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"I think you are doing a bad job!"
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ABSTRACT

Robots will increasingly collaborate with human partners neces-
sitating research into how robots negotiate negative collaborative
outcomes. This study investigates the effect of blame attribution
on trust assessments in human-robot collaboration. Participants (n
= 60) collaboratively played a game with a humanoid robot in one
of four conditions in a 2 (blame correctness: correct vs. incorrect)
by 2 (blame target: human vs. robot) between-subjects experiment.
Results show that people evaluate a robot more positively when it
blames itself for collaborative failures, especially, it seems, in the
case of incorrect self-blame. Our findings indicate a need to further
research on effective communication strategies for robots that need
to negotiate collaborative failures without compromising the trust
relationships with its human partner.
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1 INTRODUCTION

With robots steadily moving into human social spaces, human-
robot collaborations increasingly become everyday practice [20]
and the robot’s contribution to collaborative tasks may come with
increased responsibility [17]. The increasingly autonomous and
independent role of robot partners in human-robot collaborations
results in gradual ambiguity of who is responsible for success or
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failure [21]. When robots are fulfilling the role of a social actor,
their communication strategies for how to allocate and negotiate
potential negative collaborative outcomes with their human part-
ners become increasingly important [16]. Trust is essential for good
collaborations in the long run and vulnerable communication (e.g.,
about collaborative failures) is important for the development of
trust [10]. Yet, little research has been conducted on how robots
should communicate information that may harm or repair the trust
relationship in human-robot collaborations [6].

Trust is an important factor for successful human-robot collabo-
rations [17] as it determines people’s willingness to work with the
robot in future endeavors [50]. People’s trust in robots is affected
by robot-related factors [42] including the content of the robot’s
verbal interaction [25]. Given that disagreement and blame attri-
bution is inevitable during interpersonal communication [3, 4], we
need a better understanding of how blame attribution by the robot
may affect trust in human-robot collaborations for a successful
introduction of robots into human social spaces.

Psychology research shows that criticism after failure makes a
person be perceived as more capable, whereas praise after success
results in perceived incapability [48]. Moreover, self-serving bias
tells us that people tend to take credit for success but like to blame
others or the situation in case of failures [33]. This indicates a
potential preference for a robot that is willing to take the blame for
collaborative failure. However, previous HRI works also show that
erroneous robot behaviors (incorrect blame can be seen as such)
negatively impacts trust [42].

Our study aims to provide initial clarification of these incon-
sistent findings and further adds to existing knowledge on blame
assignment in HRI setting by combining blame target with blame
correctness dimension (as previous works have only researched
these two dimensions separately, e.g., [16]). Hence, this study in-
vestigates how blame correctness (correct vs. incorrect) and blame
target (human vs. robot) affects trust in human robot collaboration.
For this, we developed a collaborative game that can be played
by a human-robot team. The human and the robot had to assess
different images, taking turns and subsequently collaboratively,
always aiming at the best team score (i.e., a high ranking). The
robot (in)correctly blamed itself or the participant, when the team
score was ranked after the first session.

2 THEORETICAL BACKGROUND

2.1 Trust in Human-Robot Interaction

Definitions on the concept of trust generally include three compo-
nents [19]: an agent (the truster) who is willing to rely on the actions
of another agent (the trustee) and therefore willingly abandons con-
trol over the outcomes (something at stake). Disputes on the exact
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definition of trust mainly include whether trust is considered to
be a belief, an attitude, an intention, or a behavior [23]. Lee and
See [23] use a framework developed by Fishbein and Ajzen [12] to
combine these different views. In their model, trust affects behavior
as an attitude and the authors propose the following definition of
trust: “the attitude that an agent will help achieve an individual’s
goals in a situation characterized by uncertainty and vulnerability”
[23], p.54. This definition is widely used in empirical studies on
automation [13].

Although trust in human-robot interaction is closely related to
trust in automation, there are two important differences [8]. First,
contrasting general automation, robots have a physical embodi-
ment which enables manipulation of our physical spaces. Second,
while automation is usually designed for a specific task type, ro-
bot applications often aim for a broad range of tasks in a specific
domain. In a formal meta-analysis of empirical studies on trust in
human-robot interaction [17], it was revealed that especially the
characteristics of a robot such as its performance and appearance
are the main influencing factors of trust.

