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ABSTRACT
Helium is a Haskell compiler designed to provide programmer

friendly type error messages. It employs specially designed heuris-

tics that work on a type graph representation of the type inference

process.

In order to support existentials and Generalized Algebraic Data

Types (GADTs) in Helium, we extend the type graphs of Helium

with facilities for local reasoning. We have translated the original

Helium heuristics to this new setting, and define a number of GADT-

specific heuristics that help diagnose Helium programs that employ

GADTs.

CCS CONCEPTS
• Theory of computation → Type structures; Program anal-
ysis; • Software and its engineering → Functional languages;
Abstract data types.
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1 INTRODUCTION
Haskell has always been a hotbed of language and type system

innovation, contributing to the popularization of many such fea-

tures. The advantage of a rich type system is that the programmer

can obtain many guarantees about the correctness of an imple-

mentation without having to resort to testing. But advanced type

system features come at a price. One price is that when type incon-

sistencies arise, it is noticeably harder for the compiler to explain
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to the programmer what the inconsistency is, where it arises, how

it might be resolved, all without revealing internal implementation

details of the compiler. This hinders the uptake of these advanced

features, leading to programmers avoiding them, and settling for

fewer guarantees.

One such language feature is that of Generalized Algebraic

Datatypes (GADTs for short), that allows the programmer to encode

type information in the data type constructors of an algebraic data

type. It is a popular feature of Haskell, in particular for encoding

the type system of a deeply embedded domain-specific languages.

A simple but typical example is:

data Expr a where
LitInt :: Int → Expr Int
LitBool :: Bool → Expr Bool
Equals :: Eq a ⇒ Expr a → Expr a → Expr Bool

where the Equals constructor encodes that it can only compare

the equality of two subexpressions that have the same type a, that
moreover is an instance of the Eq type class. The type inferencer
will then forbid expressions such as Equals (LitBool True) (LitInt 1),
because the arguments to Equals do not agree on the choice for a.
Typical for GADTs, as compared to ordinary ADTs, is that the type

variable a does not show up in the result of Equals, making it an

existential variable.
Now, if we type check the following function (note that we have

omitted the type signature),

lit (LitInt x) = x
lit (LitBool x) = x

then GHC, the standard Haskell compiler, returns the type error

message

* Couldn't match expected type 'p' with actual type 'Int'
'p' is untouchable

inside the constraints: a ~ Int
bound by a pattern with constructor: LitInt :: Int -> Expr Int,

in an equation for 'lit'
at <interactive>:18:6-13

'p' is a rigid type variable bound by
the inferred type of lit :: Expr a -> p
at <interactive>:(18,1)-(19,19)

Possible fix: add a type signature for 'lit'
* In the expression: x
In an equation for 'lit': lit (LitInt x) = x

* Relevant bindings include
lit :: Expr a -> p (bound at <interactive>:18:1)

What is wrong with this message? First of all, the message intro-

duces type variables such as p that are not part of the input program.

It uses terminology, e.g., ∼, rigid and untouchable, that are involved

in the type inference process but of which the programmer should

not be aware [27], and it provides an inferred type for lit, namely
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Expr a → p, which is in fact not correct. Moreover, it produces a

very similar message for the other branch of lit!
The thesis_outsidein branch of the Helium compiler

(https://github.com/Helium4Haskell/helium.git) contains

our implementation that instead returns the following message

in which it reports that the problem is that a type signature is

missing, and moreover it produces a type signature for lit as a hint
which is consistent with the rest of the code:

(6,1), (7,1): A type signature is necessary for this definition
function : lit
hint : add a valid type signature, e.g. (X a) -> a

In Section 2 we reiterate material on constraint-based type in-

ferencing and GADTs. Our contribution starts in Section 3 where

we discuss how to extend the type graphs of Helium to Rhodium

graphs in order to cope with GADTs and local reasoning, mirror-

ing the behavior of the OutsideIn(X) system, the basis of the type

inference process of GHC. In Section 4, we discuss heuristics that

work on Rhodium graphs to recognise GADT-related error patterns.

Related work is discussed in Section 5. Additional technical details

and examples can be found in [1].

2 CONSTRAINT-BASED TYPE INFERENCE
The earliest implementations of type inference for functional lan-

guages use a direct approach in which type inference is imple-

mented by traversing the Abstract Syntax Tree (AST) and perform-

ing unifications on the fly, e.g., the classic W and M implementa-

tions of the Hindley-Milner type system [4, 10].

Later approaches often prefer a constraint-based approach, di-

vided into two phases. In the first phase, the AST is traversed to

gather constraints which must be satisfiable for the program to

be well-typed. A dedicated solver then takes these constraints as

input, checks their validity and returns types found for the inferred

elements of the program. Pottier and Rémy [15] is the standard

reference; many compilers have followed their lead.

Direct approaches to type inference usually have a bias with
respect to type error reporting, due to the fixed order in which they

traverse the AST. For example, if we are checking the expression

True ≡ ′a′ and we traverse arguments from left to right, the error

will be found in the second argument. For that reason, constraint-

based approaches are often the preferred approach for type error

diagnosis: we can more easily solve constraints in different orders,

and it is easy to consider alternative modified sets of constraints

to figure out the best explanation for an error [6, 7, 18]. Given that

the GHC dialect of Haskell has a constraint-based specification,

constraint-based type inference is a natural choice [25].

In the remainder of this section we give a high-level overview of

constraint-based type inference. We describe type checking for the

λ-calculus with pattern matching defined in Figure 1. Our presen-

tation is heavily influenced by OutsideIn(X) [25]; we omit some

details for the sake of conciseness. In particular, the described λ-
calculus does not have a let construct for local bindings, but of
course our implementation does.

