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Abstract. The aim of a process discovery algorithm is to construct
from event data a process model that describes the underlying, real-
world process well. Intuitively, the better the quality of the input event
data, the better the quality of the resulting discovered model should
be. However, existing process discovery algorithms do not guarantee this
relationship. We demonstrate this by using a range of quality measures
for both event data and discovered process models. This paper is a call
to the community of IS engineers to complement their process discovery
algorithms with properties that relate qualities of their inputs to those
of their outputs. To this end, we distinguish four incremental stages for
the development of such algorithms, along with concrete guidelines for
the formulation of relevant properties and experimental validation. We
use these stages to reflect on the state of the art, which shows the need
to move forward in our thinking about algorithmic process discovery.

Keywords: Process mining · Process discovery · Formal guarantees ·
Properties

1 Introduction

Process mining focuses on the extraction of process-related information from
event logs, a collection of sequences of actions, each encoding a historical pro-
cess execution [1]. Process discovery is a core area in process mining. It stud-
ies algorithms that, given an event log, construct process models that aim to
describe the corresponding true process that induced the event log as closely as
possible. One of the main challenges in process discovery is that the true process
is unknown, and has to be inferred from a sample observed and recorded in the
event log [11].

An algorithm is a sequence of computational steps that transform a given
input into some output [12]. Different algorithms exhibit different properties, for
example, correctness, finiteness, definiteness, effectiveness, and efficiency. Such
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properties allow us to choose an algorithm that fulfills a certain need, such as
performing a guaranteed correct computation within the desired time bounds.
A process discovery algorithm transforms a given input event log into an output
process model. We usually expect that a process discovery algorithm is finite (ter-
minates after a finite number of computational steps), definite (each computa-
tional step is unambiguous), effective (each computational step can be performed
correctly in a finite amount of time), and efficient (the fewer or faster compu-
tation steps can be executed the better). However, process discovery algorithms
treat quality as a goal rather than a guarantee. That is, process discovery algo-
rithms are designed to construct a “good” process model from the input event
log [1], where the “goodness” of the model is not established by the internals of
the algorithm, but by external measures, e.g., precision and recall.

In this paper, we recommend refining the process discovery goal. Our rec-
ommendation is triggered by the observation that a process discovery algorithm
can construct a good model from an event log yet discover a worse model from
another event log of better quality [24]. We argue that process discovery algo-
rithms should come with guarantees formulated in terms of the relationship
between the quality of its inputs and outputs. The present paper makes these
contributions:

◦ We propose measures for the quality of event logs, both in the presence and
absence of a true process. In the former case, we use standard conformance
checking measures, while in the latter case we rely on sampling techniques
and measures as studied in statistics;

◦ We provide empirical evidence that existing process discovery algorithms can
construct good models from event logs and, at the same time, produce poor
models from better logs;

◦ We propose four stages for process discovery algorithms to guarantee the
intuitively appealing dependency between the quality of input event logs and
the quality of output process models.

We believe that a next step in the evaluation of process discovery algorithms
is necessary for the field to advance. Several benchmarks (cf. [6]) have identified
process discovery algorithms that “glitter”, that is, algorithms that produce
high-quality models on a limited collection of event logs. We argue that such
benchmarks should be complemented with formal analyses to provide quality
guarantees with the algorithms, extending the current state-of-the-art evaluation
with statistical methods to establish a relation between log and model quality.
We invite the process mining community to contribute to the discussion of the
maturity of process discovery algorithms. In addition, we encourage the authors
of existing and future discovery techniques to establish the proposed guarantees.

The remainder of the paper is structured as follows. The next section intro-
duces the intuition why process discovery algorithms need to provide guarantees.
A statistical approach to establish event log quality is introduced in Sect. 3. The
proposed four stages of process discovery algorithms are presented in Sect. 4,
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together with empirical evidence that algorithms do not provide such guarantees
yet. Last, Sects. 5 and 6 are devoted to related work, and conclusions, respec-
tively.