One of the most influential models on trust has been created
by Mayer, Davis, and Schoorman [30] who propose that trust is
dependent on the trustor’s perception of the trustee in terms of
their ability or reliability and integrity or morality. More recent
debates in human-robot interaction research seem to follow a simi-
lar dichotomy of trust (e.g., functional savvy versus social savvy
[14], capacity trust vs moral trust [46]). Trust is strongly mediated
by the robot’s reliability and consistency [7, 14, 17], and higher
numbers of errors lead to decreased trust in a robot’s abilities [35].
However, perceived reliability is not a precondition for positive
integrity evaluation of a robot (i.e., trust in robot’s social savvy
[14]). Yet, people’s development of trust is directly affected by the
appropriateness of cues and feedback [42]. Considering collabo-
rative outcome negotiations including disagreement and blame
attribution as a form of feedback, how will trust in human-robot
collaboration be affected when robots blame their human partner
for negative outcomes?

2.2 Blame Attribution

As robots will increasingly collaborate with humans, it seems in-
evitable that situations will occur in which robots need to have
difficult conversations with humans [16], including situations of dis-
agreement or blame [21]. For example, when situations of risk and
uncertainty occur, humans tend to exhibit a cognitive bias towards
sub-optimal behavior. In these cases it is essential that the robot
partner is able to anticipate this behavior [22] and communicate
accordingly, without damaging the trust relationship [17].

Blame contains a moral judgment that has both a cognitive and
social nature [27]: the cognitive component comprises a person’s
internal attitude regarding another agent’s actions, and the social
component entails a person’s expression of these internal attitudes
in communicative utterances. Blame attribution is the act of holding
the cause of a negative outcome at fault [37]. The social component
of blame attribution involves criticizing the blamed agent which
is perceived as a strong and potentially damaging intervention
[28]. When these so-called face-threatening acts occur, people are
likely to feel threatened, upset or humiliated [15]. Based on the
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Computers As Social Actors (CASA) paradigm [34] and people’s
tendency to anthropomorphize robot agents (e.g., [9, 11]), it is likely
that people also experience discomfort when a robot blames them
for failing at a collaborative task. Yet, given that robots increasingly
engage in social applications [16], performing autonomous tasks
with advancing responsibility [17], it will become inevitable for
robots to engage in difficult conversations including the attribution
of blame to their human partners.

2.3 Hypotheses

Social psychological research shows that, generally, people are
more likely to take credit for success but blame others for failure; a
tendency defined as self serving bias [33]. People do not like to be
blamed in general as such face threatening acts cause discomfort
[15]. Previous research in human-robot interaction shows similar
results indicating that people dislike a robot giving them a negative
evaluation [49] and that people prefer a robot taking the blame for
collaborative failures [16, 20]. Moreover, people give higher trust
evaluations [20] and show more trust related behaviors [45] when
a robot admits to making mistakes. Therefore, we hypothesize that
people trust a robot that blames its human partner less compared
to a robot that blames itself.

Hla: Human blame attribution negatively affects people’s trust in
human-robot collaboration.

Inappropriate cues and feedback by a system lower people’s
evaluations of trust [42]. Moreover, a robot that makes errors leads
to a decrease in trust [35, 41], and a robot attributing blame to
the wrong agent might be perceived as an error. Moreover, people
seem to trust a robot less when it blames its human collaboration
partner for the negative outcome even when it is ambiguous who’s
responsible [20]. Therefore, we hypothesize that incorrect blame
attribution lowers trust as this would be perceived as inappropriate
feedback.

H1b: Incorrect blame attribution negatively affects people’s trust in
human-robot collaboration.

Given that friendliness is an important factor in interpersonal re-
lationships [31] and that people respond similarly to robots as they
do to humans [9, 11, 34], insight in the relationship between friend-
liness and blame attribution is relevant for studying human-robot
collaborations. Previous research shows that people respond nega-
tively to a robot that criticizes them [49] and that people perceive a
robot as more likable when it credits its human partner for success
but takes the blame for failures in collaborative tasks [16, 20]. We
therefore hypothesize that a robot that blames its human partner is
perceived as less friendly compared to a robot that takes the blame
for negative collaborative outcomes.

