen more than 168 h apart at two different loca­
tions. In that case, the flood claims would be considered as 
belonging to two different events. The hours clause can 
have an impact on the payment by the reinsurer to the 
insurer after an event depending on the details of the rein­
surance contract. The hours clause is often taken into 
account in the definition of the events of the stochastic 
event set. Some models provide the flexibility to the CAT 
model users to define their own relevant hours clause.

10.4.3. Flood Defenses

Flood defense systems can have a significant impact on 
flooding. Developers of CAT models collect flood 
defense information from authorities and incorporate 
them into their models. However, this information is 
often incomplete and assumptions need to be made for 
places where no information exists or is not available. 
Flood defense data are another significant source of 
uncertainty in flood risk models (Metin et al., 2018).

10.5. GFM CREDIBILITY

10.5.1. The Importance of Model Credibility

Since the beginnings of the development and use of 
numerical models, there has always been an acknowledg­
ment that models need to be applied carefully, lest their lim­
itations lead users astray. As the famous quote from George 
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Box states, “All models are wrong, but some are useful.” 
This is no different for GFMs and it could be argued that 
it is even more pertinent, as in reality GFMs consist of a 
chain of models. Addressing aspects of model error and 
uncertainty has become a specific, and important, research 
field in the past few decades (Beven,  2006; Beven & 
Freer,  2001; Chatfield,  2006). Despite model uncertainty 
being a complex area of study in its own right, at its core 
has been the traditional process of model calibration and 
validation. Calibration is the tuning of model parameters 
to ensure model outputs match real‐world observations as 
closely as is reasonably practicable. Validation is the testing 
of a calibrated model’s outputs against observations to see 
how well they match noncalibration events. In essence, cal­
ibration and validation allow us to test the models to see 
how useful they are, and they form an integral part of the 
scientific process (Klemeš, 1986).

Given that the ambitious aim of GFMs is to provide a 
quantification of flood hazard for all rivers through the 
application of a single consistent methodology, and that 
their outputs are being used by an increasing range of 
practitioners (Ward et al., 2015), ensuring they are fit for 
purpose is crucial. The very different scale and ambition 
of GFMs, as well as the difference of approach to tradi­
tional flood modeling, makes testing them a particularly 
challenging process, and therefore this is still a devel­
oping, but very important, research field.

As the improvements in data resolution and increasing 
computation abilities enable GFMs to move towards 
ever higher resolutions, there is a tendency for users’ 
expectations to increase in line with this. This 
expectation is particularly prevalent where there is an 
existing lack of  national‐scale or reach‐scale flood 
hazard information with which to compare. The 
expectation can lead to an unrealistic view that a GFM 
can replace engineering‐grade hydraulic modeling 
methods and data and be applied to purposes for which 
they were never intended, for example to identify risks 
to individual properties.

After the initial excitement of  being able to generate 
and use flood risk analysis at a global scale for the first 
time fades, users are beginning to demand more 
information about how good the models are in 
particular geographical locations or for particular pur­
poses. Model developers are very aware of  the impor­
tance of  communicating the limitations of  their models 
and are therefore also keen to gain constructive 
feedback from users in order to focus future efforts to 
improve the models. This user–developer dialogue has 
long been a regular topic at GFP annual meetings and 
led directly to the first multimodel intercomparison 
(Trigg et  al.,  2016) and collective validation exercise 
(Bernhofen et al., 2018) for GFMs.

10.5.2. Existing Model Testing

It is ultimately the model developer’s responsibility 
to  test their models to ensure they are fit for purpose, 
particularly where their results have been made openly 
accessible. There are plenty of studies showing that devel­
opers do take this responsibility seriously (Dottori 
et al., 2016; Pappenberger et al., 2012; Rudari et al., 2015; 
Sampson et  al.,  2015; Wing et  al.,  2017; Winsemius 
et al., 2013; Wu et al., 2014; Yamazaki et al., 2011, 2012, 
2013; Yamazaki, O’loughlin, et al., 2014), although not 
all to the same extent, possibly due to resource limitations, 
data availability, and/or project funding challenges.