As usual in Hindley-Damas-Milner-based type systems, the types

of variables and data constructors in an environment Γ may quan-

tify over some variables, and thus are assigned a type scheme. In
addition to quantified variables, type schemes may also request

some constraints to hold at each use of the corresponding variables.

The syntax of constraints is left open by the framework – hence

the X in OutsideIn(X) –, we only require X to have a notion of

equality between types, τ1 ∼ τ2. In the case of GHC, X includes

the theory of type classes and type families, so we can form type

schemes such as ∀a.Eq a ⇒ a → a → Bool.
The constraint gathering judgement takes the form

Γ ⊢ e : τ { Q ,

which reads: in the environment Γ the expression e has type τ under
the set of constraints Q . During constraint gathering some of the

types are still unknown, so we introduce unification variables α to

represent them. Finding the types these unification variables stands

for, corresponds to the inference part of the solver. The rules for

the judgment, given in Figure 2, are unsurprising. In the var rule

the rigid type variables quantified in a type scheme are instantiated,
that is, replaced with fresh unification variables. Pattern matching

is described by the case rule: we need to find both the particular

instantiation of the type constructor Fγ used by the scrutinee e ,
and the common return type β of all the branches.

The next step of the process is constraint solving, which is for-

mulated as a rewriting relation on constraints [22, 25], turning the

original constraints into a simpler solved set of constraints. For

reasons of space we provide two example rules:

F τ1 . . . τn ∼ F ρ1 . . . ρn { τ1 ∼ ρ1 ∧ · · · ∧ τn ∼ ρn
F τ1 . . . τn ∼ G ρ1 . . . ρm { ⊥, if F . G
The former rule shows how an equality check between two type

constructors is decomposed (if they have the same name and the

same number of arguments), while the latter shows that if the heads

do not match, then a type error results (modeled by rewriting to

⊥). In Section 2.1, we shall refine ⊥ to capture some additional

information.

2.1 Type graphs
If the constraint solver, applying the rules of the rewrite relation, ter-

minates without finding any inconsistencies among the gathered

constraints, the compiler pipeline continues with further analy-

ses and optimizations, to eventually reach code generation. If an

inconsistency is detected, we should explain the problem to the

programmer by means of a type error message. We aim to make this

message as informative as possible, and at the same time as concise

as possible to prevent the programmer from being overwhelmed. In

that case, we would like to know what are the original constraints
which led to the problem; we can then link those constraints to the

Rigid type variables ∋ a,b, . . .
Type constructors ∋ F,G, . . .
Monotypes τ , ρ ::= a | Fτ
Constraints Q ::= ⊤ | Q1 ∧Q2 | τ1 ∼ τ2 | . . .

Type schemes σ ::= ∀a.Q ⇒ τ

Term variables ∋ x ,y, . . .
Data constructors ∋ K , . . .
Expressions e ::= x | K | λx → e | e1 e2

case e of K x → e

Figure 1: Syntactic categories of λ-calculus with pattern
matching
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Figure 2: Constraint gathering for λ-calculus with pattern matching

Figure 3: With type applications

program positions in which they were generated to construct an in-

formative error message. A naïve solution to the problem of finding

the problematic constraints is to include every constraint which has

ever taken part in the rewriting path to the constraint. However,

we can easily end up with too many constraints. Consider for ex-

ample the set of three constraints α ∼ [β] ∧ α ∼ Maybeγ ∧γ ∼ Int
(although we call them sets, we combine the separate constraints

with ∧). Since the order of solving is not set in advance, we can

first make the second and third constraints interact, leading to

α ∼ Maybe Int, and only then discover that we have inconsistent

ideas of what α should stand for. The naïve approach would flag

the three constraints as problematic, but the third one is in fact not

relevant type error.

Although alternative solutions exist to omit constraints that do

not play a role in the type error (e.g., finding all minimal unsat-

isfiable constraint sets [6, 21]), in our work we maintain a data

structure with all the constraints obtained during the solving pro-

cess, that we can process later to figure out the problem. Such a

data structure must be able to represent not only consistent, but

also inconsistent sets of constraints. Type graphs [7] provide that
functionality for the case of type equalities. Type graphs are part

of the TOP framework, which is the type inference engine used by

the Helium Haskell compiler [8, 9]. Figure 3 shows the type graph

for {#2 ι ∼ β → Int , #1 ι ∼ α → α }. Vertices can have two shapes:

circular vertices are used for (unification and rigid) type variables

and type constructors; the special square vertex tagged with@ is

used for type application. Following the usual convention, type ap-

plication associates to the left and the arrow constructor is written

infix, so β → γ is equivalent to ((→) β)γ . Each type variable only

appears once in a type graph, so different references to α in Figure 3

point to the same node. Edges are either directed edges marked

with l and r outgoing from a type application node @ representing

the two arguments of@, or undirected edges representing a type

equality marked with the constraint they originated from.

During the solving phase, the type graph is saturatedwith derived
edges, which represent those equalities which are implied by the

original set. In Figure 3 two derived edges would be present once

the solver is finished: one between β and α , and another between

Int and α .
An inconsistency in the case of type equalities arises from a

constraint which equates two distinct type constructors, such as

Int ∼ Bool, or fails the occurs check, such as a ∼ [a]. In the type

graph such a problem is represented by a path between the two

problematic elements, we call these error paths. Figure 3 does not
have error paths, but it would have if we replace β by Bool.

Heuristics. An error path gives a set of constraints involved in an

error, but in order to produce a concise error message we need to

choose one of them as responsible. The choice should be made so

that if the blamed constraint is removed, the type graph becomes

consistent (if no other inconsistencies are present in the type graph).