2 Setting the Stage

2.1 Process Discovery and Conformance Checking

Process mining projects often start by assuming that some underlying process
generates an event log that can be observed, recorded, and used for process dis-
covery. We refer to this underlying entity as the true process. The true process
is, however, often unknown [11]. Hence, it can only be approximated. Therefore,
based on the observed log, process discovery algorithms aim to construct a pro-
cess model that describes the true process well. Formally, given a set of activities
A, an event log L is defined as a multiset over finite sequences, called traces, over
A. A discovery algorithm disc can be described as a relation disc ⊆ L(A)×2M(A),
where L(A) and M(A) are the universe of all possible logs and the universe of
all models over A, respectively. Some algorithms, such as the ILP-miner [31], are
non-deterministic, i.e., applying a process discovery algorithm may yield different
results for the same input log.

To measure how well the discovered process models describes the behavior
recorded in the event log, different conformance measures have been proposed [3].
Precision is a function prec : L(A)×M(A) → [0, 1] that quantifies the fraction of
behavior allowed by the model that was actually observed. Recall is a function
rec : L(A) × M(A) → [0, 1] that quantifies the observed behavior allowed by
the model. For both measures, the value of one denotes perfect conformance
between the log and model. As shown in [24,27], the entropy-based precision and
recall measures satisfy all the requirements for this class of measures proposed
in [3,24,27,28].

Process discovery algorithms are often designed with a specific quality goal
in mind. Several algorithms have rediscoverability as their goal: if the unknown,
true process that generated the event log has specific properties, and the event
log satisfies certain criteria, then the algorithm discovers the true process. For
example, the α-miner has the rediscoverability property for structured work-
flow nets, imposing log completeness as criterion [4]. Similarly, the Inductive
Miner [18] can rediscover process trees under the assumption of activity com-
pleteness, i.e., every leaf in the tree should occur at least once in the event log.
Other algorithms take different approaches, e.g., to return a model that scores
best on one or more conformance measures (e.g., [14,29,31]).

2.2 Relating Log Quality and Model Quality

Event logs used as inputs to process discovery algorithms are often assumed
to be faithful representations of the true processes. Let us reflect on the con-
sequences of this assumption. Consider Fig. 1. Assume some event log L is a
faithful representation of some true process TP . In other words, L has a high
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Fig. 1. A true process TP generates an event log L with unkown quality PT . Any
sample S drawn from L has some error e. Discovering a model from S results in a
model with quality PS .

model quality PT , measured in terms of precision and recall between L and
TP . The true process TP is executed continuously, thus generating a stream of
events, from which L is a snapshot [3,17]. Therefore, L can be seen as a sam-
ple from this stream. Potentially, samples of L can be faithful representations
of TP as well. Let S be a sample of L. As it is a sample, the field of statis-
tics provides methods to assess the quality e of the sample with respect to L.
And, because S is an event log itself, it can be used to discover some model M ,
which has quality PS , again measured in terms of precision and recall, but this
time between S and M . Then, if S is a good representation of log L, a process
discovery algorithm should construct a model with a quality that approaches
PT .

Now, draw two samples from L, say S1 and S2. For S1, model M1 is dis-
covered, with model quality PS1 , and for S2 a model M2 is discovered, with
model quality PS2 . Suppose S1 has a higher sample quality than S2. In other
words, S1 is a better representation for L than S2. Intuitively, the quality of
M1 should then also be closer to PT than the quality of M2. In other words,
if e(S1) ≥ e(S2) then one should expect that PS1 ≥ PS2 . Hence, it is desirable
that the process discovery algorithm guarantees that better quality logs result in
better quality models. In real-life situations, the true process that generated the
event log is unknown. In most process mining methods (cf., [10,15]) the event
log is prepared, and then process discovery techniques are applied to unravel a
process model. An important concern that these methods do not address relates
to the internal validity of process mining projects: if the process is repeated on
a new observation, i.e., a new event log, to what degree do the results agree
between the analyses? For this property, i.e., test-retest reliability, the guaran-
tees of a process discovery algorithm come into play. If the different samples
are of similar quality, then the constructed models should be of similar quality.
However, current process discovery algorithms do not explicitly claim to provide
such guarantees.
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3 Sampling to Measure Log Quality

