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Abstract
6D pose estimation is crucial for augmented reality, virtual reality, robotic manipulation and visual navigation. However, the
problem is challenging due to the variety of objects in the real world. They have varying 3D shape and their appearances
in captured images are affected by sensor noise, changing lighting conditions and occlusions between objects. Different pose
estimation methods have different strengths and weaknesses, depending on feature representations and scene contents. At the
same time, existing 3D datasets that are used for data-driven methods to estimate 6D poses have limited view angles and low
resolution.
To address these issues, we organize the Shape Retrieval Challenge benchmark on 6D pose estimation and create a physically
accurate simulator that is able to generate photo-realistic color-and-depth image pairs with corresponding ground truth 6D
poses. From captured color and depth images, we use this simulator to generate a 3D dataset which has 400 photo-realistic
synthesized color-and-depth image pairs with various view angles for training, and another 100 captured and synthetic images
for testing. Five research groups register in this track and two of them submitted their results.
Data-driven methods are the current trend in 6D object pose estimation and our evaluation results show that approaches which
fully exploit the color and geometric features are more robust for 6D pose estimation of reflective and texture-less objects and
occlusion. This benchmark and comparative evaluation results have the potential to further enrich and boost the research of
6D object pose estimation and its applications.

CCS Concepts
• Information systems → Multimedia and multimodal retrieval; Evaluation of retrieval results; Specialized information
retrieval;

1. Introduction

The ability to estimate 6D object pose including its orientation and
location is essential for many applications, such as visual naviga-
tion, robot manipulation and virtual reality. The awareness of the
3D rotation and 3D translation matrix of objects in a scene is re-
ferred to as 6D, where the D stands for degrees of freedom pose.
While it is possible to obtain the 6D pose with hand-crafted fea-
tures [MAMT15], these methods fail to predict poses for texture-
less objects. With the advent of cheap RGB-D sensors, the preci-
sion of 6D object pose estimation is improved for both rich and low
texture objects [TSF18]. Nonetheless, it remains a challenge as ac-
curate 6D object pose and real-time object instance recognition are
both required for the real-world applications.

Traditional 6D object pose estimation approaches work by first
extracting color features from the RGB image and performing
feature matching to get correspondences. Based on these corre-
spondences, the 6D pose is estimated by solving a Perspective-
n-Point (PnP) problem [KLS14]. Hand-crafted features, such as
SIFT [NH03] and ORB [MAMT15], are often used by these meth-

ods, for they are robust to scale, rotation, illumination and view
angles. However, the heavy dependence on hand-crafted features
and fixed matching process have limited empirical performances of
these methods to predict 6D poses for texture-less object in poor
light conditions or clustered scenes.

The emergency of commodity depth cameras has enabled many
methods with RGB-D images as input [CC16, ZC17] to estimate
more accurate 6D pose for texture-less objects. Choi et al. [CC16]
introduce a voting-based approach which further incorporates geo-
metric and color information to predict poses in clustered scenes.
To handle low texture objects, Hinterstoisser et al. [HHC∗11] pro-
pose template matching approach that builds different modalities
to detect the known object and then estimate 6D poses. However,
template-based methods are not robust to changing lighting con-
ditions and occlusions. To address these issues, Brachmann et al.
[BKM∗14] first regress an intermediate object coordinate with dif-
ferent voting scores which are used to predict correspondences and
then predict the object pose with these correspondences.

More recently, Convolutional Neural Networks (CNNs) and
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deep learning have been applied to the 6D pose estimation problem.
PoseCNN [XSNF17] and PoseNet [KGC15] directly regress from
a RGB image to a 6D object pose by a CNN-based architecture.
Unlike PoseCNN, [TTS∗18, PZC∗17] first predicts 2D projection
of predefined 3D key points and then use these correspondence to
estimate poses. The aforementioned approaches do not utilize the
depth information, resulting in failing to predict poses for the same
object with different scales.