H2: Human blame attribution negatively affects people’s perception
of robot friendliness in human-robot collaboration, independent of
blame correctness.

People’s readiness to anthropomorphize a robot affects people’s
overall impression of their interactions with that robot. When a
robot is perceived as more humanlike, people empathize more
strongly with it [39]. Moreover, humanlike perceptions of robots
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are related to trust perceptions and willingness to work with a robot
[50], making it valuable to investigate this concept in the context
of the current study. The self serving bias learns us that it is hu-
manlike to blame others for failure [33]. Additionally, previous HRI
research found that people empathize more strongly with a robot
that is programmed with self-serving behaviors [2], which is an
indication of humanization of the robot. We therefore hypothesize
that a robot that blames its human partner is perceived as more
humanlike compared to a robot that blames itself.

H3: Human blame attribution positively affects people’s humanlike
perception of a robot during collaborations, independent of blame
correctness.

Finally, it is important to investigate the effects of blame attribu-
tion by a robot on people’s willingness to collaborate with that robot
in future occasions. Being blamed by a robot negatively impacts
people’s trust evaluations [20] as well as trust behaviors [45] in
human-robot collaborative settings. Additionally, erroneous robots
are trusted less by their human co-workers [35, 41]. Assuming that
incorrect blame might be perceived as an error, such behavior by a
robot might also hurt people’s trust. Given that such broken trust
relations in return negatively affect people’s willingness to work
with a robot co-worker [50], we hypothesize that people are less
willing to collaborate with a robot that blames its human partner
as well as one that attributes blame incorrectly.

H4a: Human blame attribution has a negative effect on people’s will-
ingness to collaborate with a robot.

H4b: Incorrect blame attribution has a negative effect on people’s
willingness to collaborate with a robot.

3 METHOD

To investigate the effect of blame attribution on trust assessments in
human-robot collaboration, we conducted an experiment in which
participants (n = 60) collaboratively played a game with a humanoid
robot in four conditions in a 2 (blame correctness: correct vs. in-
correct) by 2 (blame target: human vs. robot) between subjects
design.

3.1 The Robot and The Wizard

We deployed a SoftBank Robotics Pepper robot in this study. Pepper
is a humanoid robot designed for social human-robot interaction,
for example it analyzes the expressions and voice tones of people it
interacts with [36]. For this experiment, the speech function and
the live camera of Pepper were used in a Wizard of Oz (WoZ) set-
up. Pepper’s preprogrammed autonomous life mode was used to
ensure consistency in the robot’s behavior and to let the robot give
automatic answers to certain (non-experiment related) questions
(e.g., "How old are you?").

The wizard (i.e., the experimenter) sat behind a room divider
(see Figure 1), using a laptop and following a protocol according
to the guidelines of Riek [38]. During the game, she overruled the
automatic speech recognize-response acts with the protocolized
answers to avoid possible speech recognition errors, using Pepper’s
live video and web interface. The robot’s responses followed the
game processes and corresponding participant’s statements.
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3.2 Procedure

The participants were informed about the experimental procedure
by means of an information letter. They were instructed that they
would play a game together with Pepper the robot, competing
against other human-robot teams, to insert a competitive element
to simulate something at stake. After reading the information letter,
participants were told that they could ask questions if something
was unclear. After the participant had read the instructions and
gave their consent, the experimenter took them to the other side
of the room divider (see Figure 1 for the experimental set-up) and
instructed the participant to take a seat next to Pepper so that they
would both face the laptop. Instructions about the collaborative
game were provided on the laptop after the experimenter had left.

We created a game with two rounds using JustiInMind Prototyper
8.7.4 such that failure was predetermined while still maintaining
the illusion for participants to have control over the outcomes. The
instructions explained that the participant would compete against
other human-robot teams and could win a gift card by participating
in a lottery if they made it into the top 3. This was done to create an
environment in which something was at stake, which is necessary
to establish an ideal trust environment [23]. A graphical overview
of the game flow can be found in Figure 2.