A necessary step in providing guarantees on the results of process discovery
algorithms is to establish measures for log quality. We argue that any event log
can be studied as a random sample of traces generated by the true process.
Similar to [3], the true process can be represented as a set of traces with some
trace likelihood function that assigns a probability to each trace. Consequently,
any sample of an event log is again a sample of the true process, as proposed
in [17]. We consider a sample log S of an event log L to be a subset of the
traces observed in the event log, i.e., S(σ) ≤ L(σ), for all traces σ ∈ L, and
S(σ) = 0 if σ �∈ L. This allows drawing different samples from a given event log,
and then comparing these samples with the event log to analyze the quality of
these samples. Currently, little is known about the representativeness or quality
of random samples in process mining [17,30]. In the remainder of this section, we
propose random sampling techniques to be used in process mining and provide
measures to analyze the quality of a sample with respect to the original event
log.

3.1 Sampling Techniques

In this section, we propose three probability sampling techniques that can be
used to draw a sample from an event log, where each trace in the event log has
equal probability of being sampled. Consequently, samples from these techniques
can be used to estimate characteristics of the event log, and, thus, of the true
process.

The first technique is simple random sampling, where a sample is created
by randomly including traces with a predetermined sampling ratio. The second
technique is stratified sampling, where the data is divided into unique groups,
called strata. For process discovery, these groups can be formed based on unique
traces. Then, a simple random sample is taken from each group. In theory, this
sampling technique would give more representative samples because of stratifi-
cation on unique traces. However, one has to be careful when applying stratified
sampling: as only a natural number of traces can be added to a sample, a trace
can only be added fully or not at all. Hence, a problem occurs if a stratum con-
tains fewer traces than there are expected to be sampled. To solve this, rounding
using the half to even rule (cf. IEEE 754) can be used, which rounds halves to the
nearest even integer, while still rounding other decimal numbers to the nearest
integer. No literature exists on the topic of using stratified sampling in the area
of process discovery [30].

An extension of stratified sampling is an approach we call stratified squared
sampling. First, a stratified sample is drawn. Then the number of sampled traces
is compared to the number of expected traces based on the sampling ratio. Due
to rounding, the number of expected traces can be greater than the number of
actually added traces. If this happens, the uncovered strata are sorted based on
their frequency, and a trace of each of these strata is added, until the number of
sampled traces matches the expected number of traces, or all strata are covered.
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3.2 Towards Sample Quality Measures for Process Mining

Event logs describe the behavior of a system in terms of traces of events. As
in [17], we define behavior as the directly-follows relation induced from the event
log L. The directly-follows relation >L is defined on pairs of events a and b, such
that a >L b iff the event log L contains a trace in which the two activities a and b
occur consecutively. A first measure to compare a sample to its original event log
is existential completeness, i.e., the extent to which all possible directly-follows
relations are present. This results in the first sample quality measure: coverage,
which is defined by the proportion of unique directly-follows relations present in
the sample and the number of unique directly-follows relations in the event log.

Coverage does not take the occurrence frequency of behavior into account.
Different methods exist to measure frequency representativeness. In statistics,
error measures are used to quantify the error between the expected values and
the real occurrences. We propose to adapt these error measures to quantify the
error between the behavior observed in a sample, and the expected behavior
from the event log based on the sampling ratio. This results in several measures
for sample quality, where e denotes the expected behavior, and s denotes the
sampled behavior as vectors of length n:

The Normalised Mean Absolute Error (NMAE) calculates the normalized
absolute deviation (i.e. error) of the number of occurrences of each unique
directly-follows relation of the sample from their respective expected fre-
quency:

NMAE =
MAE
avg e

=
∑n

i=1 |si − ei|∑n
i=1 ei

(1)

Normalised Root Mean Square Error (NRMSE) is similar to NMAE,
but uses the root of the squared values, instead of the absolute values, thus
penalising large deviations more heavily:

NRMSE =
RMSE
avg e

=

√
1
n

∑n
i=1(si − ei)2

1
n

∑n
i=1 ei

(2)

The Symmetric Mean Absolute Percentage Error (sMAPE) is a sym-
metric variation of the NMAE, expressed as a percentage error, with the
advantage that the undersampling of behavior is penalised more heavily:

sMAPE =
1
n

n∑

i=1

|ei − si|
ei + si

(3)

The Symmetric Root Mean Square Percentage Error (sRMSPE) is
similar to sMAPE, using the root mean square error instead of the mean
absolute error, thus penalising large deviations more heavily:

sRMSPE =

√
√
√
√ 1

n

n∑

i=1

(
ei − si
ei + si

)2

(4)
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For a detailed evaluation of the above measures, we refer the reader to [30].
These measures assess the behavioral quality of a sample with respect to the
event log it is drawn from. In other words, these measures provide ways to
establish the quality of the input of process discovery algorithms.

4 Designing Process Discovery Algorithms with
Guarantees

As observed in a study on the quality of conformance measures [24], some process
discovery algorithms have a large variability in the quality of the constructed
process models, though the used measures satisfy the properties proposed in [3,
28]. In particular, given different samples of a single event log, the same algorithm
sometimes provides good results on small samples, while on larger samples, the
algorithm discovers worse models. On further inspection, these algorithms are
state of the art, and do not perform any major “process mining crimes” [25]. In
addition, they “glitter” in the benchmark study reported in [6].

We consider this observation a threat to the application of process mining,
particularly for its repeatability and, hence, the reliability of its results. Sup-
pose for a true process several event logs are captured and analyzed, and the
results do not agree, i.e., they differ largely in quality. Several explanations for
this phenomenon are possible. A first explanation could be the quality of the
input, i.e., the quality of the event logs differed significantly. However, as the
observation highlights, another plausible – yet undesirable – explanation lies in
the process discovery algorithm itself. In other words, if the process discovery
algorithm does not provide any guarantees on the quality of the resulting models,
it is impossible to exclude the algorithm as a root cause.

Consequently, we advocate process discovery algorithms to provide guaran-
tees on the quality of the produced results. To this end, we propose to distinguish
four stages during the introduction of a process discovery algorithm:

1. The algorithm is well designed;
2. The algorithm is validated on real-life examples;
3. The algorithm has an established relationship between log and model quality;
4. The algorithm is effective.

Though the first two stages are basic, not all algorithms make it to the second
stage, as illustrated later. Arguably, algorithms that are shown not to pass the
second stage should not be used in empirical studies. The third and fourth
stages are entirely novel for process discovery. Once the algorithm is shown to
be applicable on real-life examples, the authors should study which guarantees
their algorithm provides in a controlled setting where the true process is known.
To pass the last stage, the algorithm should provide evidence that in settings
where the true process is unknown, the algorithm provides the guarantees stated
at stage 3.
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4.1 Stage 1: The Algorithm Is Well Designed

In the first stage, the developers of a process discovery algorithm should properly
introduce their algorithm. For this, the developers need to provide the following:

◦ The class of process models the algorithm constructs;
◦ Evidence for meeting the quality goals of the algorithm;
◦ Criteria on the logs, e.g., requirements on the true process that generates the

logs;
◦ An initial evaluation on artificial data sets.

Most process discovery algorithms satisfy the requirements of this stage. For
example, the ILP-miner [31] is designed for the class of classical Petri nets with
interleaving semantics. It is proven to always return a Petri net with a perfect
recall score. It imposes no requirements on the input event logs and is tested
on artificial logs. Also, the α-miner [4] algorithm is at least in this stage. It is
designed for well-structured Workflow nets with rediscoverability as a goal. It
imposes two requirements on an input event log: it should contain all directly-
follows relations present in the true process, and the true process should be
block-structured. A similar argument holds for the Inductive Miner [18].