Model outputs typically consist of flood extents and 
depths for multiple probabilities (or return periods). 
While methods of remote sensing of flooding have 
advanced significantly (Schumann & Neal, 2021), it is not 
possible to observe the full range of event probabilities 
for all rivers and therefore definitively validate all models 
for all locations, as these events will not necessarily have 
occurred in the limited time we have been observing the 
whole globe. Add to this the fact that the larger the river 
system scale, the less likely the same probability event will 
occur everywhere, ensuring that a definitive calibration 
and validation for GFMs will remain elusive.

Due to the scale and complexity of GFMs and com­
mensurate observational data challenges, GFMs do not 
necessarily have a full calibration of all components. 
Their hyperdistributed form, with multiple parameters 
and components ensure that model equifinality 
(Beven, 2006; Beven & Freer, 2001) is a serious challenge 
for any attempt at overall model calibration. However, 
developers often undertake a form of calibration and val­
idation for subcomponents of the model, where observa­
tions are available. An example of this would be the 
testing of extreme flows for regionalized flow methods 
(Smith et  al.,  2015) or bias corrections for models that 
rely on precipitation inputs (Huffman et al., 2009). Where 
the GFM framework is sufficiently flexible to allow 
adjustment to locally available data sets, some GFMs 
have been applied at a national scale, such as the Fathom 
model in Belize, where locally gauged rainfall and river 
flows were used to further regionalize the global method 
(Ward et al., 2015).

Hoch and Trigg (2019) provide a metastudy summary 
of GFM validations performed to date. They show that 
there has been a wide range in validation (also referred 
to  as benchmarking) data sets used, maybe partly as a 
result of what data were available at the time of model 
development. Most GFMs are validated against some 
inundation extent in some basins, and only a few compare 
simulated discharge and water surface elevation with 
observations. The specific river systems used for model 
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validation differ between models as well as the number of 
studies documenting the model development over time 
(Figure 10.3; Hoch & Trigg, 2019).

So we can see that GMFs have been validated for a 
range of case studies and model parameters. The fact that 
all models are validated “successfully” for nonidentical 
settings may, from a model developers perspective, lead 
to the conclusion that the model performs well. However, 
it may also lead to the erroneous assumption that all 
models perform equally well (Hoch & Trigg, 2019). That 
this is not the case has been shown by grouped model 

intercomparison and validation studies (Bernhofen 
et al., 2018; Trigg et al., 2016).

10.5.3. Collective Testing

Trigg et al. (2016) performed the first intercomparison 
of GFMs and demonstrated that when six GFMs were 
compared with each other over the Continent of Africa, 
they only showed a 30–40% agreement in flood extent 
(Figure  10.4). So even at continental scales, there are 
significant differences in hazard magnitude and spatial 
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Figure 10.3  Map depicting the regions where each global flood model  (GFM) validated model output against 
extents. Regions depicted in purple are locations where multiple GFMs validated, all other colors refer to specific 
GFMs. (Note: U-Tokyo has no unique validation locations). Table summarizing the validation methods of each 
GFM (Hoch & Trigg, 2019): 1, Dottori et al.( 2016); 2, Sampson et al. (2015); 3, Wing et al. (2017); 4, Winsemius 
et al. (2013); 5, Yamazaki et al. (2012); 6, Yamazaki et al. (2013); 7, Yamazaki et al. (2011); 8, Yamazaki, 
O’loughlin,et al. (2014); 9, Pappenberger et al. (2012); 10, Rudari et al. (2015). 
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pattern between models, notably in deltas, arid/semiarid 
zones, and wetlands (Trigg et al., 2016). Bernhofen et al. 
(2018) carried out the first group model validation against 
the same observed data for two major flood events in 
Africa. The flood events used were the floods of 2007 in 
Mozambique and of 2012 in Nigeria. These events were 
chosen as they were recent large‐scale disasters with good 
observational validation data and of a scale where GFMs 
should perform reasonably well (Bernhofen et al., 2018). 
The critical success index of individual models ranged 
from 0.45 to 0.7 and the percentage of flood captured 

ranged from 52% to 97%. While this demonstrated a sim­
ilar spread of model to that seen in Trigg et al. (2016), 
encouragingly it shows that the best individual models 
show an acceptable level of performance for these large 
rivers and demonstrates the importance of group 
validation.