This is easy to check in the type graph by ensuring that no other

path exists between the problematic vertices. However, we do not

want to check every possible subset of constraints, and the choice

may not be unique. For that reason, we define a set of heuristics to
guide the search in the type graph.

Different heuristics work in different ways. Some of them filter

out constraints which should not be blamed, other heuristics select

a constraint to be blamed and assign it a weight, and then the one

assigned the highest weight will be blamed.

Heuristics tend to differ in their specificity. Language-

independent heuristics can be applied to any type graph, regardless

of the programming language the type graph is used for. The par-

ticipation heuristic assigns a higher weight to those constraints

depending on how often they are part of an error path. Language-

dependent heuristics employ knowledge of the underlying language,

and which are the more plausible explanations for a programmer

mistake. Because of their specificity and the subsequent specificity
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of the error messages they can generate, they typically assign higher

weights. In the Helium compiler there are heuristics such as “miss-

ing argument in an application”, “missing components in a tuple”,

or “mistook (+) for (++) in a function call”.

2.2 Type inference for GADTs
Generalized Algebraic Data Types (or GADTs, for short) is a popular

type system extension in Haskell
1
that extends ordinary ADTs, by

allowing us to refine type information for particular constructors.

For the Expr datatype defined in the introduction, we can write

a well-typed interpreter of type Expr t → t.
eval :: Expr t → t
eval (LitBool b) = b
eval (LitInt i) = i
eval (Equals x y) = eval x ≡ eval y

Note that we do not have to check at every step that the returned

expression has the correct type, because this is statically enforced.

Following the rules in Figure 2, this code is not well-typed: for

one, the rule case requires that the types of all branches coincide,

while in this case the first branch returns a Bool and the second an

Int. Second, the type signature of eval requires the function to be

polymorphic in t. However, each of the three branches fixes one

concrete t.
The key difference with pattern matching over a GADT is that

each constructor may bring in local information. For example, by

matching on LitBool we know that t can only be Bool in that branch.
But that only works if the solver avoids mixing information local

to different branches.

The language of constraints from Figure 1 cannot encode local

information, so we extend our constraint language with existentials
(see Figure 4). A constraint of the form ∃α . (Q1 ⊃ Q2) represents

a local scope in which a substitution for unification variables α
should be obtained, and where the wanted constraints Q2 may use

information from the given constraints Q1. For the eval function,
the constraint set will then be something like:

∃α . (t ∼ Bool ⊃ constraints from LitBool branch)
∧ ∃β . (t ∼ Int ⊃ constraints from LitInt branch)
∧ ∃γ . (t ∼ Bool ⊃ constraints from Equals branch)

The modified case
⋆
rule is responsible for harvesting the given

constraints Q⋆
i in each existential from the types of the data con-

structors matched upon. One small detail is that the OutsideIn(X)

framework insists that the return type of each data constructor has

the same form as for ADTs, that is, a type constructor applied to dis-

tinct type variables. The solution is to work around this restriction

by using equality constraints. In other words, for the type checker

the type of LitBool is actually:
LitBool :: ∀a.a ∼ Bool ⇒ Bool → Expr a

instead of the equivalent Bool → Expr Bool.
The constraint solver also has to be extended to deal with local

constraints. In the case of OutsideIn(X), this is done by moving

from a simple rewriting relation Q { Q ′
into a more complex

form Qд ;α ⊢ Qw { Qr , which represents that under local (given)

information Qд we can rewrite the (wanted) constraints Qw into

the simpler (residual) form Qr , and only the variables α should be

1
15% of packages in LTS 13.6 (https://www.stackage.org/lts-13.6) use GADTs, and over

40% of the 30 most depended upon packages on Hackage.

treated as unifiable. Keeping track of the unifiable (or touchable)

variables is important for maintaining scoping invariants that pre-

vent information from one branch to infect the other. This rewriting

relation is recursively called by the ⊢⋆ judgment from Figure 5: ev-

ery time we go inside an existential, the set of given constraints

grows. As a technical detail, each type checker has to define a no-

tion of solved form: a set of constraints which is completely solved.

In the case of type equalities, that means that every constraint in

the residual set is of the form α ∼ τ .
The purpose of our work is to combine type graphs, a data

structure that has been found useful for explaining type errors,

with the ability to deal with local information. The heuristics can

then work on such type graphs to analyze type inconsistencies in

the presence of GADTs, and generate suitable type error messages.

3 RHODIUM GRAPHS: TYPE GRAPHS WITH
LOCAL CONSTRAINTS

This section introduces our extensions to type graphs so that they

can be used to represent a type inference process in OutsideIn(X).

From this point on we use the term OutsideIn(X) to refer to the

original design described by Vytiniotis et al. [25], TOP to refer to

the older implementation in the Helium compiler based on type

graphs, and Rhodium (type) graphs to refer to the extended type

graphs introduced in this paper. Due to space limitations, we cannot

include all formalities in this paper and refer to [1, Chapter 6] for

further details.

It makes sense for Rhodium graphs to be as backwards com-

patible as possible both with OutsideIn(X) and Helium. There is

one problem: the formulation of OutsideIn(X) insists that local

definitions are not implicitly generalized, while Helium follows the

Hindley-Milner convention of generalizing every local binding as

much as possible. We follow OutsideIn(X) in this, which means

we sometimes reject programs that are accepted by Helium. These

programs can easily be made type correct by adding the right type

signatures for all let-polymorphic local definitions.