Pepper
robot
PartimpanQ

L/

1l

Experimenter

Figure 1: Experimental setup during the game.

The first round of the game was based on Bartneck et al. [1]. The
purpose of this round was to create a competitive and collaborative
setting on which the results displayed in the first ranking could
be based. A sequence of 10 pictures were separately shown on the
laptop with the assignment to count the number of items in each
individual picture. The same images were shown in the same order
for each condition. The images were selected to be neutral and
diverse as to not impact the mood of the participants, which might
influence how they view the robot (see Figure 3). Pepper and the
participant took turns answering these questions, where Pepper
verbally stated its answer. Given that Pepper cannot manipulate a
keyboard, participants were instructed to insert Pepper’s answers.
We instructed the participants that the ranking in the first round
would be based on both the speed and correctness of their answers.
Pepper’s answering speed was calculated as the time between show-
ing the picture and Pepper’s verbal response (and not the time of
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‘ Start ‘

|

‘ Round 1 ‘

!

Ranking 1 (Blame manipulation)
Condition | Blame target Blame correctness
1 Robot Incorrect
2 Robot Correct
3 Human Incorrect
4 Human Correct

‘ Round 2 (Objective trust) ‘

l

‘ Ranking 2 ‘

|

‘ Finish |

Figure 2: Flow of the collaborative game including blame
conditions. The first round was used as a base for the first
ranking. During the first ranking, blame manipulation
took place. During the second round, compliance was used
as an objective trust measure.

(a) An example image of the first
round.

(b) An example image of the second
round.

Figure 3: Example images displayed during the first and
second game round.

inserting the answer on the keyboard). Pepper’s performance in
terms of correctness and answering speed was equal for all condi-
tions. At the end of this round, the laptop displayed their ranking
which was always the sixth place (see Figure 4). The ranking screens
only differed on whether the participant or the robot had a higher
score (i.e., "player 2" and "player 1" were swapped, depending on the
condition). Blame manipulation took place during this first ranking
phase (see Section 3.3), directly after the first round, to make it
seem like it was based on the resulting scores of the first round.
Contrary to the first round, Pepper and the participant were in-
structed to negotiate their final answer in the second round conform
the experimental setup from Gaudiello et al. [14]. Moreover, the
game setting was more challenging in this round. Participants were
shown five pictures with a nearly 50-50 distribution of black and
white (as other colors might be susceptible to color blindness) on
the laptop with the instruction to insert which of the two colors was
predominant (see Figure 3). The same images were shown in the
same order for each condition. At the display of each picture and
after some consideration, Pepper would ask the participants "What
do you think?". Participants were instructed to include the words
"black" or "white" in their answers. These instructions were given
to further give participants the impression that Pepper was acting
autonomously, even though the Wizard would in fact interpret the
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YOUR RESULTS:

6th place

63% of the teams was faster than your team

of the teams was faster than player 2
of the teams was faster than player 1

Both players had an accuracy rate of >70% correct, well done!

(a) A screenshot of the first ranking for condition 2
and 3 (see Figure 1) .

YOUR RESULTS:

6th place

63% of the teams was faster than your team

of the teams was faster than player 1
of the teams was faster than player 2

Both players had an accuracy rate of >70% correct, well done!

(b) A screenshot of the first ranking for condition 1
and 4 (see Figure 1) .

Figure 4: The screenshots of the first ranking,.

participants responses. Pepper then replied with "I am thinking [...]"
where [...] was either black or white. Following Gaudiello et al. [14],
Pepper’s response always contradicted the participant’s answer,
except for one case where it was very obvious which colour was
predominant (i.e., the third image of the second round). This ex-
ception was introduced to not raise suspicion that the robot would
always contradict the participant. After the robot had stated its
answer, it was up to the participant to insert their final answer.
This could be their original answer or the answer that Pepper had
given. Instructions explained that the ranking of the second round
only depended on the correct number of answers. By leaving the
option for participants to either follow the robot’s contradicting
answer or inserting their own original answer, we attempted to
measure objective trust, based on previous work (e.g., [14]). Hence,
the goal of this second round was to measure objective trust by
counting the participant’s compliance to the robot’s suggestion for
the correct answer. The second ranking (after the second round)
only showed the team rank, which was always the fourth in each
condition. Final instructions on the laptop told the participant to
go back to the experimenter.
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Back with the experimenter, participants completed a question-
naire to evaluate their collaborative experience, which was done
on a different laptop on the other side of the room divider ensuring
Pepper was out of sight. After completing the questionnaire, par-
ticipants were debriefed that the rankings at the end of the game
rounds were manipulated and that they could enter a lottery instead
to win the gift card.