It is encouraging to see this growing body of  reports 
and publications recording the development and testing 
of  GFMs, both individually and collectively, showing a 
growing maturity of  the subject. However, there is a 
notable lack of  record regarding one particularly 

Models in
agreement

(b)(a)

(c)

1
2
3
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Figure  10.4  Global flood model agreement across Africa. (a) Aggregated flood results for six models for a 
1‐in‐100 year return period fluvial flood hazard for the African continent. Color scale indicates how many models 
predict flooding. (b) Detail for the lower Nile. (c) Detail for the lower Niger, showing areas of strong agreement 
(narrow confined floodplains at the confluence of the Benue and Niger rivers) and areas of disagreement in 
the  Niger coastal delta. (Source: Trigg, M. A., Birch, C. E., Neal, J. C., Bates, P. D., Smith, A., Sampson, C. 
C., . . . Fewtrell, T. J. (2016). The credibility challenge for global fluvial flood risk analysis. Environmental Research 
Letters, 11(9), 094014. Licensed under CCBY 3.0.)



GLOBAL FLOOD MODELS  195

important subgroup of  GFMs that of  the global CAT 
model for insurance purposes. Proprietary modeling 
methods with associated intellectual property rights as 
well as a unique application framework, make it diffi­
cult for these model groups to engage in this process in 
a fully open way. Nonetheless given their important 
application worldwide they must not be excluded from 
the process and no doubt benefit from the open studies 
reported here.

Individual model validation procedures do not con­
tribute to a better understanding of  why GMFs differ 
locally in their simulated inundation extent. The work 
of  Trigg et al. (2016) and Bernhofen et al. (2018) dem­
onstrates the value of  a collective approach, but it 
needs to be extended and undertaken routinely rather 
than on an ad hoc basis. What is really needed is more 
insight in the relative performance of  GMFs; that is, 
with identical boundary conditions and for the same 
set of  validation data sets. It is only then that clearer 
conclusions can be drawn as to why results may differ 
between GFMs and where the greatest potential for 
improvement lies.

Up to now, GFMs have seen a rapid increase in 
number, their application, and acceptance (Ward 
et al., 2015). However, to further extend the dissemina­
tion of  GFMs and their products, the testing of  GFMs 
should become more standardized, as is already the case 
in other Earth science fields such as climate research. 
Model intercomparison projects (MIPs) are a 
community‐based way to compare models and their 
products with standardized objective functions and data 
sets, for instance, the Coupled Model Intercomparison 
Project (CMIP, 2018) or the “InterSectoral Impact 
Model Intercomparison Project” (ISI‐MIP) (Warszawski 
et al., 2014). Similar to these MIPs for general circulation 
models, establishing a MIP for GFMs should be a next 
development step. With such a “Global Flood Model 
Intercomparison Project” (GFMIP) the uncertainties 
associated with model inputs, modeling cascade, param­
etrization, and so forth could be  reduced and, conse­
quently, the overall acceptance of  models and their 
results would likely increase. That this is timely is shown 
by recent efforts benchmarking GFMs globally 
(Bernhofen et al., 2018; Trigg et al., 2016) or individual 
components such as DEMs (Hawker et  al.,  2018), 
numerical routing scheme (Hoch, Haag, et  al., 2017; 
Hoch, Neal, et  al., 2017; Zhao et  al.,  2017), or  grid 
design and properties (Hoch et  al.,  2018; Savage 
et al., 2016). Besides, strong learning moments would be 
created which could additionally contribute to improve­
ments of  GFMs. Hoch and Trigg (2019) call for just 
such a project and outline how this may be achieved 
through a shared intercomparison framework, common 
forcing data, and validation data.

10.6. THE FUTURE OF GFMS

Now that GFMs have most definitely “arrived” and are 
demonstrating their value, what is the next stage in their 
development? While many GFMs derive from scientific 
research projects to push the bounds of what is possible, 
these have ultimately translated into operational tools 
and this drives the interest in improving the models. Users 
also naturally begin to expect more of GFMs as their 
utility is demonstrated. Future steps will depend on where 
priorities lie for model development groups and users and 
how these priorities align, with the GFP taking a central 
role in this dialogue. Flood is also not a standalone 
hazard and GFMs thus have a role as a subcomponent in 
integrated risk frameworks such as the upcoming 
UNISDR Global Risk Assessment Framework (GRAF) 
(Elsworth, 2018). Global flood models will certainly be 
around for the coming decades and development is likely 
to focus on three specific areas of improvement; (i) data 
sets, (ii) processes representation, and (iii) testing.

