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ABSTRACT

There is a lack of empirical evidence on software ecosystem health

metrics, and a need for operationalizable metrics that describe soft-

ware ecosystem characteristics. This study unveils a new approach

for measuring technical variety concisely. Studies show that a high

variety opens up new opportunities and thus, better niche creation,

and ultimately, improves software ecosystem health. Four different

ecosystems are evaluated, and compared. Variety is measured in

relation to robustness, and productivity metrics of the ecosystem to

uncover the influence of technical variety on software ecosystems.

Technical variety indicates a positive correlation with robustness,

however acceptance of this statement is not confirmed with cer-

tainty due to a weak relation. Furthermore, significant relations

indicate differences between ecosystem types.
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1 INTRODUCTION

For developers, professionals, entrepreneurs, architects, and stake-

holders it is a crucial strategic decision in what programming lan-

guage their software will be developed. A programming language

can be considered as an ecosystem with actors that interact with

each other by exchanging libraries, repositories, code chunks, and

other information. Considering programming as such opens up

evaluating programming languages from an ecosystemic perspec-

tive. Jansen proposed a framework for evaluating health of software

ecosystems: Open Source EcosystemHealth Operationalization (OS-

EHO) [11]. Health of a software ecosystem is the longevity and a

propensity for growth [15]. Jansen presents a number of metrics
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divided into the three pillars: Robustness, Productivity, and Niche

Creation, based on Iansiti’s et al’s and den Hartig et al’s works on

business ecosystems [10, 12].

In 2010, Dhungana et al. made a comparison, between biological

ecosystems and software ecosystems. They state that for software

ecosystems, similarly to biological ecosystems, diversity is impor-

tant for its sustainability [4]. For software ecosystems, it is consid-

ered that diversity is beneficial for the ecosystem [11]. In software

ecosystem research, diversity is expressed as variety, hence why

the term technical variety is used hereafter.

Technical variety is interpreted as “the degree to which projects

support different technologies” [15]. Higher technical variety opens

up new opportunities and thus, better niche creation, and ulti-

mately, improved software ecosystem health [11]. A programming

language that can be applied to a high variety of different applica-

tions becomes a valuable asset.

OSEHO solely mentions metrics and methods for gathering data

for that metric on a high-level. Concise units and methods for gath-

ering that data are, mostly, still lacking. Jansen calls for studies

on data-gathering to showcase how data can be gathered. Cur-

rently, there is a lack of empirical evidence on health inducing

characteristics of software ecosystems [9]. There is a need for a

set of operationalizable metrics that describe software ecosystem

characteristics.

This research proposes a new approach for measuring techni-

cal variety with a concise method on how data can be gathered.

Herewith, developers can make better-informed decisions on what

software ecosystem to invest in, and software vendors can govern

their software ecosystem better assuming a large correlation be-

tween robustness and productivity is found. Technical variety is

compared with metrics for productivity and robustness to validate

the influence of technical variety on software ecosystem health.

The number of active contributors is considered to be the most

important indicator of software ecosystem health [11, 13]. The

number of contributions indicates the productivity of the software

ecosystem [11]. When assuming OSEHO’s principles that imply

the three pillars are associated, a high technical variety will lead to

improved software ecosystem health.

Firstly, an introduction to the research method to uncover the

relation between the conceptual, operational, and quantitative level

of the research is made.Where Section 3 analyzes empirical research

on software ecosystem health. Section 4 identifies variables on

how the method is reacting to technical variety, robustness, and

productivity in addressing the impact of technical variety. Results,

addressed in section 5 show a positive association with robustness,

rejected because of poor relationship. New significant relationships

suggest differences of ecosystem types. Section 6 summarizes the

proposed approach, defends its novelty, and provides guidance for

future studies. Finally, section 7 draws conclusions on the proposed
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method, defends its novelty, and provides innovative approaches

for future research in open source software ecosystems.

2 RESEARCH METHOD

The goal of the research is to uncover the relation between technical

variety and software ecosystem health. Two research questions are

operationalized. An overview of the research is described via a

Goal-Question-Metric diagram in Figure 1.

Quantitative Level

Operational Level

Conceptual Level

What are differences between the
technical variety of general purpose
programming languages and domain

specific purpose programming languages?

What are the influences of technical
variety on software ecosystem health?