To further improve the performance of the 6D object pose esti-
mation, recent approaches [XSNF17, JMP∗18, WXZ∗19] combine
the color and depth information to estimate the 6D object pose.
Ipose [JMP∗18] first processes the RGB image with the encoder-
decoder architecture to obtain a coarse 6D pose and then refines
the pose by the iterative closest point (ICP) algorithm based on
depth information. However, the refinement method using ICP is
time-consuming and cannot achieve real-time inference speed. In-
stead of using color and depth information separately, Michel et
al. [MKB∗17] fuse the color and depth information in the early
stage, where the depth information is treated as a fourth channel
and concatenated with RGB channels. Other solutions including
Densefusion [WXZ∗19, CZA∗19], fuse the depth information in
the later stage, which first extract visual and geometric features and
then fuse these features together. The fused features are used to
directly predict the 6D object pose. With depth information, these
methods are more robust to occlusion and changing light condi-
tions.

Even though more and more algorithms, aiming to estimate the
6D object pose have been published, it is unclear how well scenar-
ios and methods perform. New approaches are usually compared
with only a few competitors on a particular dataset. To address
these issues, the BOP benchmark [HMB∗18] is proposed, which
combines eight datasets in a unified format. However, their datasts
have several limitations: the objects are often located in the center
of the image plane; images are generated in similar distances; gen-
erating these datasets has high cost (time and money) associated
with ground truth annotation. Since we use synthetic data, we can
provide high-quality data with minimum cost (e.g., human labor
). To compare and evaluate algorithms for robotics grasping, the
OpenGRASP benchmarking suite [UKA∗11] provides the simula-
tion environment containing test cases, robot models and scenarios
to test methods and rank them. However, the simulation environ-
ment is not photo-realistic and has the reality gap, while our simu-
lator provides high-resolution extremely realistic images.

The LineMOD [HHC∗11] and YCB-Video [XSNF17] dataset
are the two mostly used 3D object datasets for the 6D pose es-
timation. However, the view angles of captured images are lim-
ited and the objects are not easily accessible to other researchers.
Other works [DFI∗15] combine real and synthesized data to gener-
ate 3D object datasets, which render 3D object models on real back-
grounds to produce images. While the backgrounds are realistic, the
synthesized images are not photo-realistic. For example, the ren-
dered objects are flying midair and out of context [DFI∗15]. Unlike
these approaches, we use depth image based rendering (DIBR) to
generate a 3D object dataset, which provides photo-realistic color-
and-depth image pairs with ground truth 6D poses.

Our main contributions are summarized as follows:

(1) Datasets. Our training dataset is generated by a free-
viewpoint DIBR approach, which provides a large amount of
high-resolution photo-realistic color-and-depth images pairs with
ground truth 6D poses. Besides, the synthesized images have plau-
sible physical locations, lighting, and scale. A testing dataset com-
bines real captured and synthesized images for testing approaches.
Our datasets contain 3D models with a wide range of sizes, shapes,
texture and occlusion.

(2) A comprehensive evaluation of 6D object pose estimation
approaches. We organize the Shape Retrieval Challenge (SHREC)
benchmark on 6D pose estimation and use different evaluation met-
rics to compare the proposed methods based on our datasets. Eval-
uation results indicate that approaches that fully exploit the color
and geometric features are more robust for 6D pose estimation of
reflective and texture-less objects and occlusion.

2. Benchmark

Our 6D object pose estimation retrieval benchmark includes 8 ob-
jects of varying shape and texture. It has high resolution color-
and-depth image pairs and high-quality 3D models. To facilitate
data-driven approaches, we apply DIBR to generate 400 synthe-
sized color-and-depth image pairs with resolution of 1280× 720
for training. Another 100 captured and synthesized color and depth
images are used for testing.