10.6.1. Improvements in Data Sets for Model Build 
and Testing

Advances in GFM will be possible through future 
releases of higher resolution and more accurate data sets: 
whether through entirely new data sets or improvements 
to existing ones. Elevation data, in particular, strongly 
influences the performance of GFMs, as it is a represen­
tation of the terrain that controls flooding (Schumann 
et  al.,  2014). For example, the most anticipated near‐
future DEM release is the NASADEM Global Elevation 
Model (Crippen et al., 2016). Here, NASA will reprocess 
the entire SRTM data set, which is used in all GFMs, and 
use new algorithms and ancillary data to produce a freely 
available global DEM at ~30m resolution. Other DEMs, 
such as those produced by the Public‐Private TanDEM‐X 
mission, are able to resolve at up to ~12m globally 
(Krieger et al., 2007). However, the commercial nature of 
the mission restricts the availability of the higher resolution 
data sets to paying customers and curtails their use in 
open GFMs. The trend is towards higher resolution 
DEM data sets and this will translate into better GFMs.

Derived from DEMs, hydrography data sets are a key 
component within GFMs, as they represent the river net­
work. Global flood model hydrography is in urgent need 
of updating as all models still use the decade old 
HydroSHEDS data set (Lehner et  al.,  2008). While 
HydroSHEDS has been particularly important in GFMs 
due to its structured data properties, it suffers from 
significant irregularities in flat terrains and urban areas, 
which affects the accurate location of river channels. 
Future hydrography data sets should incorporate accu­
rate vector river data from observational sources, for 
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example Sentinel 2 or OpenStreetMap, to compliment 
the traditional DEM‐derived river delineation.

A future mission likely to have a major impact on 
GFMs is the NASA Surface Water and Ocean Topography 
(SWOT) mission (Durand et  al.,  2010). Scheduled for 
launch in 2021 and lasting 3  years, the SWOT mission 
will globally monitor Earth’s surface water. Data related 
to the height, slope, and discharge of rivers will be invalu­
able from a hydraulic modeling testing perspective, while 
topographical ocean details should also improve the cli­
mate models that force many of the GFMs.

The measurement of river discharge using satellites is an 
emerging field of research that will benefit from the SWOT 
mission and could be incorporated into GFMs in the future. 
The Dartmouth Flood Observatory (DFO) already runs an 
experimental product called the River and Reservoir Watch 
that estimates river discharge using satellite microwave sen­
sors (Brakenridge et  al.,  2016). Although still an experi­
mental product, its relevance to GFMs is evident: remotely 
sensed river flows could become another method of model 
forcing as well as for validation.

Data sets used to measure flood exposure are equally 
as  important as those incorporated within the actual 
models. Traditionally, flood exposure has been measured 
using gridded data sets such as WorldPop, which repre­
sents population density within a 100  m  ×  100  m cell. 
Recently, a High Resolution Settlement Layer (HRSL) 
was released by Facebook in collaboration with the Center 
for International Earth Science Information Network 
(CIESIN) at Columbia University (https://www.ciesin.
columbia.edu/data/hrsl/). The HRSL uses high‐resolution 
(~0.5 m) commercial satellite data to identify individual 
settled cells at ~30 m resolution. Available in 22 countries, 
the HRSL can provide a more accurate picture of exposed 
population and should, in theory, result in better flood 
exposure estimates when used in tandem with GFMs. 
The limited global coverage of the HRSL warrants men­
tioning the Global Human Settlement Layer (GHSL), 
which relies on technology similar to that of the HRSL 
and has global coverage; though it is only available at 
250 m resolution (Pesaresi et al., 2013).