4.2 Stage 2: The Algorithm Is Validated

Even though an algorithm may be well designed, i.e., it passes stage 1, it is
not guaranteed that it works in practice. The second stage in introducing the
algorithm is, therefore, the validation of the algorithm on a collection of real-life
event logs, such as used in the benchmark reported in [6]. Several algorithms
fail to reach this stage. For example, the α-miner is theoretically a robust algo-
rithm, but the requirements it imposes on the true process are too strong for
application in real-life situations. Similarly, the ILP-miner is designed from a
theoretical point of view and has limitations for practical use, primarily because
of its guaranteed recall and runtime performance. Other algorithms, such as the
Inductive Miner [18], the Declare Miner [20] and the Split Miner [5] have been
applied successfully on several real-life event logs, and thus pass this stage.

4.3 Stage 3: An Established Relationship Between Log and Model
Quality

Although passing stage two shows the algorithm’s capabilities, this does not
provide any guarantees on the quality of the algorithm’s output. As a first step
in establishing a relationship between the log and model quality, it needs to
be shown to what degree the algorithm satisfies the guarantees as sketched in
Fig. 1. In other words, the designers need to show that if an event log is a faithful
representation of a true process, as per measure PT , then the algorithm should
satisfy properties similar to those listed below:
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Algorithm 1: Establish Relation
1 while True do

2 TP ← GenerateModel(M, A);

3 foreach i ∈ [1..N ] do

4 L ← GenerateLog(TP, T );

5 PT ← calcModelQuality(L, TP);

6 foreach r ∈ ratios do

7 foreach j ∈ [1..K] do

8 S ← DrawSample(L, r);

9 e ← calcSampleQuality(L, S);

10 M ← DiscoverModel(S);

11 PS ← calcModelQuality(S, M);

Algorithm 2: Test Effective-
ness
1 foreach L ∈ Benchmark do

2 foreach r ∈ ratios do

3 foreach j ∈ [1..K] do

4 S ← DrawSample(L, r);

5 e ← calcSampleQuality(L, S);

6 M ← DiscoverModel(S);

7 PS ← calcModelQuality(S, M);

P1. For a sample log S that approaches the perfect quality, the quality PS of
the discovered model from S approaches PT ;

P2. For two samples S1 and S2, if sample S1 has a higher quality than S2, then
the model quality PS1 is higher than PS2 .

Algorithm designers can choose different strategies to provide evidence for
these properties. The most potent form of evidence is a formal proof that the
algorithm satisfies these properties for specific instantiations of log and model
quality measures. In that way, a relationship between an input log quality and
the resulting model quality can be established. We also encourage algorithm
designers to define algorithm-specific log quality measures. If a formal proof is
not feasible, instead, statistical evidence of these properties can be provided.
For this, we propose a controlled experiment as outlined in Algorithm 1. Such
a controlled experiment follows the approach shown in Fig. 1. It requires the
algorithm designers to have a model generator for the class of true processes the
algorithm accepts. The algorithm then generates repeatedly for a true process
one or more event logs, and for each event log a set of samples.

We propose to use statistical tests to evaluate the two properties. Property
P1 needs an analysis of the relation between the expected PT and the observed
PS . For property P2, the Spearman rank correlation can be used to test whether
there is a strong correlation between the sample quality and the model quality.
If this is the case, then statistical evidence has been provided for the relationship
between log and model quality.

Example Evaluation. As an example, the controlled experiment has been
implemented in ProM1 for the Inductive Miner [18]. To calculate precision and
recall, an implementation of exact matching entropy-based measures in Entropia
is used [22]. For each true process, a single event log with 5,000 traces has been

1 The source code is available on: https://github.com/ArchitectureMining/
SamplingFramework.

https://github.com/ArchitectureMining/SamplingFramework
https://github.com/ArchitectureMining/SamplingFramework
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Table 1. Results of the controlled experiment. The last 10 columns show the Spearman
rank correlation between the error measures, and precision and recall. All bold values
are statistically significant (p < 0.001).