2.1. Dataset

Figure 1: Overview of the dataset

In order to cover as many aspects of pose estimation challenges
as possible, our dataset contains a variety of objects with different
sizes, shapes, texture, and reflective characteristics. For example, it
is a challenge to estimate the pose of the texture-less object. Thus,
when selecting objects, this issue should be considered. Besides,
we also consider the portability. We aim to provide datasets with
easily carrying, shipping and stored objects. In order to make the
dataset reproducible, the cost of the object is taken into considera-
tion as well. We choose the popular consumer products which are
low price and easy to buy. With consideration of these practical is-
sues, we choose eight representative objects to create our dataset,
as shown in Figure 1.
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We use both real-world data and data generated from simula-
tion for the 6D object pose estimation retrieval. The real-world
data is captured by the Intel RealSense depth camera D415 with
resolution of 1280× 720. However, the captured color-and-depth
image pairs suffer from motion blur and misalignment caused by
the hand-hold camera. We remove blurring images with the blur
metric [CDLN07]. Even though an alignment method from Intel
RealSense camera is applied, the captured color and depth image
are still misaligned, especially when the camera is near the object.
This is because it is difficult for previous approaches to find corre-
spondences between color and depth images to achieve alignment.

Instead of finding correspondences between color-and-depth im-
age pairs, we create a different depth map for each color image,
which has better alignment with the color image. This map is gen-
erated by multi-view stereo from COLMAP [SF16], a state-of-the-
art 3D reconstruction system. Then we align the captured depth
map to the estimated map by comparing the values and normals
between two maps. In this way, we align the captured depth map to
the captured color image. Apart from depth maps, we estimate ob-
ject poses using the Structure-from-Motion(SfM) from COLMAP.

P

p1 p2

Figure 2: The 3D warping process. It projects a point p1 in the
left image plane to a world point P and then P is projected into the
pixel position p2 in the right image plane.

Our aim is to build 3D datasets containing rich viewpoints, scales
and high resolutions which are the limitation for captured datasets
[HHC∗11, XSNF17]. Inspired by the low cost of producing very
large-scale synthetic datasets with complete and accurate ground-
truth information, as well as the recent successes of synthetic data
for training 6D pose estimation systems, we build a physically ac-
curate simulator. Our simulator is based on DIBR and can generate
high resolution photot-realistic color and depth images, and their
corresponding ground truth 6D poses. DIBR performs 3D warping
that projects pixels in the reference image to the world coordinate
and then projects the world points to new positions in another im-
age plane to get the new image, which avoids the global 3D recon-
struction of the scene. Figure 2 shows the 3D warping process of
DIBR.

During simulation, we provide sufficient variations of view-
points to mimic a variety of object locations. For it is difficult to
generate new images from the same image distribution, previous
methods often randomly project objects into an arbitrary scene to
produce the synthesized image. However, such synthesized images
are unrealistic compared to real-world scenes. On contrast, our sim-
ulator provides realistic imagery with the corresponding 6D pose.

We combine the synthesized and captured data to build the final

dataset. It consists of two subsets: a training set of 400 synthesized
color-and-depth image pairs and a testing set of 100 captured and
synthesized color-and-depth image pairs. For each frame we pro-
vide the following data:

• 6D poses for each object.

• Color images with resolution of 1280×720 in PNG.

• Depth images with resolution of 1280×720 in PNG.

• Binary segmentation masks for each image.

• 2D bounding boxes for each object.

• 3D point clouds with RGB color and normals for each object.

• Calibration information for each image.

2.2. Evaluation metrics

In this benchmark, we require the participants to submit the es-
timated 6D object poses of the testing set. The performance of 6D
object pose estimation is evaluated by ADD(-S) which are the aver-
age distance metric (ADD) [HLI∗12] and the average closest point
distance (ADD-S) [XSNF17].

Given the ground truth rotation matrix R and translation matrix
T and its corresponding estimated rotation matrix R̂ and translation
matirx T̂ , the ADD computes mean distances between all 3D model
points x transformed by [R̂|T̂ ] and [R|T ]:

ADD =
1
N ∑

x∈S
||(Rx+T )− (R̂x+ T̂ )||, (1)

where S is the set of 3D model points and N is the number of points.

The ADD-S is an ambiguity-invariant pose error metric, which
takes care of both symmetric and non-symmetric objects into an
overall evaluation.

