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Abstract. For several medical treatments, it is possible to observe tran-
scriptional variations in gene expressions between responders and non-
responders. Modelling the correlation between such variations and the
patient’s response to drugs as a system of Ordinary Differential Equa-
tions could be invaluable to improve the efficacy of treatments and would
represent an important step towards personalized medicine. Two main
obstacles lie on this path: (i) the number of genes is too large to straight-
forwardly analyze their interactions; (ii) defining the correct parameters
for the mathematical models of gene interaction is a complex optimiza-
tion problem, even when a limited number of genes is involved. In this
paper, we propose a novel approach to creating mathematical models
able to explain patients’ response to treatment from transcriptional vari-
ations. The approach is based on: (i) a feature selection algorithm, set
to identify a minimal set of gene expressions that are highly correlated
with treatment outcome, (ii) a state-of-the-art evolutionary optimizer,
Covariance Matrix Adaptation Evolution Strategy, applied to finding
the parameters of the mathematical model characterizing the relation-
ship between gene expressions and patient responsiveness. The proposed
methodology is tested on real-world data describing responsiveness of
asthma patients to Omalizumab, a humanized monoclonal antibody that
binds to immunoglobulin E. In this case study, the presented approach
is shown able to identify 5 genes (out of 28,402) that are transcription-
ally relevant to predict treatment outcomes, and to deliver a compact
mathematical model that is able to explain the interaction between the
different genes involved.
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1 Introduction

When patients are treated with medical drugs, it is possible to observe a varia-
tion in their gene expression. Such transcriptional variation can potentially be
correlated with the responsiveness to treatment, and this relationship can be
described through a system of Ordinary Differential Equations (ODE).

Such a model would be important not only to explain the differences in
treatment outcome, but also to provide indications to medical personnel on how
to improve the therapy. For example, if a gene is shown to be overexpressed
in non-responsive patients, with respect to responsive patients, doctors might
devise a new therapy, combining the current treatment with substances that
lower the expression of that particular gene.

Nevertheless, obtaining such an ODE system is not a straightforward pro-
cess. The genes potentially correlated to drug response number in the tens of
thousands, with possible complex interconnections in expression levels. Not only
that, but even when a limited number of genes is identified, finding satisfying
values of the parameters for the ODE system describing their interactions is a
complex optimization problem that cannot be tackled through gradient-based
techniques.

In this paper, we propose a novel methodology to obtain compact mathe-
matical models describing the correlation between gene expression levels and
responsiveness to treatment. The methodology combines a technique for feature
selection [19,20], able to identify a small set of genes highly correlated with
treatment outcome, and a state-of-the-art evolutionary optimizer [15] in order
to find good values for the ODE system characterizing their interaction.

The presented approach is tested on real-world data from N=40 patients
affected by moderate-to-severe asthma, treated with the recent anti-IgE drug
Omalizumab (30 responsive and 10 non-responsive). The results show that the
methodology is effective in identifying 5 genes that are highly correlated with
responsiveness to treatment, and it is able to deliver an ODE system that can
reliably describe their interaction, explaining the responsiveness of patients to
the Omalizumab treatment.

2 Background

In this section, we introduce the minimal notions that are necessary to introduce
the scope of our work.

2.1 Feature Selection

In machine learning (ML), feature selection (FS) is defined as the process of
identifying the features of a data set in order to obtain a minimal, informative
subset. Features may not be part of this subset for two main reasons: they might
be unrelated to the underlying nature of the problem, just adding noise; they
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might be heavily correlated with other features, adding no relevant informa-
tion for the task. Applications range from face recognition [31] to medicine [35],
and approaches can be divided into two categories [12]: filters that score fea-
tures according to a criterion (often a statistical test); and recursive procedures
(forward or backwards) that attempt to reduce the features to a small set of
non-redundant ones [8,18].

In the scope of this work, we focus on recursive FS algorithms, in particular
Recursive Ensemble Feature Selection (REFS). The method is a variation of
Recursive Feature Elimination (RFE) [13] that scores the features in a 10-fold
cross-validation scheme, using 8 different classifiers: gradient boosting, passive
aggressive classifier, logistic regression, Support Vector Machine classifier (SVC),
random forest, Stochastic Gradient Descent (SGD), ridge classifier and bagging.
The lowest scoring features are removed from the analysis and the process is
repeated until the overall classification accuracy drops below a given threshold.
The use of an ensemble of classifiers reduces the effects of the inherent bias
in each ML algorithm, thus delivering a more objective feature ranking. This
technique has been applied successfully for problems involving both mRNA [20]
and miRNA [19], featuring number of variables ranging from 1,046 to 54,675.