3.1 Representation of Rhodium type graphs
In this section we explain how constraints in OutsideIn(X) are

translated into Rhodium type graphs. The main extension with

respect to TOP is the need to represent existential constraints. Note
that OutsideIn(X) is parametric, so each concrete implementation

may add new sorts of vertices and edges to the type graph. In this

section we focus on the parts shared by every possible X, namely

types and equality constraints.

Variables, types, and constraints. There are multiple valid ways

to represent a type in a type graph. Take for example the type

Either A B. We can choose to represent type application as a binary

operator, viewing the type as (Either A) B, or as an n-ary application
in which the type constructor receives a list of argument types,

hence viewing the type as Either [A, B]. In Rhodium, we follow the

former design and use a special vertex for type application@, as

depicted in Figure 6. Because Rhodium also supports type families,

and these occur only in fully applied form, Rhodium does allow a

vertex that represents a type family to have more than two children.

For consistency reasons, the labels r and l that we saw in Section 2.1
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Figure 4: Constraint gathering for λ-calculus with GADT pattern matching

Figure 5: Skeleton of a solver for existential constraints

Figure 6: Representation of type graphs

have been replaced by the numbers 0 and 1. Apart from this detail,

the treatment of type families in Rhodium follows [25].

Type variables and constructors inherit their representation from

TOP. In the case of type variables we annotate the vertex with its

touchability, which governs when a type variable can be unified.

As depicted in Figure 6, a variable may be completely untouchable
– also known as rigid or Skolem; these arise from checking poly-

morphic types – or touchable at a given group. As we shall discuss

later, groups are used to track which constraints may interact with

each other once existential constraints enter the picture.

The last element in our type graphs are constraint edges. This
is an important design decision in Rhodium: every constraint in

the system must be represented by an edge. In the simplest case of

only type equalities, this representation is quite natural: we connect

the two types which should be equal. But in contrast to TOP, type

equalities in Rhodium are directional, that is, τ1 ∼ τ2 is not repre-
sented in the same way as τ2 ∼ τ1. The reason is that OutsideIn(X)

requires an ordering to guarantee termination in a specific step

of the solving process (more concretely, during orientation). Other
than that, type equality edges are interpreted as undirected.

Relation to the type graphs of TOP. The original type graph imple-

mentation of Helium also deals with instantiation constraints of the
form τ > σ , representing that τ is an instantiation of a type scheme

σ in order to deal with let-polymorphism. However, one of the

design decisions in OutsideIn(X) is not to implicitly generalize let
definitions. This makes instantiation constraints redundant, since

we can generate new fresh instances of the programmer-provided

type scheme during constraint gathering. In Rhodium we have

taken an intermediate position: we do represent instantiation con-

straints explicitly in the type graph, but we readily turn them into

equality constraints at the beginning of solving. Due to the invari-

ants in OutsideIn(X) we can do this once and for all. The reason

for this choice is two-fold. First, it opens the door to extensions of

OutsideIn(X) such as gi [19], which introduce higher-rank and im-

predicative types. Second, future heuristics might want to return a

different message depending on whether an inconsistent constraint

arose from an instantiation constraint, or not.

Existentials. Pattern matching on GADTs introduces existential

constraints during gathering, as described in Section 2.2. Support-

ing them leads to quite substantial changes to type graphs when

compared to those of TOP. The most important issue is that an ex-

istential constraint may contain other constraints, and we need to

represent this nesting in our type graphs. We consider two possible

choices and discuss their advantages and disadvantages.

The first possibility is to avoid the use of existentials and nesting

in type graphs. In this scenario, everytime we recurse using the ⊢⋆

judgment from Figure 5, we create a completely new type graph

with the given constraints and the new simple constraints, and

then proceed to solve it. This has the advantage of being simple,

because we can be sure that all constraints in the graph may freely

interact with each other. However, it makes type error diagnosis

harder, since we cannot look at the interaction between different

existential branches.
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Figure 7: Rhodium type graph for α ∼ Int ∧ α ∼ b ∧ ∃γ . (γ ∼

Bool ⊃ α ∼ γ )

Consider the following example:

data Expr a where
I :: Int → Expr Int
B :: Bool → Expr Bool
A :: a → Expr a

f :: Expr a → Bool
f (I x) = x
f (B b) = if b then 3 else 5

f (A ) = 7

This code is ill-typed. The most probable cause is that the type

signature of f is not correct; we can fix the problem by replacing

Bool by Int. If each branch of f would lead to a separate type

graph, we would in fact find three errors, because neither branch is

consistent with the type signature.

In the interest of good error diagnosis, we prefer a representation

that allows a more holistic view. Therefore we have chosen to inte-

grate all constraints into a single type graph. However, this means

we have to provide a means to decide which pairs of constraints

may interact, otherwise the local reasoning that we need to deal

with existentials is lost.

For this reason, we assign to each type variable and each con-

straint edge a group, which tells us to which existential each con-

straint belongs, and whether a constraint is a given or wanted

constraint. In this paper we use numbers to represent groups, start-

ing with 0 for top-level given constraints, 1 for the top-level wanted

ones, increasing these numbers as we go into existential constraints.

We are careful to maintain two invariants: (1) if an existential con-

straint is part of another constraint, then its group identifier is

higher than that of its parent, and (2) given constraints are always

assigned an even number, and wanted constraint always have an

odd identifier.

Figure 7 depicts the Rhodium type graph that represents

α ∼ Int ∧ α ∼ b ∧ ∃γ . (γ ∼ Bool ⊃ α ∼ γ ) .