Purpose 
Programming
Languages

general versus
domain specific

The goal of this research is to uncover the relation between technical variety and
software ecosystem health.

Niche creation

Software Ecosystem Health

Active Contributors

number of active
Contributors

Robustness

Technical Variety

number of unique
topics

Active Contributors

number of commits

Productivity Niche Creation

Figure 1: Goal, question and metric model in the context of

the study.

To uncover a relation between technical variety and software

ecosystem health, technical variety is compared with two OSEHO

metrics. One of the metrics belongs to the pillar robustness, the

other one to productivity.

RQ 1:What are the influences of technical variety on software ecosys-

tem health?

As a higher Technical Variety implies better opportunities for the

emergence of niches, it should have a positive influence on software

ecosystem health.

Two hypotheses are extracted from this research question. The

first hypothesis aims to verify a relationship between robustness

and technical variety. The second hypothesis focuses on a relation-

ship between productivity and technical variety.

• Hypothesis 1: Technical variety within a software ecosystem,

has a positive effect on the robustness of a software ecosystem.

• Hypothesis 2: Technical variety within a software ecosystem,

has a positive effect on the productivity of a software ecosystem.

The second research question aims to uncover significant differ-

ences in technical variety between programming languages.

RQ 2: What are the differences between the technical variety of

general-purpose programming languages and domain-specific pro-

gramming languages?

From the second research question, one hypothesis is extracted.

The technical variety for both general-purpose and domain-specific

programming languages is measured to uncover significant differ-

ences. Assumingly, general-purpose programming languages know

a wider array of applications.

• Hypothesis 3: general-purpose programming languages, have

a significantly higher technical variety within a software ecosys-

tem, opposed to domain-specific programming languages.

3 LITERATURE STUDY

The most cited definition for a software ecosystem is built upon

prior definitions of software ecosystems and consists out of three

core elements: actors, organizations and businesses; networks &

social or business ecosystems; and software [12]. Through part-

nerships, software companies increasingly open up their software

ecosystems to external parties.

The emerging community of external parties on a software

ecosystem generally consist of keystones, niche players, value-

added re-sellers and customers [8]. Lucassen et al. state software

ecosystemhealth entails “the longevity and a propensity for growth” [15].

More commonly, an ecosystem is considered healthy when all ac-

tors’ are satisfied [16]. The three pillars, productivity, robustness

and niche creation function as the foundation for OSEHO have their

origins in business strategy literature [12]. Iansiti et al. propose

the success of a business strategy is dependent on external factors,

understanding the ecosystem is a prerequisite for designing and

deploying successful business strategies [10]. Productivity concerns

the products and services that are created by the ecosystem versus

the input that is put into the software ecosystem. The robustness

of a software ecosystem explains to what degree the ecosystem

can endure interfering factors. Niche creation explains the niche

opportunities emerging from the software ecosystem. Important

to note is that these niche opportunities are not always opportuni-

ties for financial gain, the opportunities can also be different. Any

metric in one of the three silos of OSEHO is inherently related to

other metrics within that same silo because they describe the same

concept. Cross-silo relations, on the other hand, are theoretically

unrelated.

Jansen’s OSEHO framework is the most cited software ecosys-

tem health operationalization [11], other initiatives that capture

characteristics of software ecosystems exist. Franco-Bedoya et al.

introduced a Quality model for open source software ecosystems

(QuESo) [5]. A model developed by gathering user-friendly and op-

erationalizable quality metrics from literature. The model is set-up

top-down with three dimensions: platform-related characteristics,

community-related characteristics and ecosystem network char-

acteristics. In total, five characteristics, 14 sub-characteristics, and

68 metrics are divided over the three dimensions. Compared to

OSEHO, QuESo emphasizes more on the potential for operational-

ization of metrics and it provides a more complete set of metrics.

On the other hand, it lies less emphasis on relating actual software

ecosystems or literature to the model. Hereby, QueSo can be con-

sidered as a comprehensive collection and categorization of metrics

without a theoretical explanation. Several measures for variety are

mentioned, technical variety, however, is not represented in QuESo.