Future GFM development will rely not only on new 
data, but also on existing data that has been adapted in a 
way that makes it more accessible and fit for purpose. An 
example of one of these “products” is the Global Flood 
Database being developed by Cloud to Street (http://www.
cloudtostreet.info/). Satellite images of historical flood 
events are vital for validating GFM output. The Dartmouth 
Flood Observatory (DFO) has been the main source for 
this historical data. However, although the DFO main­
tains a catalogue of around 5000 flood events dating back 
to 1985, only around 5% of the events have been mapped 
and the mapping methodology for these events has not 
always been consistent. The Global Flood Database uses 

the DFO’s catalogue of events to map over 3000 events 
since 2001 using a consistent algorithm and integrating it 
all within the Google Earth Engine (GEE) framework 
(Tellman et al., 2021). This consistent methodology as well 
as the accessibility provided by GEE opens the door to far 
more extensive future GFM validation studies.

10.6.2. Improvements in Processes Representation

In tandem with improved data sets for model build and 
testing, there is also a push to improve physical process 
representation within GFMs. Often this is through add­
ing processes through subgrid representation, for example 
with improved river channel geometry (Neal et al., 2015). 
Further development in this area will rely on a 
combination of improved methods and bathymetry data, 
which are notoriously difficult to find. Another area that 
has seen improvement is the representation of river 
hydrography, such as the addition of bifurcating river 
channels (Yamazaki, Sato, et al., 2014), shown to be par­
ticularly important for flood mapping in delta regions 
(Trigg et al., 2016). Further developments in improving 
river hydrography are expected in the near future, as this 
is an active research area for a number of GFP groups.

One particular current weakness of  GFMs is in urban 
areas, where understanding flood exposure is particu­
larly important. For example, the STRM DEM has not 
yet been corrected for urban areas to the same level as 
for vegetation (Baugh et  al.,  2013), although some 
model groups do a simple correction based on GDP 
(Sampson et al., 2015). Large urban areas also benefit 
from surface water drainage systems, which are not rep­
resented at all in GFMs. Urban areas can also benefit 
from flood defenses and some models represent these 
through simple assumptions relating standards of defense 
linked with GDP (Sampson et  al.,  2015). However, 
there  are notable efforts to build an open database of 
global defenses that will be important in future GFMs 
(Scussolini et al., 2016).

As other global modeling efforts begin to overlap 
with GFMs, there are possibilities to explore compound 
flood events, which often occur together, such as coastal 
(Vousdoukas et al., 2016) and fluvial flood hazard. These 
additional hazard components may either be included 
as an explicit model component such as with pluvial risk in 
Fathom’s GFM (Sampson et al., 2015), or may be combined 
later in a general flood risk assessment framework.

10.6.3. Improved Model Testing

Thorough model testing and validation is key to guar­
antee model accuracy and as a basis for wider acceptance 
with end users. Currently, GFMs are validated and tested 
individually for different basins, with different data, and 
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different objective functions. While this yields an estimate 
of how accurate a model performs in representing one or 
more specific flood events, it does not provide insight 
into  its relative performance compared to other GFMs 
(Hoch & Trigg, 2019).

Hence, there is much potential in advancing GFMs by 
more thorough and streamlined validation procedures. 
Also needed for better testing is the integration of up‐to‐
date observations of flood events. With remote sensing 
technology becoming more advanced and improved 
methods to account for uncertainties with such remotely 
sensed imagery, the overall accuracy of model testing will 
improve. This would not only require efforts from the GFM 
community, but also wider collaboration with adjacent 
fields such as data processing, cloud computing, and remote 
sensing, to provide the required cyber infrastructure.

One possible approach might be a web‐based platform 
created to facilitate a standardized validation of GFMs. 
By means of the platform, the external model properties 
(i.e., boundary conditions and forcing data) could be 
provided from a central location ensuring all models are 
applied under comparable settings. Model results could 
also be uploaded to the platform where validation with 
observed data (which could be updated regularly) and 
benchmarking with other model output would be per­
formed in an automated manner.

Regardless of the way model testing will evolve, 
improvement is necessary. By subjecting GFMs to stricter 
guidelines, all involved can benefit: the wider community, 
through mutual learning moments, communication, and 
transparent scientific discourse; the developers, as they 
would learn where their model excels and where adjust­
ments are required; and the end users, as uncertainties 
surrounding flood maps would be reduced and quanti­
fied, leading to more actionable applications of GFMs.
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