ADD-S =
1
N ∑

x1∈S
min
x2∈S
||(Rx1 +T )− (R̂x2 + T̂ )|| (2)

The area under the accuracy-threshold curve (AUC) which is cal-
culated from ADD(-S) is another evaluation metric. Specifically, if
the ADD(-S) is smaller than a threshold defined from the diameter
of the 3D object model, we consider the estimated pose is correct.
Based on that, we define a variable range of thresholds from 0%
to 100% of the 3D object diameter and then compute the ADD(-
S) for each threshold. With the two sets of values, we can get the
accuracy-threshold curve referred to as AUC. Then the area under
the AUC is calculated.

We also use the reprojection error, which is often used for 6D
object pose estimation of feature matching methods, as our fourth
performance metric. Rather than computing distance between two
3D point pairs, the reprojection error is calculated by first project-
ing 3D points into an image plane and then computing the pairwise
distances in the image space.

3. Methods

All the proposed methods are described in the following subsec-
tions. We choose DenseFusion [WXZ∗19] as a baseline approach
for the 6D object pose estimation. Two research groups contributed
their methods in this joint experimental comparison.
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3.1. Baseline: DenseFusion: 6D Object Pose Estimation by
Iterative Dense Fusion

DenseFusion [WXZ∗19] is a heterogeneous neural network archi-
tecture with RGB-D images as input. It processes color and depth
information separately and uses a dense fusion network to extract
pixel-wise dense features, from which the 6D object pose is esti-
mated. Furthermore, an end-to-end iterative pose refinement net-
work is proposed to further improve the accuracy of the predicted
pose while achieving real-time speed.

Figure 3: Pipeline of the DenseFusion networks. The network first
generates object segmentation masks and 2D bounding boxes from
color images. The color-and-depth image pairs are cropped using
the bounding boxes and fed into embeddings and fused at each cor-
responding pixel. The pose predictor estimates a 6D pose for each
fused feature and the predictions are voted to obtain the final 6D
object pose.

Figure 3 shows the overall architecture of DenseFusion. The ar-
chitecture consists of two stages. Firstly, the target object is de-
tected in the input color image using semantic segmentation from
[XSNF17]. After that, the color and depth images are cropped
based on the segmentation and the cropped depth image is trans-
formed to a point cloud using the intrinsic camera matrix. Both
cropped images are fed to the second stage.

In the second stage, the cropped color image is fed to a CNN-
based network Resnet-18 [HZRS16] encoder followed by 4 up-
sampling layers as decoder to extract color features. The point
cloud converted by the cropped depth map is fed into a PointNet-
based network [QSMG17] by applying a multi-layer perceptron
(MLP) to produce geometric features. After that, the color and
depth features are fused to estimate the 6D object pose based on
an unsupervised confidence score. Lastly, the predicted pose is re-
fined by the iterative pose refinement network.

We implement the DenseFusion network within the PyTorch
framework and the model is trained using Adam optimizer with an
initial learning rate at 0.0001. The iterative pose refinement mod-
ule contains a 4 fully connected layers and 2 refinement iterations
is used for the experiments.

3.2. ASS3D: Adaptive Single-Shot 3D Object Pose Estimation

Multimodal inputs can improve the performance of various com-
puter vision tasks, but it is usually at the cost of efficiency and in-
creased complexity. In this work, they focus on RGB-D 6D object

pose estimation and exploit multimodal inputs using a lightweight
fusion scheme which is complemented by multimodal supervision
through rendering. In this way, they overcome the complexity of
multimodal inputs by transferring it to the model training phase in-
stead of the inference phase. Given the distinct domains that color
and depth information resides in, they employ a disentangled ar-
chitecture, as depicted in Figure 4, to process them separately and
enable for a learnable fusion scheme.