True process Precision Recall

Model Prec. Recall Cov. sMAPE sRMSPE NRMSE NMAE Cov. sMAPE sRMSPE NRMSE NMAE

1 0.538 1.000 0.658 −0.988 −0.986 −0.988 −0.989 0.338 −0.356 −0.354 −0.354 −0.356

2 0.797 1.000 0.470 −0.986 −0.985 −0.901 −0.954 0.154 −0.051 −0.052 0.012 −0.004

3 0.935 1.000 0.781 −0.990 −0.989 −0.975 −0.984 0.637 −0.406 −0.417 −0.410 −0.412

4 0.953 1.000 0.705 −0.991 −0.992 −0.984 −0.987 −0.103 0.105 0.108 0.081 0.090

5 0.988 1.000 0.540 −0.983 −0.981 −0.980 −0.986 0.437 −0.201 −0.206 −0.207 −0.201

6 0.871 1.000 0.532 −0.934 −0.938 −0.917 −0.926 −0.529 0.973 0.962 0.963 0.968

7 0.943 1.000 0.511 −0.991 −0.989 −0.986 −0.989 0.456 −0.242 −0.240 −0.228 −0.231

8 0.616 1.000 0.773 −0.992 −0.991 −0.989 −0.990 0.114 −0.148 −0.154 −0.156 −0.157

9 0.710 1.000 0.519 −0.981 −0.978 −0.970 −0.973 0.518 −0.327 −0.330 −0.340 −0.341

10 0.883 1.000 0.703 −0.982 −0.982 −0.977 −0.976 0.116 −0.022 −0.027 −0.016 −0.023

generated. The event logs were 10 times sampled for 12 sampling ratios: 0.01,
0.02, 0.05, and 0.1 up to 0.9.

The results are shown in Table 1 and Fig. 2. From Fig. 2 we conclude that
property P1 holds for precision and recall. For each model that describes the
true process, the Spearman rank correlation is calculated between each of the
log quality measures and precision, and similarly for recall. As for the measures
sMAPE, sRMSPE, NRMSE, and NMAE, 0 is the best quality, a negative corre-
lation indicates the required guarantee that samples of higher quality result in
better discovered models, whereas for coverage, a positive correlation indicates
this result. As can be seen in the table, the experiment generates mixed results.
Though property P2 holds for precision, it is not satisfied for recall. Hence, we
can conclude that the Inductive Miner satisfies the two properties for precision,
but fails to do so for recall on the second property.

Fig. 2. Relation between the quality of the true process and the quality of the dis-
covered models, for precision (left) and recall (right). Darker points represent a higher
coverage.
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4.4 Stage 4: The Algorithm Is Effective

An established relationship between log and model quality, the essence of stage 3,
does not guarantee the algorithm to be effective in real-life situations. The main
caveat in the controlled environment of the previous stage is that the true process
is known. Each event log is generated from the known true processes. In real-life
situations, the true process is unknown, and, hence, may invalidate assumptions
of the discovery algorithm. For example, the Inductive Miner assumes event logs
to be generated from process trees. However, no criteria are given to test whether
an event log is generated by a process tree, nor does the algorithm provide any
details on the model quality if the assumption is invalid.

In this stage, the algorithm designer has to validate how effective the algo-
rithm is in real-life situations. One way to obtain insights into the effectiveness
of the algorithm is to apply sampling on a benchmark. This benchmark can
be a set of well-known real-life event logs as used in [6], or can be generated
automatically, if the designers ensure that the class of generated models is larger
than the class of true processes studied in the previous stage. The algorithm
designers need to analyze property P2 in the absence of a true process. In other
words, even if the true process is unknown, event logs of better quality should
return better quality models. This may result in an experiment as outlined in
Algorithm 2.

The analysis of property P2 in the absence of a true process can have two
possible outcomes. Either it is shown that the algorithm has the desired property,
or, if this is not possible, the algorithm should be further improved, or provide
additional log quality measures, that guarantee that an event log satisfies the
assumptions of the process discovery algorithm.