2.2 Omalizumab Treatment for Asthma Patients

Omalizumab is the first humanized monoclonal antibody that binds to
immunoglobuline E (anti-IgE) prescribed to patients with moderate-to-severe
allergic asthma who do not respond to inhaled corticosteroids and long-acting β2-
agonist bronchodilators. Omalizumab works by specifically binding free serum
IgE [29], which characterizes allergic asthma. IgE binds to high affinity receptors
(FcεRI) expressed on effector cells such as basophils and mast cells, but also on
other immune cells like eosinophils, thereby triggering an inflammatory cascade
through the release of inflammatory mediators [14]. By binding to the Fc region
of IgE and forming IgE-antibody complexes, Omalizumab prevents the bind-
ing of allergen specific IgE to FcεRI and the subsequent inflammatory allergy
reaction [29]. Consequently, FcεRI expression is reduced, leading to less immune
activation. Furthermore, Omalizumab decreases eosinophil numbers found in
the airway of asthmatic patients, although the mechanism through which this
effect is achieved is not entirely understood [29]. Eosinophils and their derived
proinflammatory mediators are major contributors to airway inflammation and
damage [26]. Omalizumab’s ability to combat long-term airway remodeling is
still under investigation [14].

It is important to understand the mechanism of action of Omalizumab treat-
ment and to research the differences in responsiveness. Potential transcriptional
variations between responders (R) and non-responders (NR) to Omalizumab can
function as predictive biomarkers in the future. A recent study by Upchurch et al.
2020, with accession number GSE134544 at gene expression omnibus (GEO) [30]
investigated whole blood transcriptomes of moderate-to-severe asthma patients
(N = 40; 30 responders (R) and 10 non-responders (NR)), over the course of
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Omalizumab treatment. Blood was collected at day 0, 7, 42, 98, 182 where the
treatment started at day 7, and day 0 marks one week before the treatment.

Total RNA was isolated from whole blood, and all samples passing quality
control were then amplified, (biotin-)labelled and hybridized to Illumina HT-
12 V4 BeadChips (Illumina). Subsequent differential gene expression analysis
was performed using Welch’s T-test for comparisons between R and NR, and
transcriptional changes within each group were assessed using a paired T-test.
However, direct comparisons between R and NR did not provide sufficient gene
lists after multiple testing corrections. Therefore, whole blood mRNA signa-
ture differences between groups were characterized using a gene cluster strategy,
or modular-level type analysis adopted from studies by Chaussabel et al. [7]
and Banchereau et al. [3]. Hierarchical clustering of genes revealed 8 similarly
expressed transcript clusters in R and NR (i.e. protein synthesis (1); T cell/NK
cell/ cytotoxicity (2); hematopoiesis (3); cell cycle control/proliferation (4); T
cell regulation and activation (5); monocytes (6); glucose metabolism (7) and
inflammation (8)). Of these, cluster 2 and 7 in R were reported to be higher,
while clusters 3 and 8 were higher in NR, suggesting that clusters 2, 3, 7 and 8
can be used as predictors of response to Omalizumab treatment. These clusters,
combined, contain a total of 1,776 genes.

Due to the unpredictability of an asthma patient’s responsiveness to Omal-
izumab, there have been multiple studies into finding a reliable biomarker that
can act as a predictor. A recent study [16] reported that interleukin (IL)-9, IL-13,
IL-25, IL-33 and thymic stromal lymphopoietin (TSLP) levels were significantly
higher in R compared to NR. Most R were of a high type-2 cytokine endotype
whereas only one NR was [16]. Data from the INNOVATE trial of Omalizumab
for severe persistent asthma [17] was analyzed by [5], and this study found that
of the biomarkers recorded by INNOVATE, only baseline total IgE levels were a
predictor of efficacy. However, pooled analysis showed that treatment was effec-
tive in some cases irrespective of IgE levels. It was concluded that the most
meaningful measure of responsiveness was the physician’s overall assessment [5].
An extensive look into gene expression relating to asthma patients vs controls
in different tissue types, disease severity and response to allergens and corticos-
teroid treatment in several datasets reported multiple gene signatures and path-
ways [1]. Although this may prove useful in explaining Omalizumab response, it
revealed no significant gene overlap.