3.3 Manipulation

The rankings in the two rounds of the game were used to create
the feeling that there was something at stake, but we also used
the ranking after the first round to establish a situation in which
Pepper could attribute blame. We manipulated the ranking of the
first round by showing every participant that they ended in the
sixth place. The ranking screen included information about both
the total team score (indicating that other teams were faster on
average) as well as the team members’ individual scores showing
that either the participant or Pepper performed better at the game
(see Figure 4). This ranking screen was used to manipulate the
four conditions of blame attribution based on previous research
[8, 20] (see Figure 2),: (1) Pepper incorrectly blames itself’; (2) Pepper
correctly blames itself’; (3) Pepper incorrectly blames participant;
and (4) Pepper correctly blames participant. In both conditions of
robot-blame, Pepper would say "Oh no, we came in sixth. I think
Iam doing a bad job". In both conditions of human-blame, Pepper
would say "On no, we came in sixth. I think you are doing a bad job".

3.4 Measurements

To measure trust, we collected both objective and subjective data.
Objective trust was measured, following procedures in previous
research [14, 41], as a conformation score ranking from 0 to 1
by calculating the number of times participants conformed to the
contradicting answer of Pepper during the second game round
divided by the total number of times they could conform (i.e., the
four images in which the robot disagreed with the participant’s
answer). Subjective trust was divided in performance trust and
social trust. Performance trust was measured with the reliability
scale of Madsen and Gregor [26] and social trust was measured
with the trustworthiness scale of McCroskey and Teven [32] which
were both deemed reliable (i.e., « = .82 and a = .68 respectively).
Participants’ perception of Pepper’s friendliness was measured using
the scale of Groom et al. [16] (a = .84), and their perception of
Pepper’s humanlikeness was measured using the scale of Ho and
MacDorman [18] (& = .70). Future collaboration was measured using
the willingness to collaborate scale by You & Robert Jr [50] (& = .
83). The survey ended with questions regarding basic demographics
and an indication of knowledge of and experience with the robotics
domain.

3.5 Participants

A total of 60 participants (27 female, 32 male, 1 other) were recruited
on a university campus, with 15 participants assigned to each condi-
tion (see Figure 2). Participants’ age ranged from 18 to 27 years (M
= 21,60, (SD = 1.73). All participants had very limited to no previous
experience with robots in general (M = 1.65, SD = 0.76, using a
5-point scale from 1 = no experience to 5 = a lot of experience), and
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only three participants indicated having seen Pepper in a shopping
mall. By entering in a lottery after participating, they could win a
gift card worth 10 Euros (two gift cards in total).

4 RESULTS

For a graphical overview of our results, see Figure 5. To test our
hypotheses, we ran a series of two-way ANOVAs with blame cor-
rectness (correct vs. incorrect) and blame target (human vs. robot)
as independent variables. Tukey’s correction was used for the pair-
wise comparisons. Normality checks and Levene’s test were carried
out and the assumptions were met.

4.1 Hypothesis 1: Trust

First, we observed a trend for blame target (F(3,1) = 3.45, p = .068,
n? = .058) on objective trust, but no significant effect for blame
correctness (F(3,1) = .25, p = .619, % = .004) nor for their interaction
effect (F(3,1) = 1.73, p = .194, n? = .030). This suggests that blame
attribution by a robot does not influence whether people objectively
trust that robot, while the data shows a trend where participants
seem more likely to do so when it blames itself (see Figure 5(a)).