At group 1, the top level wanted constraints, the only touchable

variable is α , so it is marked as such. Each separate constraint

outside the existential is represented as an edge with this group

identifier. Inside the existential, γ ∼ Bool is a given constraint, and

thus it is assigned an even group 2 (higher than 1). The innermost

wanted constraint is assigned a higher, odd group, 3. Note that

the group of a type variable is not related in general to the groups

of the constraint edges that point to it, but rather to the specific

existential in which the variable is introduced.

3.2 The solving of Rhodium type graphs
Fueled by the above discussion, we change the solving process of

OutsideIn(X) from one in which solving processes are spawned

recursively when an existential is encountered, to a single iterative

process in Rhodium. We employ groups attached to the constraints

to ensure that only constraints that are allowed to, may interact

with one another. Other than that, solving is performed using the

usual rules that each implementation of OutsideIn(X) we know

of uses. However, because we apply our rules to Rhodium type

graphs instead of to constraints, below we provide some details of

the rewriting process.

Groups and accessible sets. Recall that every constraint edge is

assigned to a group, which represents the most deeply nested exis-

tential in which that constraint lives. To emulate local reasoning,

we employ this information to decide when an interaction between

two constraints may take place. Take for example the graph in

Figure 7: the constraint α ∼ Int should always be allowed to inter-

act with other constraints, since it resides at top-level. The given

constraint γ ∼ Bool (with group 2) should be visible in the wanted

part of that existential, in group 3.

To decide for a given (current) group д which constraints may

be employed during solving, we introduce the notion of accessible
set, the set of groups д may interact with. The accessible set for a

constraint is built starting with its group, and then adding all the

ancestor existential groups until we reach top level. Take for exam-

ple the set of constraints, in which constraints in Qn are assigned

group n:

Q1 ∧ ∃α1.(Q2 ⊃ Q3) ∧ ∃α2.(Q4 ⊃ Q5 ∧ ∃α3.(Q6 ⊃ Q7))

The accessible set of Q6 is {1, 4, 5, 6}: those are the other groups

(including itself) it may interact with. Note that in particular the

accessible set of Q6 does not contain 2 or 3, since those constraints

are in other existential branches. This mechanism is similar to the

scoping mechanism described by Serrano [17].

The solving process traverses each group in a similar fashion to

the one described in Section 2.2 for the OutsideIn(X) framework.

We start by considering the top level constraints, and then recurse

into the existentials. The use of increasing natural numbers as

identifiers for groups gives us a simple method to know at every

point which constraints may be considered. Since we maintain the

invariant that the group of a constraint is always higher than that of

its parents in the existential structure, it is enough to start with the

constraints at group 0 (the top level given ones), and then increase

the current group until all have been considered.

Translating solving rules to the setting of type graphs. Although
organized somewhat differently, the Rhodium type graph solver

follows OutsideIn(X) faithfully, using a rewriting relation like

OutsideIn(X) does. However, since we work on Rhodium type

graphs, and not on constraints, wemust reflect the result of applying

a rewrite rule back into the type graph.

In the case of a canonicalization rule, which rewrites a single

constraint, the type graph solver first selects a constraint edge in
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edge constraint created by

#0 a ∼ Int original

#1 a ∼ b original

#2 a ∼ Bool original

#3 a ∼ Int interact(#0, #1)
#4 b ∼ Int interact(#0, #1)
#5 a ∼ Bool interact(#2, #3)
#6 Bool ∼ Int interact(#2, #3)

Figure 8: Overly conservative error path

the current group to which a canonicalization rule is applicable.

Then it executes one step of the rewriting relation, producing a new

set of constraints which should be added to the type graph. Special

care should be taken here: the new constraints and new touchable
variables have to be in the same group as the considered constraint.

The former ensures that canonicalization rules respect the nested

existential structure, the latter are necessary to deal correctly with

type families [25].

One important difference between the representation of a

set of constraints in a purely syntactic manner, as done by the

OutsideIn(X) formalization, and our type graphs, is that in the

former case a rewritten constraint is removed from the current set,

whereas in the latter all the constraints created during the process

are retained. To avoid infinite rewriting, once a rewriting rule has

been applied to a constraint, that constraint is marked as resolved,
and will not take part in further simplification.

In the case of interaction rules, two constraints interact with one

another to create a new set of constraints. In order to guarantee

correctness, we need to ensure that the constraints can interact

safely. In particular, given a constraint Q in a group n, it may only

interact with constraints of which the group number belongs to

Q’s accessible set.

In general, an interaction rule has the form Q1,Q2 { Q3. We

insert the constraints Q3 into the type graph the same way we did

with canonicalization rules, assigning them to the current group,

and mark both Q1 and Q2 as resolved, at the deepest existential

level of the two, as it should be.

One common scenario in a rewriting system for type inference is

that some of the constraints in Q1 and Q2 may be returned as part

of Q3. In that case we need to ensure that only the new constraints

are introduced in the type graph, otherwise error reporting may

suffer. Take, for example, the constraints a ∼ Int ∧a ∼ b ∧a ∼ Bool.
In Figure 8 all the constraints from an interaction are added to the

type graph, whereas in Figure 9 only the new ones are added. The

latter describes more precisely the solving process, and thus leads

to more precise heuristics. As result, we may need to unmark some

of the constraints as resolved, if they are present again in the new

set produced by the rewriting rule.

Errors. If a constraint rewrite returns ⊥, no constraint is added to

the type graph. Instead, the edge is marked as inconsistent prevent-
ing it from taking part in any further solving, although the solving

process will continue. In addition, we may attach an error label to
each inconsistent edge. For example, Int ∼ Bool may be labelled

with incorrect constructors, or a ∼ [a] with infinite type.

edge constraint created by

#0 a ∼ Int original, interact(#0, #1)
#1 a ∼ b original

#2 a ∼ Bool original, interact(#2, #0)
#7 b ∼ Int interact(#0, #1)
#8 Bool ∼ Int interact(#2, #0)

Figure 9: Modified error path

These labels can be employed by the heuristics used for type error

diagnosis later on (Section 4).