Instead, they state the variety of products offered by partners in

the ecosystem. A measure not operationalizable to open source pro-

gramming languages due to the number of written repositories, the

scatter of data sources and the constraint that not all repositories

are publicly available. Except for measures stated in OSEHO and

QuESo [12, 15, 20], no literature was found that mentions any new

metrics for technical variety.
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The variety between programming languages is expected to dif-

fer between domain-specific programming languages and general-

purpose programming languages. Whereas, domain-specific pro-

gramming languages are specialized in a particular domain. general-

purpose programming languages can be utilized in a plethora of

domains. The limited scope of domain-specific programming lan-

guages allows for better learnability and thus enables domain ex-

perts unrelated to the computing science field to comprehend the

language [1]. The extended comprehension allows domain experts

to co-develop so the application domain is better enabled to leverage

computing power [14]. Some disadvantages of a smaller scope are

its limited applicability [14],and a loss of processor efficiency [14].

4 RESEARCH EXECUTION

To capture technical variety, productivity, and robustness, GitHub1

repositories are scraped. GitHub, a popular online tool for software

development and version control offers publicly accessible APIs.

Researchers have used GitHub as a valuable resource for both quan-

titative [6, 21, 22] and qualitative [2, 3, 17, 18] data. The tool has

been gaining popularity under developers both as a collaborative

platform as an alternative repository for software. Recently, GitHub

reached the milestone of having 100 million repositories2. On Jan-

uary tenth, 2020, GitHub held 17.30% market share in the source

code management domain3.

Technical variety is interpreted as the degree to which projects

support different technologies [15]. To quantify technical variety,

the number of unique technologies that are mentioned in the de-

scriptions of repositories in that programming language ecosystem

is taken, see Table 1, and filtered trough a unique glossary of topics.

The unique glossary of technical topics is acquired by retrieving the

1000 most used topics (in GitHub) for each of the 20 most popular

programming languages according to the Tiobe index. See in Table

2 for the Tiobe index. This results in a glossary of 10284 unique

technical topics, after duplicates are removed.

For hypothesis 1 and 2, technical variety is the independent

variable. Based on that technical variety, the relations with robust-

ness and productivity are explored. Robustness in hypothesis 1 is

expressed as active contributors. It is quantified as the number of de-

velopers that made commits in a repository in 2019, see Table 1.For

hypothesis 2,Productivity of a programming language ecosystem is

expressed as the Number of Commits. Commits indicate the num-

ber of code changes that were published in the repository. Some

programming languages have been used for a longer period. To

make the number of commits comparable between programming

language ecosystems, only the commits for 2019 are compared,

see Table 1. It could be argued that lines of code is a better met-

ric to evaluate productivity, however, as different programming

languages use a different syntax, the value of lines of code might

vary. Which can result in a skewed description of productivity

efforts. In hypothesis 3, the programming language ecosystems un-

der investigation are categorized according to their purpose; either

general-purpose or domain-specific, see Table 1. For comparison,

programming languages are grouped in these two categories.

1https://www.github.com
2https://github.blog/2018-11-08-100m-repos/
3https://www.datanyze.com/market-share/source code-management/github-market-
share

Table 1: Overview of variables per hypothesis.

Hypothesis Independent Dependent Metric Type

1 Technical Variety # Unique topics per repo Interval

Robustness # Contributors in 2019 per repo Interval

2 Technical Variety # Unique topics per repo Interval

Productivity # Commits in 2019 Interval

3 Technical Variety # Unique topics per repo Interval

Language Type General-purpose r Domain-specific Nominal

4.1 Selection of Programming Language
Ecosystems

The 20 most popular programming languages, according to the

tiobe index of January 2020 4, are used to make a preliminary se-

lection of programming language ecosystems under investigation.

Then, it is determined whether the languages are domain-specific

or general-purpose. A programming language is considered to

be domain-specific when it matches van Deursen et al.’s defini-

tion: “A domain-specific language is a small, usually declarative,

language that offers expressive power focused on a particular problem

domain.” If a language does not match that description it is consid-

ered general-purpose, in the context of the research. See Table 2

for an overview of all languages.

Out of these 20 programming languages, four have been selected

for investigation. Because domain-specific programming languages

naturally rule out a large group of potential users due to its limited

scope, domain-specific programming languages are less popular,

as seen in Table 2. Expectedly, differences in technical variety are

the biggest between the least popular and the most popular pro-

gramming languages and general-purpose programming languages

versus domain-specific programming languages. Therefore, the two

most popular general-purpose programming languages and the two

least popular domain-specific programming languages are selected.