Second, we observed no significant effect for blame target (F(3,1)
= 2.31, p = .135, 5 = .040) nor for blame correctness (F(3,1) = 0.03,
p = .858, n? = .001) on subjective performance trust nor for their
interaction effect (F(3,1) = 0.35, p = .556, 5> = .006). This indicates
that blame attribution by a robot does not influence people’s trust
in that robot’s performance reliability (see Figure 5(b)).

Third, we observed a significant effect for blame target (F(3,1)
= 8.71, p = .005, 172 = .135) on subjective social trust, but not for
blame correctness (F(3,1) = 0.49, p = .487, 5% = .009) nor for their
interaction effect (F(3,1) = 0.09, p = .767, 5 = .002). This suggests
that only whom a robot blames during human robot collaboration
affects people’s perceptions of that robot’s trustworthiness (see
Figure 5(c)).

Together, these results only partially supported Hia stating that
people would trust a robot less when it blames a human collabora-
tor, but no support was found for H1b stating that people would
trust a robot less when it incorrectly attributes blame during a
collaborative task.

4.2 Hypothesis 2: Friendliness

We observed a significant effect for blame target (F(3,1) = 19.92, p <
.001, n? = .262) on friendliness, but not for blame correctness (F(3,1)
=0.23, p = .638, 772 =.004) while their interaction effect showed a
trend (F(3,1) = 3.81, p = .056, ? = .064). This indicates that whom
a robot blames substantially affects how friendly people perceive
that robot, specifically, a robot that blames itself is perceived as
friendlier than a robot that blames its human partner. Meanwhile,
the data shows a trend where participants seem to perceive a robot
as even more friendly when it incorrectly blames itself (see Figure
5(d)). This result supports H2 stating that when a robot blames its
human collaborator it would be perceived as less friendly during a
collaborative task.

4.3 Hypothesis 3: Humanlikeness

We observed no significant effect for blame target (F(3,1) = 2.54,
p = .116, n* = .043) nor for blame correctness (F(3,1) = 1.25, p =
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Figure 5: Two-way ANOVA results for blame correctness (correct vs. incorrect) and blame target (human vs. robot) on (a)
objective trust, (b) subjective performance trust, (c) subjective social trust, (d) friendliness, (¢) humanlikeness, and (f)
willingness to collaborate in the future.

268, % = .022) on humanlikeness while their interaction effect was
significant (F(3,1) = 4.51, p = .038, n? = .075). This suggests an
interaction effect of blame target and blame correctness indicating
that people perceive a robot as more humanlike mostly when it
attributes correct blame to a human or incorrect blame to itself
(see Figure 5(e)). This result contradicts H3 stating that a robot that
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blames others for collaborative failures would be perceived as more
humanlike.

4.4 Hypothesis 4: Future Collaboration

We observed a significant effect for blame target (F(3,1) = 6.76, p
=.012, n% = .108) on willingness to collaborate in the future, but no
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significant effect for blame correctness (F(3,1) = 1.76, p = .190, 5* =
.030) nor for their interaction effect (F(3,1) = 0.32, p = .577, % = .006).
This indicates that only whom a robot blames substantially affects
people’s willingness to collaborate with that robot in the future (see
Figure 5(f)). This result supported H4a stating that people would
be less willing to collaborate with a robot that blames its human
partner, but no support was found for H4b stating that people
would be less willing to collaborate with a robot that attributes
blame incorrectly.

4.5 Other Observations

In addition to the data collected, we observed some noteworthy
reactions from participants to Pepper’s blame statements. In both
conditions in which Pepper blamed itself for the collaborative fail-
ure (either correctly or incorrectly), a few participants expressed
that they felt sorry for the robot (e.g., saying “awww”), while most
others seemed to ignore Pepper’s blame statement. However, in
both conditions in which Pepper blamed the participant, almost
all of them responded indignant. Another notable observation was
participants’ general trust in the robots capabilities. During the
debriefing, some participants explained that they believed that the
robot had some kind of sensor to count the objects or calculate the
predominance of colors in the pictures shown during the game.