Residual constraints. Once we have finished applying rewriting

rules to the constraints in a group there might be some constraint

edges which remain unmarked as resolved. However, a non-empty

set of leftover constraints does not necessarily mean that the origi-

nal program contains an error. To decide this we need some further

post-processing. This post-processing may be either performed at

the end of the simplification of each group, or at the very end of

the solving process.

First of all, there are constraints such as Eq α which we always

expect to mark as resolved. In this case, not having done so means

that an instance for α was not found in the given constraints or the

axioms, and we should report this fact as a type error. The error

label we assign to these constraints is residual constraint.

For the case of equality constraints like α ∼ Int the distinction is

subtler. Some of those equality constraints correspond to parts of

the final substitution that the solving process produces; those are the
ones of the form α ∼ τ which satify that (1) its group д corresponds

to a wanted set, and (2) the type variable α is also introduced in that

same group. If condition (1) is not satisfied, the constraint is simply

ignored, but if (1) holds but (2) does not, the constraint represents

inconsistent information and it is marked as an error with label

variable escape. Note that this pair of conditions is a safe over-

approximation of when a set of equality constraints represents a

correct substitution; real implementations such as GHC implement

a “variable floating” rule which is less strict yet still safe [19].

We close this section with an elaborate example to illustrate the

solving process. Consider the wanted constraint

Num α ∧ α ∼ Bool ∧ ∃β . (β ∼ Int ⊃ α ∼ β)∧

∃γ . (γ ∼ Bool ⊃ α ∼ γ ),

where the variable α is touchable at top level and no axioms or

given constraints are present. (1) Rhodium makes a type graph of

all the constraints, based on the constraint solver X that is specified.

Groups are assigned as usual: even for given constraints, odd for

wanted constraints. (2) We start the solving process for group 1.

There we allow two constraints, Num α and α ∼ Bool , to interact

with one another. This results in the constraints Num Bool and
α ∼ Bool , but only the former is added to the type graph, since

the latter was already there. As these constraints can not be sim-

plified further, we mark Num Bool as residual, and we increase

the current group to 2. (3) With a current group of 2, we consider

the given constraints of the first existential. These constraints can

interact with the constraints of group 1, but not with one another.

Because of their particular shape, no interaction rule applies, and
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we increase the current group to 3. (4) Within group 3, the con-

straint α ∼ β is considered wanted. There are no more constraints

in that group, but the constraint may interact with both α ∼ Bool
(group 1) and β ∼ Int (group 2), leading to Bool ∼ Int. This is an
inconsistent constraint, and it is marked as such. (5) We repeat the

process with the other existential constraint. In this case the wanted

constraint is first turned into Bool ∼ Bool, which then disappears

by a canonicalization rule. Thus, we have no residual constraints

in this group.

4 HEURISTICS FOR GADTS
In this section, we focus on the heuristics defined specifically for

diagnosing type incorrect code that involves GADTs, and provide

examples of type error messages provided by our implementation.

We have also re-implemented many heuristics that were present in

Helium previously and that worked on the simpler type graphs in

TOP [1].

4.1 How heuristics are applied
After constraint solving within Rhodium has terminated, some

constraints may have been marked as an error (using a specific

error label). For example, a constraint Int ∼ Bool will have the

label incorrect constructors, and a ∼ Int may have the label

variable escape.

Given a single error constraint Q and the simplified type graph,

we then determine the error slice associated withQ . This error slice
consists of all the constraints that may have contributed to the

problem. As mentioned previously, every constraint keeps track

of how it was created: either it was generated from the program

directly – an original constraint – or it is the result of a constraint

solving step applied to some constraints, each of which keeps track

of how it was created. By iteratively traversing the history of each

constraint we construct the set all the constraints involved in the

simplification process that led to the creation of Q . From this error

slice we consider only those which were generated directly from

the program, that is, the original ones. These constraints come with

additional information obtained during gathering, e.g., the syntactic

construct that generated the constraint, and the source location for

that construct.

The input to the next step of this process is composed of pairs,

where each pairs consists of an error constraint edge (which in-

cludes the error label attached to it) and the corresponding error

slice. Each of these pairs is considered one by one. In each case,

the goal is to reduce the error slice to a single original constraint,

which is then blamed for the particular error. We do so by applying

heuristics to the error slice. Even though heuristics consider only

one error slice as target for reduction, they may query all the other

error slices for additional information.

Rhodium provides quite a number of heuristics that are applied

in sequence. Every application of a heuristic may reduce but never

increase the error slice. If after running all heuristics more than

one constraint remains, we choose the first constraint.

As in Helium, Rhodium supports two kinds of heuristic: filter

heuristics and voting heuristics. A filter heuristic deletes constraints
from the error slice, implying that those original constraints should

not be blamed. An example of such a constraint is one that models

that the condition of an if-expression should have type Bool. For
the expression if 3 then 2 else 1 we expect a message that blames

the use of 3 where a Bool is expected, and not a message that insists

we should not demand an expression of type Bool in the condition.

A filter heuristic may delete any number of constraints from the

slice, as long as the outcome is not the empty set, implying that no

constraint can be blamed. Typically, if a filter heuristic observes

that all constraints in the slice have the property it is designed to

remove, it will in fact not delete any constraints in the hope that

other heuristics can make a better choice.