Figure 4: Overall Network Architecture. The color and depth im-
ages are processed separately and the extracted features are fused
in a later stage. They employ an average-pooling function as the
symmetric reduction function. The features are then driven into a
pose encoder which eventually directly regresses a rotation and
translation. The predicted pose is subsequently used for rendering
the object and deriving its projected silhouette. This allows utiliz-
ing an additional supervision signal during training and increase
the overall performance of the model.

More specifically, they use two ResNet-34 models as their back-
bone encoders for extracting features, which are later fused and
flattened by an average-pooling function. This approach allows
them to associate the geometric feature of each point to its cor-
responding image feature pixel based on a projection onto the im-
age plane using the known camera intrinsic parameters as it has
been already shown in [WXZ∗19]. The fused features are then
fed into a pose encoder consisting of three fully connected lay-
ers that eventually disentangled to 3D rotation and 3D transla-
tion heads. Following the definition of their model’s architecture,
they supervise it using a direct pose regression objective as the
weighted sum of two different losses. Particularly, they use a L2
loss εt = ||t− t̃|| for the translation and a geodesic distance for the

rotation εr = arccos trace(RR̃T )−1
2 , similar to [GZD∗20]. The loss for

the predicted pose is then:

εpose = λsixd εt +(1−λsixd )εr, (3)

where the weight λsixd acts as a regularization term. This is com-
plemented by a silhouette loss which is enabled by a point splatting
differentiable renderer [YSW∗19]. They transform the 3D vertices
ν ∈ R3 of each object’s point cloud using the predicted pose. The
differentiable point cloud renderer then renders the transformed
model’s silhouette, which is used along with the ground truth an-
notated silhouettes as an additional supervision signal. Instead of
using a traditional intersection over union (IoU) loss, they apply a
Gaussian smooth silhouette loss as defined in [GZD∗20] for their
silhouette loss:

εsilhouette =
1
N ∑
∈Ω

S�S(S̃)+ S̃�S(S), (4)
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where S is a Gaussian smoothing function. The silhouette loss is
a smoother objective function compared to the common IoU loss,
while it takes into account the ground truth silhouette simultane-
ously, offering that way a fully symmetric objective. However, the
most appropriate Gaussian filter to be used is dependent on each
object shape, and can also vary during training, offering higher pre-
cision as the model converges. Towards that end, they use a new
adaptive filter by also learning the standard deviation of the Gaus-
sian during training. Their final learning objective is a weighted
sum of the aforementioned losses:

εtotal = λposeεpose +λsilhouetteεsilhouette (5)

It is apparent that the introduction of the weights λpose and
λsilhouette will introduce similar challenges as aforementioned (i.e.
finding the best combination for each object will be challenging and
time-consuming). Motivated by that, they treat those two weights as
learnable parameters adding them to the learning objective. Thus,
the weights are able to adapt to the various objects and, addition-
ally, to better regularize the two losses during training.

Finally, the model is trained for 100 epochs on a GeForce RTX
2080 TI 11 GB. All the images (i.e. color and depth) are resized to
320×180 resolution, and the batch size is set to 16. For optimizing
the model’s parameters they use the Adam optimizer with a learn-
ing rate of 1×10−4. Additionally, learnable Gaussian standard de-
viation and the weights of 5 are optimized with a SGD optimizer
with a learning rate of 1×10−5.

3.3. GraphFusion: 6D object pose estimation with graph
based multi-feature fusion

They propose a graph based multi-feature fusion network to im-
prove 6D pose prediction performance, which combines effective
feature extraction networks and a graph attention network (GAT)
[VCC∗17] to fully exploit the relationship between visual and geo-
metric features.

The aim of their approach is to achieve the real-time 6D pose
estimation, using RGB-D images as input, as shown in Figure5.
Handcrafted features such as SIFT or ORB are key factors for clas-
sical methods to estimate 6D poses. However, it is difficult to es-
timate 6D poses for texture-less objects. Instead of relying on im-
proving handcrafted features, they learn more robust features and
semantic cues by applying deep learning models.