Example Evaluation. As an example of the analysis in stage 4, we conducted
the proposed experiment on the Inductive Miner [18]. Two real-life event logs
have been selected, the Road Traffic Fine event log [13] and the Sepsis event
log [21]. The Road Traffic Fine log has in total 150,370 traces and 561,470 events.
There are 231 unique traces and 11 unique event types. The Sepsis log consists
of 1,049 traces, of which 845 are unique, and 15,190 events with 16 unique event
types. Sampling was done at the same sampling ratios as before: 0.01, 0.02, 0.05,
and 0.1 up to 0.9. For each ratio, ten samples were drawn.

The sample quality measures for the Road Traffic Fine log are shown on
the left in Fig. 3. As the plot shows, the larger the sampling ratio, and thus
the log size, the better the quality is (error measures: ρ < −0.9, p < 0.001,
coverage: ρ = 0.96, p < 0.001). Sample size and the conformance measure on
precision (Fig. 4) show a moderate positive correlation (ρ = 0.56, p < 0.001),
while there is no correlation between sampling ratio and recall (ρ = 0.03, p =
0.72). Analyzing the quality measures with the conformance measures shows a
different story. In Fig. 4, the coverage is plotted against the precision, indicating
there is no correlation between coverage and precision. Further analysis revealed
no correlations between the sample quality measures and precision (sMAPE:
ρ = −0.19, p = 0.03, sRMSPE: ρ = −0.18, p = 0.051, NRMSE: ρ = −0.21,
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Fig. 3. Plot of ratio and the sample quality measures coverage ( ), sMAPE (+), sRM-
SPE (�), NRMSE (�) and NMAE (�) for the Road Traffic Fine log (left) and the
Sepsis log (right).

p = 0.02, NMAE: ρ = −0.20, p = 0.03, coverage: ρ = 0.17, p = 0.06). The
correlations found for recall show that samples of worse quality result in better
models (sMAPE: ρ = 0.80, p < 0.001, sRMSPE: ρ = 0.79, p < 0.001, NRMSE:
ρ = 0.77, p < 0.001, NMAE: ρ = 0.78, p < 0.001, coverage: ρ = −0.79, p <
0.001).

For the Sepsis log, similar results are found. As indicated by the plots at
the right hand side of Fig. 3, a correlation is found between the sampling ratio
and the log quality measures (for all error measures: ρ < −0.9, p < 0.001,
coverage: ρ = 0.59, p < 0.001). The larger the sampling ratio, the higher the
precision is (ρ = 0.57, p < 0.001), but no correlation was found between sampling
ratio and recall (ρ = 0.03, p = 0.72). A moderate negative correlation was
found between the log quality measures and precision (for the error measures:
−0.60 < ρ < −0.50, p < 0.001, coverage: ρ = 0.59, p < 0.001), while the
log quality measures did not show any correlation with recall (for all measures:
−0.04 < ρ < 0.02, p > 0.70).

As the results suggest, there is no clear relation between log and model
quality. Hence, it is with the current measures not possible to conclude that
the Inductive Miner is guaranteed to be effective in real-life situations. As a
next step, new log quality measures should be developed that do establish the
required relationship between log and model quality. The process can then be
repeated until sufficient guarantees can be provided on the effectiveness of the
algorithm.

5 Related Work

The statistical approach we propose to establish a relation between log and
model quality relates to event data quality in general, builds upon established
properties of conformance measures, and requires sampling techniques on event
logs. This section reviews literature on these topics, and shows how our approach
relates to them.
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Fig. 4. Plots of ratio and precision, and coverage with precision and recall for the Road
Traffic Fine log (left) and the Sepsis Log (right).

Measuring Log Quality. As the process mining manifesto articulates, process
mining treats data as first-class citizens [2], and defines four data qualities, of
which completeness is studied mostly. For example, [9] identifies four categories
of process characteristics and 27 classes of event log quality issues. Most studies
on event log quality focus on the incompleteness of the data. Examples include
not having enough information recorded in the event log (e.g., missing cases or
events) [1,9], not having recorded enough behavior in the event log [16], or the
traces not being representative of the process [16], and noise. Different notions of
noise are studied, such as infrequent behavior that is either incorrect or rare [14].
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However, event logs are studied in isolation in these studies. Instead, we argue
to assess the quality of event logs relative to other event logs, using statistical
techniques based on sampling.