Respectively, Java & Python and R & Matlab. These programming

languages are used for analysis. Note that Tiobe’s second most

popular language C is not selected because Java and C bare both

multi-paradigm languages. Furthermore, Java is part of “the C fam-

ily of languages”. What this means, principally, is that Java is one of

a number of languages that inherit C’s straightforward, clean, and

fairly elegant syntax. Due to these similarities we chose the next

programming language to potentially, detect more diverse results.

R, Matlab, Java, and Python, can all be used for statistical computing,

but are highly varying languages in terms of applicability. We

have selected these languages based on convenience sampling and

as future work aim to study a larger set of languages ranked by

popularity. Python and Java are general-purpose languages with

more diverse applications. They can be used in a variety of domains

such as embedded systems, enterprise applications, web servers, etc.

Python’s popularity is at a steady increase, whilst Java’s popularity

has steadily been decreasing for over a decade, excluding a peak in

2015 4.

R and Matlab are developed specifically for statistical comput-

ing and have a more narrow field of application. Popularity for

both languages peaked in 2017. Compared to R, Matlab’s rise of

popularity has been more gradual 4. We hypothesize that the two

general-purpose programming languages will have higher technical

variety than the two domain-specific programming languages.

4https://www.tiobe.com/tiobe-index/
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Table 2: Programming language shortlist selection criteria

Tiobe Index Rank Programming Language general-purpose
Domain

Specific

1 Java �

2 C �

3 Python �

4 C++ �

5 C# �

6 Visual Basic .NET �

7 JavaScript �

8 PHP �

9 Swift �

10 SQL �

11 Ruby �

12 Delphi/Object Pascal �

13 Objective-C �

14 Go �

15 Assembly language �

16 Visual Basic �

17 D �

18 R �

19 Perl �

20 MATLAB �

4.2 Data Collection

The data-gathering objective of this study is to acquire a set of

packages that are being developed, with respect to popularity,

for each programming language ecosystem in question, through

GitHub. Repositories are the storage locations where software

projects are stored and retrieved. For the programming languages

Python, Java, R, and Matlab 1000 repositories are scraped, which

results in a total of 4000 repositories. Data from these repositories

is obtained via GitHub’s search API. For the programming lan-

guages in question, the repositories are sorted by popularity, and

the most popular repositories are scraped. Popularity is measured

in terms of GitHub’s stars 5. The API is accessed through HTTPS

via https://api.github.com.

• Technical variety is constructed through a glossary of top-

ics. For each repository, matches between words in the de-

scription and the glossary of topics are sought. All referrals

to the parent programming language name are removed, and

multiple mentions of a topic are processed as one mention.

• TheCommits are gathered per repository, throughGitHub’s

search API.

• The number of Active contributors is seen as people who

contribute to the code base of the repository. An active con-

tributor is defined as a contributor who has made a commit

to the repository in 2019. More specifically, the number of

active contributors is the number of unique contributors

in 2019. Due to GitHub’s search API’s rate limits, the num-

ber of active contributors is obtained with the web-scraper

“Data Miner”6. On the contributor overview page of a repos-

itory, a range of dates can be set. Hereby, the contributors

5https://help.github.com/en/github/getting-started-with-github/saving-repositories-
with-stars
6https://data-miner.io/

that were active in that period are then displayed. The date

range can be specified in JQuery selectors. When the top

1000 repositories per language were gathered, the URLs of

these repositories were also scraped. The web scraper evalu-

ates the web page’s content by evaluating JQuery selectors

matching the selector.

4.3 Data Preparation

To transform the raw data acquired in the previous step, minor

data cleaning and construction of new attributes is performed. The

following data transformations are executed:

(1) A new attribute was created, which transforms repository

URLs, to a new list of URLs that can be used as input to the

web-scraper.

(2) The number of active contributors included a ’#’-prefix. This

is simply removed.

(3) Empty values for active contributors are changed to a nu-

meric value of zero.

(4) Duplicate values in the glossary of topics are removed.

(5) Natural language in descriptions is formatted for interpreta-

tion.

(6) Referrals to the parent language are removed.