They use a Convolutional Neural Network (CNN) based
encoder-decoder architecture to learn visual features from color im-
ages. To extract geometric features from the depth map, they first
convert the depth map to the point cloud using the camera intrin-
sic matrix. There are two ways to process the point cloud. Classic
approaches often convert point cloud data into regular grids by pro-
jecting 3D data into 2D images or splitting raw data into 3D voxel
grids. Then they process the transformed data using approaches
based on regular data. Other approaches are to directly process each
point in the point cloud. PointNet [QSMG17] is the first one to ap-
ply this idea, which achieves permutation invariance by use of a
symmetric function. Instead of transforming to regular data, they
use PointNet-based network to extract geometric features from the
point cloud.

Cropped image

Point cloud

CNN

Point
Net

…

Pixel-wise
feature

Attentional
feature

Global feature

… Multi-
feature 
fusion

Pose 
prediction

Input

Output

Figure 5: Overview of the graph based pose estimation architec-
ture. The input of their networks are captured color-and-depth im-
ages pairs. These images are cropped with the semantic segmen-
tation architecture. After that, the visual and geometric features
are extracted and fused by a graph attention network which is in-
troduced to exploit the fusion strategy between color and geomet-
ric features. The 6D object pose and its corresponding confidence
score are predicted by the fused features and the final pose is cho-
sen based on the confidences.

Even with learned features that contains the visual appearance
and geometry structure information, accurate 6D object pose also
depends on the fused features. To effectively fuse features, they
introduce a graph attention based framework to exploit relation-
ship between visual and geometric features, as opposed to prior
works which just concatenates these features. Combining the in-
sights above, their approach works as follows:

The input are captured color-and-depth image pairs and a seman-
tic segmentation architecture from [XSNF17] is used to segment
the target object and crop the color and depth images. Next, the vi-
sual features are extracted by a CNN-based network and geometric
representations are computed from the point cloud using PointNet.
The point cloud is generated by converting its corresponding depth
map. With these features, a graph attention network is introduced
to perform the fusion between color and geometric features. After
that, the 6D object pose and its corresponding confidence score are
predicted by the fused features, one pose per fused feature. Then,
the pose with the highest confidence is chosen as the estimated
pose. Lastly, the 6D pose is further improved by iterative pose re-
finement.

4. Results

4.1. Overall performance

The overall performance of DenseFusion, ASS3D, GraphFusion
without refinement (GraphFusion_wo) and GraphFusion is shown
in Table 1 and Table 2. DenseFusion and ASS3D are proposed from
two different research groups, and GraphFusion without refinement
(GraphFusion_wo) and GraphFusion is proposed from one research
group. We use ADD, ADD-S and the area under ADD curve (AUC)
to measure the prediction.

We can see that GraphFusion achieves the best performance.
GraphFusion outperforms ASS3D and DenseFusion 11% and 5%
in terms of ADD, respectively. Besides, evaluation results show that
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Table 1: Quantitative evaluation of the 6D pose (ADD and ADD-
S).

DenseFusion ASS3D GraphFusion_wo GraphFusion
ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S

banana 0.86 0.86 0.70 0.75 0.76 0.80 0.83 0.87
biscuit_box 0.91 0.95 0.78 0.88 0.80 0.84 0.93 0.96
chips_can 0.56 0.94 0.75 0.85 0.53 0.57 0.69 0.97
cookie_box 0.62 0.74 0.49 0.66 0.51 0.56 0.61 0.75
gingerbread_box 0.87 0.94 0.63 0.86 0.79 0.83 0.90 0.95
milk_box 0.50 0.81 0.58 0.62 0.52 0.53 0.66 0.77
pasta_box 0.77 0.91 0.63 0.72 0.76 0.78 0.84 0.96
vacuum_cup 0.61 0.90 0.65 0.75 0.51 0.53 0.63 0.97
MEAN 0.71 0.88 0.65 0.76 0.65 0.68 0.76 0.90

Table 2: The 6D pose estimation accuracy in terms of the area
under AUC.