5 GENERAL DISCUSSION

This paper presents a study on the effect of blame attribution in
human-robot interaction. In a collaborative game setting, partici-
pants evaluated their robot partner in one of four conditions with
blame correctness (correct vs. incorrect) and blame target (human
vs. robot) as independent variables. We found that people evaluate
arobot that blames itself for collaborative failures as more trustwor-
thy and friendlier, and people are more willing to collaborate with
such a robot again in the future. A significant interaction effect of
humanlikeness as well as a trend in the data for such an interaction
effect on friendliness seem to suggest that these evaluations are
even more positive when a robot incorrectly blames itself.
Previous research in HRI has mainly focused on humans attribut-
ing blame to a robot (e.g., [21], [47]), or just the effect of a robot
attributing blame regardless of whether it is correct or not (e.g., [20],
[24]). Our study has enriched these previous findings by system-
atically studying the effects of a robot blaming its human partner
and whether this was done correctly. We found that a robot that
blames its human partner for collaborative failure negatively affects
human-robot collaborations, even when this blame is attributed cor-
rectly. Earlier findings in HRI research similarly found that people
dislike a robot that blames them [16] and prefer that a robot takes
responsibility for failures [20, 45]. Other studies found that people
disapprove of a robot that provides negative feedback [21] and per-
ceive such a robot as less competent [49]. Such results, including
ours, can be explained by the self serving bias [33], which is the
tendency that people will likely take credit for success but prefer to
blame others for failure. However, this phenomenon is also depen-
dent on the personality of the human, including emotional stability,
self esteem and self efficacy, and the amount of control that a person
generally thinks he/she has over the outcomes of his/her life (i.e.,
locus of control) [40]. Future research should therefore take people’s
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personality into account when investigating robot communication
within human-robot teamwork.

Given that disagreement and blame attribution is inevitable dur-
ing interpersonal communication [3, 4], our results indicate that
we need to design appropriate communication strategies for robots
that negotiate potentially negative collaborative outcomes without
compromising the trust relationship with their human partners.
This is especially important in situations where robots have in-
creased autonomy, which likely only amplifies people’s criticism
to the robot’s negative feedback. Moreover, provided explanations
for that kind of feedback by the robot do not mitigate people’s
condemnation [21]. Future research should further investigate dif-
ferent communication strategies for robots to attribute errors or
collaborative failures so that trust develops towards the appropriate
level (i.e., trust calibration [6]). Moreover, in our experiment, blame
served no purpose for the actual performance. It would be interest-
ing to test human-robot collaboration where the communication of
blame could be useful for the improvement of the outcomes (e.g.,
by providing feedback and/or emotional support to participants).

Perceived friendliness is related to interpersonal relationships
[31] and therefore also to (human-robot) collaboration. The design
of the second round of our experiment could have affected the
friendliness results. The fact that the robot was generally contra-
dicting the participant could have negatively affected friendliness
in general, but perhaps even more in the incorrect human blame
condition. Future research in which the robot expresses more com-
pliant behaviour is needed to get better insights in the effect of
blame on perceived friendliness.

Except for the interaction effect on humanlikeness and a trend
in the data for such an interaction effect on friendliness, we found
no significant effects for blame correctness on any of our measures.
This surprising result contradicts previous research showing that
erroneous robot behaviors negatively influence trust [20, 35, 41, 45]
and may indirectly decrease willingness to collaborate [50]. Our
lack of significance could be explained by the specific setting of
our experiment. We speculate that people might experience a fun
element when a robot blames the wrong target for losing the game.
For example, Short et al. [44] found that children experience a
fun element when a robot expresses cheating behaviour. Future
research should further investigate blame correctness under more
serious circumstances with higher risks or a larger negative impact
of the failure for the human collaborator.

Additionally, there was a lack of significance for the effect of
blame attribution on subjective performance trust, while previous
HRI research found negative effects for performance trust caused
by blame attribution specifically [16, 20] or unexpected negative
behaviors more generally [41, 49]. Our contradicting findings could
be explained by our observation that participants assumed that the
robot’s sensors were capable of counting the number of objects or
calculating the predominance of colors in the presented pictures
during the game rounds. Previous research as shown that people are
more willing to trust a robot that performs a functional task but less
so when it is performing a social task [14]. Future research on robot
blame attribution should further explore the effects of the nature of
the collaborative task on trust assessments. Another direction for
future research, again, could be to increase the severity of the risk
at stake during the collaborative task to observe any significant
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effects on subjective performance trust. For example, van Waveren
et al. [47] found that participants in a robot-collaboration task show
less performance trust when robots experience low-impact failures,
compared to high-impact and no failures. Perhaps blame attribution
effects on performance trust would be different when there was
more at stake.