However to interpret, and analyze technical variety a few transfor-

mations are performed. Five quick transformations need attention,

data cleaning involves the following steps:

(1) Stripping any extra white space.

(2) Transforming everything to lowercase.

(3) Remove numbers.

(4) Remove punctuation, but keep intra-word-contractions, and

preserve intra-word-dashes.

(5) Remove stop words.

No additional Data Preparation is necessary as GitHub API’s re-

turn JSON data, which returns data in the form of attribute-value

pairs. The necessary values are extracted through a JavaScript web

application, written specifically for this research. The source code

has been made publicly available7.

4.4 Data-gathering Limitations

GitHub’s API is designed to return results on a single repository,

which limits research efforts in two ways: One being that a search

limit of 1000 returns per call is maintained, hence why only the top

1000 repositories are retrieved. Secondly, to acquire unique active

contributors in 2019, all commits of the last year need evaluation,

where some repositories exceed 1000 commits. Hence, the number

of active contributors for that repository could not be evaluated.

To overcome the incompleteness of the data, a web-scraper that

takes a user interface approach is used. The data-miner maintains a

monthly rate limit of 500 URLs, which is not sufficient for gathering

the active contributors of the top 1000 repositories per program-

ming language. However, a subscription plan could be purchased to

up this limit. Finally, the number of repositories that have specified

topics is inconsistent across the programming languages. Remov-

ing repositories without topic specification would decrease the

7https://github.com/peirstom/githubScraper
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number of repositories under investigation drastically, from 1000

repositories per language to 210 repositories per language.

4.5 Reproducibility

To allow researchers to reproduce the data-gathering steps, promote

reuse and improve transparency, the source code for accessing

GitHub’s API is made publicly available on GitHub7. The source

code contains elaborate setup instructions.

5 RESULTS

Section 5.1 analyzes the differences between general-purpose lan-

guages and domain-specific languages to gain a better understand-

ing between them. Section 5.2, on technical variety aims to anal-

yse the relation between technical variety, and the programming

language types; general-purpose languages, and domain-specific

languages. Section 5.3, on OSEHO aims to analyze if significant fac-

tors such as contributors, or the number of commits to a repository

influence technical variety.

5.1 General-Purpose vs Domain-Specific
Languages

The mentioned topics explain a programming language’s DNA. Fre-

quently mentioned topics indicate there has been more productivity

related to these topics. Thus, the most popular topics indicate the

main application of that programming language ecosystem. The

most popular topics are identified by checking whether there are

topics with significantly more occurrences than other topics.

Figure 2: Top 20 topics per programming languagewith their

relative frequencies.

General-Purpose Languages; (Java & Python)

When looking at technical variety data for Java, it becomes apparent

that android is, by far, the most used topic, as can be seen in Figure 2.

Android is mentioned 356 times in total, which can be explained by

the fact that android is written in Java. The second most mentioned

topic is a library with 145 mentions. Java is set up with a code

management system that offers users easily accessible code. In that

system, code chunks are managed in libraries. The remainder of

mentions has 60 or fewer mentions, see Figure 2.

For Python, the most popular topics know less distance com-

pared to the remainder of topics. The topics learning and library

are most popular, respectively 83 and 72 mentions. The remaining

topics are mentioned 48 times or less as can be seen in Figure 2.

Learningmight refer to machine learning, because in the glossary of

topics learning is denominated as an isolated term. Intuitively, this

is the case because Python is widely used for machine learning, this

is not verified though. Library refers to Python’s code management

system. Whilst both programming languages are denominated as

general-purpose programming languages, the application of Java

appears more one-sided due to Android’s popularity, compared

to Python’s. However, nothing can be said about the variety of

the remainder of applications. As can be seen when looking at the

technical variety of Java and Python, respectively 738 and 698.

Domain-Specific Programming Languages (Matlab & R)

The most popular terms in R are data with 178 mentions and pack-

age with 175 mentions. Data relates to R’s purpose in statistical

computing, a data-hungry discipline. Package refers to the code

organization system, similar to Java’s and Python’s library system.

The most popular for Matlab’s terms are code with 132 mentions

and learning with 120 mentions see Figure 2. A fundamental con-

cept of programming languages and therefore caries no significant

meaning. Similar to Python, learning might refer to machine learn-

ing. Matlab’s code management system groups code into toolboxes,

the third most popular term of languages with 89 occurrences.