The voting heuristic is essentially a collection of selectors. A

selector is especially designed to recognize certain well-known

error patterns, for example that the components of a pair occur

in the wrong order. If it recognizes such a pattern, it returns the

constraint to be blamed for the mistake, and a weight that indicates

how likely it is that this is the cause of the inconsistency. If it does

not recognize such a pattern, the heuristic will not participate in

the voting heuristic.

After all selectors have made their choice, if any, all constraints

with the highest weights assigned to them by a selector remain in

the error slice and all others are deleted. The process then continues,

if necessary, by considering any further heuristics.

The choice for a constraint to blame is not the only output of

the process. Whenever a heuristic assigns the blame to a constraint,

it also attaches a so-called graph modifier to that constraint that

describes how the graph needs to be adapted to continue with the

solving process. The default graph modifier is to delete the edge to

which the blamed constraint was attached; this is the only graph

modifier present in TOP, but we found we had to supply other

options.

For example, a common type error is forgetting to add a particular

constraint to the type signature of a function:

g :: a → a → String
g x y = show x ++ show y
In this case, we have two residual constraints of type Show a. If

we may only remove constraints, we have to remove both show x
and show y resulting in two very similar error messages. However,

in Rhodium we employ a heuristic that blames a constraint that

was found to be missing, and employs a graph modifier that adds
the missing predicate Show a to the type signature of g, so that

inference may continue. The type error message will come with a

hint to the programmer to add the predicate to the type of g.
Our implementation provides a number of graph modifiers. Be-

yond the default modifier, and the modifier that adds a residual

constraint, Rhodium employs two others. Consider the example

of True + 3. In that case, we have the constraints α ∼ β → γ →

δ ∧ α > ∀a.Num a ⇒ a → a → a, where α represents the type of

the function (+). If we only remove α ∼ β → γ → δ , we are still
left with the instantiation constraint, which then causes an error as

it has a residual constraint Num a. This graph modifier therefore

removes both the application edge, as well as the accompanying

type signature. The fourth modifier can add a type signature to a

function. Indeed, every function that pattern matches on a GADT

must have a type signature. When a type signature is missing, we

produce a type error. In certain cases, we can recommend a type
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data Expr a where
LitInt :: Int → Expr Int
LitBool :: Bool → Expr Bool

g :: Expr Int → Int
g (LitInt x) = x
g (LitBool y) = y

Figure 10: Unreachable pattern example

signature computed from the GADT pattern matches, and this mod-

ifier essentially allows us to add this recommended type signature

to the type graph so that inference may continue.

4.2 Heuristics for GADTs
We now consider the type errors that can occur whenever GADTs

are introduced. We describe a number of heuristics which deal with

new error scenarios introduced by this language feature.

Missing constraint in GADT constructor. One of the main features

of GADTs is the ability to introduce existential variables which do

not exist outside of the scope of that constructor:

data X where
A :: b → X

f :: X → String
f (A x) = show x
The type of the variable x is not mentioned in the data type X ,

so in this case we cannot add the constraint to type signature of

the function. The missing constraint heuristic is aware of this fact,
and produces the following error message:

2

(5,11): Missing class constraint in type signature
function : show

declared type : Show a => a -> String
class constraint : Show b
hint : add the class constraint to the type signature

from the GADT constructor, defined at (2,4)

As part of the type error we provide the constraint that needs to be

added, in this case the type class constraint Show b, and the location
of the constructor to which the constraint should be added.

More generally, the “missing constraint” heuristic works in two

phases. The heuristic first tries to introduce the missing constraint

as part of the local definition, e.g., in its type signature. For example,

a type signature of the function Y a → String would not be incor-

rect if the predicate Show a were to be added, so we prefer this over
adding a constraint to the constructor. The main reason for this

choice is that changing a constructor has arguably a larger impact

than modifying a type signature, as the latter only requires the

constraint to be satisfied whenever the function is called, not every

single time the constructor is used. Only if the heuristic detects that

it is impossible to add the constraint in a local definition, it will

suggest changing the constructor itself.

Unreachable pattern. Within a GADT, knowing the type of the

scrutinee of a pattern match can make certain pattern matches

2
Some error messages have been re-formatted to fit withing the page limits, but no

text has been changed from the produced output of our implementation.

inaccessible. Take for example the function g defined over a sim-

plified version of the data type in the introduction in Figure 10.

In this case, the type signature of g only allows values of type

Expr Int as argument. As a result, the case of constructor LitBool
can never happen, since it requires a value of type Expr Bool. This
causes an inconsistent constraint of the shape Int ∼ Bool in the

type inferencer.

The unreachable pattern heuristic detects that the inconsistency

is caused due to a pattern match that does not match the provided

type signature and provides an appropriate error message:

(7,4): Pattern is not accessible
Pattern : LitBool y

constructor type : Bool -> Expr Bool
defined at : (3,4)
inferred type of : a -> Expr Int
pattern

hint : change the type signature, remove the branch
or change the branch

possible type signature : (Expr b) -> b

The error message specifies the type of the constructor, the inferred

type of the branch, as well as the location of the definition of the

constructor. Note that the heuristic also suggests a type signature

that would allow the pattern match to be kept. This type signature

is based on the most general type that can be derived from all of the

individual branches. After this, the type signature is tested against

the type graph to verify that it indeed resolves the error and does

not introduce any other problems. Only when the type signature

would resolve the error, it is recommended to the programmer. In

all other cases, only the hint is provided, without mentioning the

possible type signature.

Missing GADT type signature. As discussed by Vytiniotis et al. [25],

once GADTs are introduced in the language, the principal types

property is lost. This means that there could be multiple valid type

signatures no two of which are instances of each other. As a result,

functions dealing with GADTs require a type signature.