DenseFusin ASS3D GraphFusion_wo GraphFusion
banana 0.77 0.66 0.66 0.75
biscuit_box 0.77 0.74 0.68 0.79
chips_can 0.74 0.72 0.55 0.76
cookie_box 0.67 0.56 0.53 0.66
gingerbread_box 0.76 0.71 0.64 0.78
milk_box 0.66 0.51 0.52 0.67
pasta_box 0.74 0.61 0.61 0.77
vacuum_cup 0.71 0.64 0.63 0.74
MEAN 0.72 0.64 0.60 0.74

DenseFusion, ASS3D and GraphFusion allow transforming models
trained in synthesized datasets to real captured datasets without do-
main adaptation.

4.2. Ablation studies

We present ablation studies to help better understand the function-
alities of different network architectures.

Effectiveness of pose refinement. From Table 1 and Table 2
we can see that compared with ASS3D and GraphFusion without
pose refinement, DenseFusion and GraphFusion that perform itera-
tive pose refinement are able to further improve the accuracy of the
6D pose. The effectiveness is further verified by Figure 6. Figure
6 shows the successful pose rate measured by ADD for 8 objects,
which is obtained by varying the ADD threshold. DenseFusion and
GraphFusion outperform other approaches by a large margin, espe-
cially when the threshold is small.

Effectiveness of multi-feature fusion. Apart from the success-
ful pose rate generated by ADD, we calculate the successful pose
rate by varying the reprojection error threshold, as shown in Figure
7. From Figure 6 and Figure 7 we can see that GraphFusion is su-
perior to other approaches, which indicates that fusion mechanism
considering the relationship between color and geometric features
has a clear advantage over methods ignoring the correlation infor-
mation between RGB-D images. As Figure 7 makes clear that the
performance of ASS3D degrade significantly as the reprojection
error decreases. In contrast, the performance of DenseFusion and
GraphFusion has a smaller decrease.

Time efficiency and accuracy robustness of the single shot
model. Compared with DenseFusion and GraphFusion, ASS3D es-
timates the 6D pose in a single, consecutive network pass. It runs
faster than other approaches, as show in Table 3 which compares
the time efficiency among different methods. In particular, ASS3D
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Figure 6: The successful rate of pose estimation in terms of ADD.

runs at least 4 times faster than GraphFusion. Besides, for the
texture-less objects such as milk box, ASS3D is more robust and
has a better performance as shown in Figure 6.

Furthermore, we also visualize the comparison results as shown
in Figure 8. It can be seen that DenseFusion, ASS3D and Graph-
Fusion provide more accurate 6D pose for colorful objects, such as
banana, gingerbread box and chips can, while these approaches are
less robust against dark color or low texture objects, such as cookie
box and milk box.

5. Conclusion

The 6D object pose estimation is a challenging but important re-
search direction for virtual reality, robotics and visual navigation.
With this benchmark, we have captured some state-of-the-art ap-
proaches in this field and will be able to systematically measure its
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Figure 7: The successful rate of pose estimation in terms of repro-
jection errors.

progress in the future. The evaluation results indicate that the ap-
proach fully exploiting color and depth features performs best, out-
performing pixel fusion based method and the approach with mul-
timodal supervision. As open problems, our analysis takes vary-
ing texture and shape objects, and object symmetries into consid-
eration. We also note some limitations of our datasets, which we
hope to improve in the future. Firstly, the synthetic dataset needs to
be expanded by adding more reflective objects, occlusion, varying
lighting conditions and objects with different sizes. On the other
hand, more accurate depth maps and 3D models need to be pro-
vided.

Table 3: Comparison of the computational run time among differ-
ent approaches (second per frame).

DenseFusin ASS3D GraphFusion
banana 0.03 0.01 0.04
biscuit_box 0.03 0.01 0.04
chips_can 0.03 0.01 0.04
cookie_box 0.03 0.01 0.04
gingerbread_box 0.03 0.01 0.04
milk_box 0.03 0.01 0.04
pasta_box 0.03 0.01 0.04
vacuum_cup 0.03 0.01 0.04
MEAN 0.03 0.01 0.04
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