5.2 Technical Variety Interpretation

To be able to compare the technical variety of different program-

ming language ecosystems, the lengths of the descriptions need to

be examined when interpreting results. The length of descriptions

is expressed as the number of words per repository. Since the length

of a description can imply a larger technical variety, there is no

need to normalize the lengths. The mean is 9.25, which indicates

that on average between nine and ten words are used to describe

the repository. The standard deviation is 6.67. Graphs show a pos-

itive skew of 2.71 and a kurtosis of 12.41. All four languages had

comparable descriptions in terms of word count.

To explain how elaborate descriptions per language are, the ratio of

the number of words per number of unique topics mentioned per

repository can be calculated. More words per unique topic indicate

more elaboration on the topic. Java, and Python indicate to have a

lower ratio with a value of 1.44, and 1.63 respectively. R, and Matlab

show higher values with ratios from 1.73, and 1.79 respectively.

For this data set domain-specific languages have more words per

unique topic, which indicates a more elaborate description of the

topic.

There is less resemblance in technical variety between the two

domain-specific programming language ecosystems than for the

two general-purpose programming language ecosystems. For the

general-purpose programming language ecosystems, the difference

between the two languages is only 40, with Java at 738 topics

and Python at 698 topics. For Matlab there are 482 unique topics
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mentioned, for R 616 unique topics are mentioned. Between the

two languages there is a difference of 134 topics, 335% than the

difference between the general-purpose programming language

ecosystems.

The average number of topics per repository amongst all pro-

gramming languages is 5.18, which implies that on average each

repository mentions between 5 and 6 technical topics. The average

number of topics for Java (𝜇 = 5.86), and Python (𝜇 = 5.43) is higher
than for Matlab (𝜇 = 5.00), and R (4.46). With Java, and Python hav-

ing a higher average in topics per repository opposed to Matlab, and

R, the indication is that general-purpose languages have a higher

technical variety then domain-specific languages. This indication

is concluded by performing a Welch two-sample T-test.

A Welch two-sample T-test proves a statistically significant dif-

ference between general-purpose languages and domain-specific

languages. The technical variety per repository is significantly

higher for general-purpose languages with t = 7.4987 and p-value

= 7.973e-14. Hereby hypothesis 3 can statistically be accepted. Yet,

the hypothesis is rejected because of the large difference between

Matlab’s and R’s technical variety. Another way of looking at vari-

ety is by counting the number of topics that make up the top 25%

of all mentions for that programming language. For R and Matlab

nine topics make up the top 25% of all mentions. For Java, there are

13 topics and for Python, there are 23 topics. A Welch two-sample

T-test again shows statistically significant results with t = 1.7509

and p-value = 0.08745.

5.3 OSEHO Metrics Interpretation

Has technical variety within a software ecosystem a positive effect on

the robustness or the productivity of a software ecosystem?

A Pearson product correlation coefficient was computed to as-

sess the relationship between technical variety and the number

of commits to a repository. The results indicated that there was

no correlation between the two variables, r = 0.019, n = 2, p =

0.221. Hereby, hypothesis 1 is rejected as it indicates no association

between technical variety and the number of commits to the repos-

itory. The correlation factor of 0.019 does indicate a slight positive

relation, the p-value of 0.221 does indicate there is no certainty of

the relation. Hence why the correlation is denied.

A second Pearson product correlation coefficient was computed

to assess the relationship between technical variety and the num-

ber of active contributors. The results indicated that there was a

positive correlation between the two variables, r = 0.075, n = 2, p =

2.3e-06. Hereby, hypothesis 2 is accepted as it indicates a positive

association between technical variety and the number of active con-

tributors. A scatter-plot as seen in Figure 3 summarizes the results.

The positive relation is extremely small, hence we cannot easily

accept the hypothesis. As can be seen in Figure 3, the higher the

technical variety, the more uncertain the relation becomes. Overall,

there was a light, positive correlation between technical variety and

active contributors. Increases in technical variety were correlated

with increases in active contributors to the repository.

R = 0.075 , p = 2.3e−06
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Figure 3: The number of active contributors is positively cor-

related to the number of topics, but the relationship is weak,

as contributors often specialize in fewer topics.