3 Proposed Approach

We present a new approach to obtain compact, human-readable mathematical
models to explain responsiveness to treatment in patients. The methodology first
applies feature selection to identify a small set of relevant genes, and then uses
state-of-the-art evolutionary optimization to find the parameters of an ODE sys-
tem that describes the relationship between gene expression levels and patient’s
responsiveness to treatment.
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3.1 Feature Selection

In a first step, our objective is to select the most meaningful genes to correctly
predict and model patients’ responsiveness to treatment. We apply the REFS
algorithm, which uses the feedback of an ensemble of classifiers to rank each
feature depending on its usefulness for the process of classification. Then, the
lowest-scoring features are removed, and the classification/ranking is repeated,
until the average classification accuracy falls below a user-defined threshold.

3.2 Mathematical Modeling

Once a small subset of the genes is identified, we create a mathematical model
that interconnects the gene expression given the values at different time points.
While other solutions to model the correlation between the gene expression val-
ues and responsiveness are possible, like black-box machine learning, white-box
models are preferred by practitioners, as they are commonly considered more
interpretable. We assume to have whole blood mRNA expression at different
points in time available, and we will consider the average value for R and NR
over all samples at each point in time, for each category of patients. Thus, the
mathematical model we propose is a system of ordinary differential equations
(ODEs) in the form of Eq. 1:

dg0
dt

= −k0u(t) + α0e
−β0t,

...,

dgn

dt
= −knu(t) + αne−βnt,

u(t) = Kg0g0 + ... + Kgn
gn, (1)

where g0 to gn will be the most important genes, ki, αi, βi and Kgi
are coeffi-

cients calculated by each gene and u(t) is an unknown function that interconnects
the gene expression of all the genes, as to consider a relationship between all the
variables.

Then, to solve the model, we use Euler’s numerical method which transforms
system 1 into:

gt
0 = gt−1

0 + �t
dg0
dt

,

...,

gt
n = gt−1

n + �t
dgn

dt
,

u(t) = Kg0g
t
0 + ... + Kgn

gt
n. (2)

u(t) models the interconnection between different gene expressions, that we
hypothesize exists to avoid trivial assumptions of independence. As the problem
is not treatable resorting to classical gradient-based techniques, it is necessary
to use state-of-the-art stochastic optimization, such as CMA-ES [15], to find
satisfying values for ki, αi, βi and Kgi

.
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Given the measurement of gene expressions at different instants t =
{t0, ..., tN}, from Eq. 2 we can define the cost function to be minimized by
CMA-ES as:

error =
n∑

i=0

|gt
CRi − gt

Ri| + |gt
CNRi − gt

NRi| (3)

where gt
CRi is the average gene i expression calculated at time t for R, gt

Ri is the
average gene i expression measured t time t for responders, gt

CNRi is the average
gene i expression calculated at time t for non-responders and gt

NRi is the average
gene i expression measured t time t for non-responders.

4 Experimental Evaluation

All the necessary code for the experiments has been developed in Python, using
the scikit-learn package [25] for machine learning, and the cma package for
CMA-ES. The code is hosted on the open GitHub repository:1

4.1 Data

Moderate-to-severe asthma patients were prescribed Omalizumab, based on the
manufacturer’s dosing table. Patient blood was collected at day 0, 7, 42, 98, 182
where the treatment started at day 7 with Omalizumab in 40 patients: 30 R and
10 NR. For each patient, for each sample, for each instant of time, the dataset
contains information about 28,402 gene expression levels. All data was used as
provided, at GEO accession code GSE134544 [30].

4.2 Feature Selection

Running the REFS algorithm previously described 10 times, we identified a set of
5 features (out of 28,402). This compact set can predict the Omalizumab respon-
siveness in patients with a mean accuracy of 0.975 in a 10-fold cross-validation,
considering the binary classification problem (R/NR) with all classifiers in the
REFS ensemble. As the REFS process is stochastic, it was iterated 10 times
and the feature set corresponding to the highest peak in accuracy was selected
(see Fig. 1). From the figure, it is interesting to notice how using all 28,402
features actually provides a lower mean classification accuracy (0.703). Classifi-
cation algorithms, usually exploiting optimization heuristics, often show a lower
performance when asked to explore a larger feature search space.

The resulting most significant features uncovered by the presented algo-
rithms are ILMN 3286286; ILMN 1775520; ILMN 1656849; ILMN 1781198
and ILMN 1665457 (Fig. 2). Details of the Illumina probes are further specified
in Table 1.

To further validate the selected features, we computed the area under the
curve (AUC) and receiver operating characteristic (ROC) curve in a 10-fold
1 https://github.com/steppenwolf0/modelingEvolutionaryComputation.

https://github.com/steppenwolf0/modelingEvolutionaryComputation


Modelling Asthma Patients Responsiveness to Treatment 365

Fig. 1. The results of 10 runs of the REFS algorithm for the classification of Omal-
izumab responsiveness in allergic asthma patients. The x axis cuts at 5 variables, in
correspondence with the highest peak.