Properties of Conformance Measures. The process mining community has
recently initiated a discussion on which formal properties should “good” con-
formance measures satisfy. In [28], the authors proposed five properties for pre-
cision measures. For instance, one property states that for two process models
that describe all the traces in the log, a less permissive model should not be
qualified as less precise. By demonstrating that a measure fulfills such proper-
ties, one establishes its usefulness. In [24], the authors strengthened the prop-
erties from [28]. For example, according to these properties, the less permissive
model from the example above should be classified as more precise. In [3], the
precision properties from [28] were refined, and further desired properties for
recall and generalization measures were introduced, resulting in 21 conformance
propositions. Finally, in [23], properties for precision and recall measures that
account for the partial matching of traces, i.e., traces that are not the same but
share some subsequences of activities, were introduced. The precision and recall
measures used in our evaluations satisfy all the introduced desired properties for
the corresponding measures [3,24,27,28].

Sampling in Process Mining. Sampling has been studied before in process min-
ing, but never as a systematic approach to evaluate process discovery techniques.
A first set of measures for the representativeness of samples have been proposed
in [17]. Their results show the need for a systematic approach as proposed in
this paper.

In [8], a sampling technique specific for the Heuristics Miner is described,
claiming that only 3% of the original log is sufficient to discover 95% of the
dependency relations. However, a proper evaluation of this claim has not been
provided, nor are the results generalizable to other process discovery techniques.

A statistical framework based on information saturation is proposed in [7].
Their approach differs from the probability sampling techniques we propose.
Instead of generating samples that estimate the event log, their approach focuses
on creating a sufficiently small sample that contains as much information from
the event log as possible. Consequently, this approach cannot be used to measure
sample quality with respect to the event log.

Several biased sampling techniques are described in [26]. These techniques
have been evaluated on six real-life event logs and three discovery techniques. The
evaluation showed that sampling sometimes improves the F-measure for some of
the models. A similar result on the F-measure was obtained in [19]. Their study
applied the Google PageRank algorithm on event logs to create a representative
sample, which reduced the execution time of the Inductive Miner by half without
decreasing the F-measure. As the F-measure harmonizes precision and recall,
and no analysis was performed on the reasons behind the improvements, it is
unclear how sampling influenced the process discovery results of both studies.
Instead of using sampling to improve the quality of the output, we propose to
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use probability sampling to analyze the input of algorithms, and to establish a
relationship between log and model quality. This relationship then allows one to
explore why some samples give better models than other samples.

6 Conclusion

This paper identifies the need for process discovery algorithms with guarantees
that characterize the dependency between the quality of input event logs and the
quality of the process models constructed from these event logs. In particular, we
argue that process discovery algorithms should produce better models from bet-
ter input logs. Currently, process discovery algorithms have never provided such
guarantees, since, so far, we, as a community, lacked a theoretical foundation
to establish such a relationship. In this paper, for the first time, measures for
the statistical sample quality for ranking the quality of event logs are proposed.
We recommend using grounded conformance checking measures for assessing the
quality of the discovered models. Combining log quality measures with confor-
mance measures provides a framework to formally define properties that express
the desired guarantee that better event logs result in better models. These prop-
erties can be instantiated with various measures for quality of event logs and
process models and be less or more pronounced, for example, imposing a strictly
increasing or non-decreasing relation, or requiring a statistical association of a
certain degree between the qualities of the corresponding logs and models. To
overcome this problem, we propose four stages in the design of an algorithm.
Each design comes with additional properties and obligations to establish effec-
tive algorithms with guarantees.

We invite the process mining community to further contribute to the discus-
sion of desired qualities for process discovery algorithms to ensure that state-
of-the-art algorithms fulfill them, and in this way, advance the field of process
discovery as well as the design and evaluation of such algorithms.
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