A very strict policy would require providing a type signature for

every usage of a GADT, making the detection of not providing a

GADT type signature a static check, but we decided against that.

The reason is that in many cases we can use the information in the

type graph to infer a possible type for the function. The process to

determine this type signature is very similar to the process described

for inferring type signatures for unreachable patterns.

If we take the code from Figure 10 and drop the type signature

for g, then a type signature that would resolve the error is inferred

and reported to the programmer:

(5,1), (6,1): A type signature is necessary for
this definition

function : g
hint : add a valid type signature, e.g. (Expr a) -> a

The error message provides the possible type (Expr a) → a as a

suggestion to the programmer.

Non-unifiable GADT variables. As discussed earlier, one key issue

to sound checking and inference of code using GADTs is keeping

track of which type variables can be unified at each moment. In

fact, some of those are rigid and may never be unified with another

type unless a given constraint assumes so.
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Consider the following example, where we unify the variable

x of type b with the type Bool, but the variable b is an existential

introduced by the constructor A, hence forbidding b to unify with

anything:

data X where
A :: b → X

f :: X → Bool
f (A x) = x | | True

Our implementation produces the following error message, stating

that the variable cannot be unified. In addition to the error message

itself, it also gives the original constructor, as well as the location

at which it is defined:

(5,1): Cannot unify variable in function binding
function binding : f (A x) = x
existential type : b
cannot be unified with : Bool
constructor : b -> X
defined at : (2,4)

This heuristic works on residual constraints of the shape a ∼ b
where a is a non-touchable variable (be it rigid or coming from a

different group) and b can be any type. We can tell from the type

graph whether a is coming from a pattern match and whether that

variable shows up in the result of the pattern match. For example,

the variable d is not an existential in a constructor of type c →

d → Z d, so in that case this heuristic does not apply.

4.3 What we left out
When moving to a new solver, we should be careful not to lose

Helium’s type error messages for plain Haskell 98 programs (in-

sofar Helium supports those). Therefore, we have transplanted all

heuristics on vanilla type graphs to Rhodium, so that for programs

without GADTs we can expect to obtain the same type error mes-

sages. Another class of examples we cannot discuss due to space

limitations are the ones that show that our heuristics behave well

whenmultiple heuristics may interact. Examples of both these kinds

can be found in a separate document [1, Sections 7.4 and 7.7].

5 RELATEDWORK
Type error slicers present the programmer with information about

all possible program points which contribute to the detected incon-

sistency. Skalpel [16] implements type error slicers for Standard

ML, supporting advanced SML features like modules, which are

somewhat related to GADTs in Haskell. The advantage of slicing is

that the actual location that causes the problem is highlighted, a

disadvantage is that many others locations are highlighted as well.

Because type error slices can be large, many researchers prefer to

blame one, or a few constraints. For example, SHErrLoc [28] uses a

graph-based structure to encode the solving process, and then ranks

the likeness of a constraint being to blame using a Bayesian model.

Their work considers type error reporting for modern Haskell,

including local hypotheses. Chen and Erwig [2] explain type errors

in Haskell programs using counter-factual typing, a version of

variational typing in which they keep track of the different types

that an expression may take. Although computationally somewhat

costly, they can propagate type inconsistencies from one binding

group to another. Pavlinovic et al. [12] achieve something similar

by using an iterative deepening approach, in which the body of a

binding is inlined in its usage site if a conflict is detected between

both. This allows the inferencer to blame a location in the body

of a (type correct) function if an application of that function is

type incorrect, at the expense of repeatedly calling an SMT solver

with a growing set of constraints. These papers perform only error
localization.

In our work, we employ specialized heuristics that recognize type

error patterns by examining a type graph. When we detect such

a pattern, we not only know the location, but we can also explain

about the pattern we detected, and for some patterns, even give a

clue on how to fix the problem, inspired by [7]. Erwig [5] also uses

graphs to represent the type inference problem for a given program,

mostly as a replacement for the standard algorithms. Helium uses

a straightforward constraint solver until a type error is discovered.

Then it builds a type graph from the constraints of the binding

group that faield to type, and applies heuristics to discover which

constraint(s) are to blame.

Whenever the type system is extended, e.g., with type class

information, extensions typically need to bemade to the type graphs

to represent these faithfully. The main technical contribution of

this paper, is the design of a type graph structure that can represent

constraint sets generated byOutsideIn(X), allowing us to represent

local reasoning in type graphs. Type graphs were extended with

type classes and row types in the setting of Elm [13], and Weijers

et al. [26] uses heuristics to diagnose security type errors.

Some authors use a more complicated structure to diagnose

type errors: [14] and [24] expose the trace of the type checker to

the programmer, and Chitil [3] defines an explanation graph for

Hindley-Miler type systems, which summarizes the information

involved in type checking.

Pointwise GADTs [11] have been developed with better type

error reporting in mind, by excluding pathological cases which are

hard to explain. Others have used abduction to infer a common

type for all branches in a GADT [20, 23]. In this case, reasoning is

performed within a more complex framework, which is harder to

explain to the programmer.

6 CONCLUSION AND FUTUREWORK
We have extended Helium with GADTs and achieving good error

diagnosis for a number of classes of inconsistent programs, as

compared to GHC. We have extended Helium type graphs in order

to model local reasoning in the type graph and defined GADT

specific heuristics to help diagnose problems that involved GADTs.

This work is a major step in our endeavour to achieve good error

diagnosis for advanced, but often used Haskell language extensions,

including type class extensions, type families and higher-ranked

types.
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