Fig. 2. Heatmap for the normalized gene expression for the 5 selected genes in all of
the samples. Interestingly, samples of the two classes can be visually separated by just
looking at the different normalized gene expression of the samples in the two groups.
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Table 1. Information on the selected features to predict the responsiveness of the
Omalizumab treatment.

Illumina probe Corresponding gene Sequence

ILMN 3286286 LOC100131780 GAGATTGCGAAACTGGACAAACTGCTGA
ACCTGGACAGGGGCCAGGGCTG

ILMN 1775520 CCDC113 GGACATGAGAACATATTTCCAAGACAGA
GGATTCTATGGGGACGGGTCAC

ILMN 1656849 SLC26A8 TGGGCGTATTGGGTTTGGGCTTCATTGC
CACTTACCTTCCGGAGTCTGCA

ILMN 1781198 PPP1R3D GGCCTTCACTGCTACGCCCCTGGCCCCA
AAACAGAGAGCAAGACAGTTGT

ILMN 1665457 CLEC4C GTGGTTCCAGTTGAAGGTCTGGTCCATG
GCAGTCGTATCCATCTTGCTCC

cross-validation, using just the selected features, testing all classifiers in the
REFS ensemble. The best AUC, 0.99, was obtained using Passive Aggressive
classifier. This result is considered as an excellent diagnostic accuracy (AUC
0.9-1.0) by specialists of the field [21,27].

Fig. 3. ROC Curve in a 10-fold cross validation using Passive Aggressive classifier (the
most effective in the REFS ensemble for this particular problem) for the 5 selected
genes.

4.3 Mathematical Modeling

Considering we find 5 gene expressions to be the most meaningful, and using the
template defined in Eq. 1, we can write the specific model linking gene expression
levels to responsiveness to Omalizumab as:
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dg0
dt

= −k0u(t) + α0e
−β0t,

dg1
dt

= −k1u(t) + α1e
−β1t,

dg2
dt

= −k2u(t) + α2e
−β2t,

dg3
dt

= −k3u(t) + α3e
−β3t,

dg4
dt

= −k4u(t) + α4e
−β4t,

u(t) = Kg0g0 + Kg1g1 + Kg2g2 + Kg3g3 + Kg4g4, (4)

Fig. 4. Genes expression modeling and measured values for the 5 selected features at
t = 0, 7, 42, 98, 182.
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where we will need to find 20 parameters. We run CMA-ES with a σ =
0.01 and λ = 1000 with default stop conditions. Using CMA-ES with the
cost function in Eq. 3, with �t = 0.25, we find the following values; k0 =
0.5313, k1 = 0.6440, k2 = 0.4899, k3 = 0.5504, k4 = −0.4702, α0 = −0.0001, β0 =
−0.0168, α1 = −0.0386, β1 = 0.9277, α2 = −0.0071, β2 = 0.0733, α3 =
−0.0176, β3 = 0.1422, α4 = 0.0029, β4 = 0.0079,Kg0 = 0.2598,Kg1 =
0.1078,Kg2 = 0.8069,Kg3 = −0.5708,Kg4 = 0.0565 with an error = 1.6036
as the best of 20 runs.

As a baseline comparison, we also tested the scipy [32] implementation of
the Nelder-Mead optimization algorithm [11], currently considered among the
state-of-the-art for gradient-free optimization, for 20 runs. The best run of the
Nelder-Mead algorithm yields a solution with error = 4.3143, of lower quality
than that of CMA-ES.

From the results in Fig. 4, we can see that the model approximates consider-
ably the behaviour of the genes, given the parameters and the initial values only;
with a clear exception of LOC100131780. Although the increase of responders
and decrease of non-responders functions are reflected, the amplitude does not
match, therefore suggesting the necessity of increasing the degree of the answer
or a more precise ODE solver.

Finally, from function u(t) reported in Fig. 5, it is possible to notice that, just
from its initial value u(0), it is already possible to differentiate responders from
non-responders, predicting the outcome of the treatment before its beginning.