Another contradicting result we found was for humanlikeness.
Based on previous findings on the self serving bias phenomenon
[2, 33] we hypothesized that a robot that blames others would be
perceived as more humanlike. Our results indicate that this hypoth-
esis only holds when a robot correctly (but not incorrectly) blames
its human partner. It could be that people expect robots to be more
honest than humans and should never attribute incorrect blame.
Also, in our research, the participant could clearly conclude from
the ranking screen (see Figure 4) when the robot was incorrectly
attributing blame (i.e., lying). Indeed, previous research points to po-
tentially different normative standards for human and robot agents
[5, 29], indicating a need for further research on social norms in
the context of human-robot interaction.

5.1 Limitations

This study was conducted using a relatively small sample of uni-
versity students, which could perhaps account for the lack of in-
teraction effects. Although using student participants is common
practice in experimental studies [43], replications in larger, more
varied target groups are necessary to further validate our findings.
Furthermore, our participants were exposed to one blame attribu-
tion moment during their collaborative game with the robot. While
our results are in line with previous studies with multiple blame
attributions (e.g., [16, 20]), future work could explore the influence
of a sequence of blame attributions on human-robot collaborations
over a longer period of time. Also, we observed that participants
reacted more strongly to ‘human-blame’ compared to ‘robot-blame’
(as stated in section 4.5). Directly asking participants about the
blame assignment would have more rigorously confirmed our ma-
nipulation. This should therefore be included in future research as
well, as well as no-blame or even praise as additional conditions.
Additionally, in our study performance did not matter for the out-
come of the game. However, it could be that (the difference between
the participant and) the robot’s performance (e.g., speed and accu-
racy) influenced the participant’s view of the robot and its blame
statements. For future research, measuring participant’s subjective
perception on the robot’s performance as well as objective differ-
ences in the participant’s and robot’s reaction time and accuracy
could provide additional insights on this topic. Finally, we reported
non-significant results on two out of three trust measures. Previ-
ous research indeed indicates that people pose unconditional trust
in robots by heavily relying on a robot’s performance reliability
[14] and even complying with a faulty robot [41]. This trend po-
tentially applied to our participants as well given their statements
during debriefing about the robot’s sensory capacities and their
high objective trust. Our high scores on objective trust are in line
with Gaudiello et al. [14], who found that participants conformed
more to the robot’s answers in functional tasks than in social tasks.
Future research on the effects of blame statements in social tasks
could provide interesting results. Also, future studies focusing on

147

HRI 21, March 8-11, 2021, Boulder, CO, USA

trust may need to reconsider compliance as an objective measure,
which is a common measure for subjective performance trust (e.g.,
[14, 41]). While most participants stated they believed that the robot
had sensors that could count the objects in the presented pictures or
scan for color dominance, some other participants indicated during
debriefing that they aimed to balance between their own and the
robot’s answers. This observation reveals that the presumed com-
pliance may have partially been caused by equal treatment or social
desirability effects rather than a sole trust in the robot’s perfor-
mance reliability. Additionally, increasing the number of questions
as well as varying the robot’s agreement level with the participant
could potentially lead to different findings on trust, which should
be further investigated in future research.

5.2 Conclusion

With the increase of human-robot collaborations in everyday life,
difficult conversation topics (such as blame attributions), will be-
come inevitable. This might influence people’s trust in their robot
partner, which is a vital aspect for successful human-robot col-
laborations. This study has investigated the effect of blame target
(human vs robot) and blame correctness (incorrect vs. correct) by a
robot on people’s evaluation of that robot in a collaborative game
setting. Results show that people evaluate a robot more positively
when it blames itself for collaborative failures, and this seems even
more so when a robot incorrectly blames itself. These findings
indicate a need to further explore effective communication strate-
gies for robots that need to negotiate collaborative failures without
compromising the trust relationships with its human partner.
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