Fig. 5. Complementary signal u(t) = Kg0g0 + Kg1g1 + Kg2g2 + Kg3g3 + Kg4g4 that
interconnects the expression values of all of the genes.
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5 Discussion and Conclusions

Severe-to-moderate asthma patients appear to respond differently to the biolog-
ical anti-IgE treatment Omalizumab. Total mRNA sequencing of whole blood
from R and NR of Omalizumab treatment can help appreciate the differences at
a transcriptional level. In this study, the GSE134544 dataset (that was recently
published by Upchurch et al. [30]), was analyzed with the use of machine
learning-based REFS. This novel study reveals 5 genes that are highly rele-
vant in predicting Omalizumab responsiveness in asthma patients. In addition,
we created a mathematical model to approximate the interdependence of the
most significant genes to explain the effect of Omalizumab treatment using evo-
lutionary computation.

Investigating gene function corresponding to the 5 mRNA (Table 1) pre-
dictors found in this study may illuminate new pathways involved in allergic
asthma and the mechanism of Omalizumab resistance. For example, CCDC113
is vital for ciliogenesis and when knocked down, causes a reduction in cilium
formation [10] which is previously related to severe asthma [28]. Also, this gene
was found to be overexpressed in asthma patients as compared to controls [24],
and in NR as compared to R.

CLEC4C is a marker for plasmacytoid dendritic cells (pDCs) subtypes [22,
23], which both have been implicated in driving acute asthma exacerbations [6,
33] and have shown to have a tolerogenic effect in asthma by inducing Treg
cell differentiation [33]. CLEC4C is overexpressed in R when comparing against
NR. PPP1R3D, a gene that codes for a subunit of PP1 (protein phosphatase
1) [2] regulates protein serine/threonine phosphatase activity and was found
to be a causal key driver for acute peanut allergic response [34]. Genes coding
for other subunits of PP1 have been shown to be upregulated in asthmatic
patients (PPP1R16A) or, more specifically, in corticosteroid resistant patients
(PPP1R15A) [1]. This gene is underexpressed in R, when compared against NR.

More unexpected in its relation to Omalizumab responsiveness in severe-to-
moderate asthma is SLC26A8, which is most commonly associated with sperm
motility and mutations that can cause male infertility [9]. It was also found to be
upregulated in patients with severe asthma as compared to healthy controls [4].
Lastly, LOC100131780 is proprietary of Illumina and we, unfortunately, could
not find a perfect gene match for this probe. The sequence did, however, overlap
partially with DNAI1, which codes for dynein axonemal intermediate chain 1.
The gene is strongly linked to primary ciliary dyskinesia (DNAI1 - Dynein Inter-
mediate Chain 1, Axonemal - Homo Sapiens (Human) - DNAI1 Gene & Protein),
which can cause respiratory infections and breathing problems (NHLBI).

An attempt to understand transcriptional variations between responders
and non-responders on Omalizumab treatment was made by Upchurch et al.
2020, who recently analyzed changes in 8 gene clusters. In Omalizumab respon-
ders, the T cell/natural killer (NK) cell/cytotoxicity gene cluster and the glu-
cose metabolism gene cluster were higher, whereas gene clusters involved in
hematopoiesis and inflammation appeared to be higher in non-responders. 19
genes of the 8th (inflammatory) gene cluster were specifically annotated in their
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paper [30]; however, none of these genes corresponded with the 5 most relevant
genes we found with our methodology.

By setting a goal of predicting responsiveness instead of investigating tran-
scriptional changes, the amount of data and complexity are reduced, since only
the pre-testing time point needs to be considered. Using REFS provides the ben-
efit of illuminating possible gene interactions without bias, as opposed to using
a single algorithm or performing significance tests and clustering up- or down-
regulated genes on the basis of known pathway function. The overall benefit of
machine learning over basic statistics is that it is able to find predictive patterns
which do not rely on assumptions about the data-generating system. Further-
more, it avoids the problem of eliminating significant mRNAs by not needing
to take into account false discovery rate (FDR correction). Therefore, the tech-
nique used in this paper greatly reduced the number of meaningful mRNAs (5)
compared to Upchurch et al. 2020 (1,776).

Further clinical testing and a replication dataset could reveal whether the 5
mRNAs proposed in this paper can reliably predict moderate-to-severe asthma
patients’ response to Omalizumab treatment on a larger scale. Implementing this
sort of pre-treatment testing can both reduce the cost of asthma treatment, as
Omalizumab is a relatively expensive drug, and prevent unnecessary and unpro-
ductive treatment time. Although currently, we limit our study to Omalizumab,
it could be applied to similar studies.

This study not only proposes 5 specific genes that are transcriptionally
relevant to predict Omalizumab responsiveness in moderate-to-severe asthma
patients, but also puts forward a novel technique that aims to reduce the nec-
essary information to the smallest set of whole blood mRNAs. The presented
methodology elucidates the power of machine learning versus more general uni-
variate/multivariate statistical analysis strategies.
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