5.4 Variety versus Specificity

There are many ways of comparing the technical variety within

the programming language ecosystems. Three methods have been

applied in this research.

Firstly, by looking at the number of topics, a statistically signifi-

cant difference between general-purpose programming languages

and domain-specific languages was found. The difference is deemed

invalid due to the large difference between R and Matlab.

Secondly, because the median and quartile 1 are identical for

all languages, quartile ranges can indicate technical variety. With

this mindset, R and Java relatively have the highest variety as these

languages have a larger share of topics that are mentioned just once.

No distinction can be made between general-purpose programming

languages and domain-specific programming languages. However,

it is questionable if having a large number of topics with very few

mentions implies technical variety.

Finally, the third procedure showed a statistically significant

difference between the number of topics that comprised the top

25% of all topic mentions of general-purpose programming lan-

guages versus domain-specific programming languages. Similar

to domain-specific programming languages in the first method,

a large difference between general-purpose languages exist, Java

with 13 topics and Python with 23. Additionally, the number highly

influenced by the occurrence of relatively extremely popular terms

such as Android for Java.

Many high-level terms appear in software ecosystems, and thus

it is plausible a new niche opportunity related to that concept can

arise. Therefore, this type of variety is called regular variety which

describes the convenience a software ecosystem offers to seek for

business opportunities in established niches.

The second form of variety rather explains the specificity of a

software ecosystem. In programming languages with higher speci-

ficity, typically, have a larger amount of unique topic mentions.
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For example, the term FFmpeg is mentioned once for Python. FFm-

peg is a software platform for processing video and audio files via

a command-line tool. For R, the topic tesserect is stated. A four-

dimensional geometric shape. Finding niche opportunities from

these topics is far sought as they have to open up isolated niches be-

cause the topics are highly specific. Both specificity and the variety

benefit from more topics but they do describe different concepts of

a software ecosystem.

6 DISCUSSION AND FUTUREWORK

The goal of this research is to analyze the influences of technical

variety on software ecosystem health. Furthermore differences be-

tween technical variety in general-purpose, and domain-specific

programming languages are evaluated. However, results show no

relation between technical variety and productivity and robustness.

The chosen metrics which quantify the hypothesis are deemed

poor proxies for this study. Where Number of active contributors

and number of commits seem to be a bare minimum number of

metric to measure robustness and productivity. Evaluating metrics

such as “Bug fix time” or “Usage” could be additional metrics to

evaluate productivity. Furthermore “Contributor ratings and repu-

tation” could be an additional metric to evaluate Robustness. This

study evaluated a limited number of metrics as these were available

through GitHub in the scope of this project.

Another threat to this study is that the findings are hard to gener-

alize. Since general-purpose languages can be used in more context,

and hence it should have a higher technical variety. Second, some

languages could be both general-purpose and domain-specific at the

same time. For example, Python could be seen a a general-purpose

Object Oriented language, however in the presence of machine

learning (ML) frameworks it could be turned into a domain-specific

ML language. Ultimately, the choice of sorting the programming

language ecosystems based upon popularity, and general-purpose

versus domain-specific could be questioned.

Technical variety is measured through text mining on descrip-

tions of repositories. Improvements in linguistic techniques should

be made for a more accurate analysis of the descriptions. For in-

stance, certain words have more meaning together. A second prob-

lem reveals that the glossary might not include all correct topics or

might be incomplete.

Linguistic techniques could improve retrieval of essential topics

by analyzing repository descriptions. Linguistic is the scientific

study of language and its structure [7]. It involves the meaning of

words, which would benefit a more accurate list of topics for which

technical variety would have a more accurate representation.

A second method to gain more accurate representations for tech-

nical variety is topic mining. Topic mining is a method for finding

a group of words, which represents the information from a collec-

tion of documents as a topic [19]. However, as this exceeds current

limits of this research a new approach which steers away from text-

mining is taken. Topic-labels of repositories might give a better

representation of variety within a repository opposed to descrip-

tions, but might give similar results as topic mining. This approach

is possible by evaluating topic-labels for the repositories in question.

This study analyzes descriptions of repositories, as a normal dis-

tribution for word count on descriptions is present. Future studies

Table 3: Frequency of Topics for General-Purpose and

Domain-Specific Programming Languages

(a) General-Purpose

Nr Java Topics Count Python Topics Count

1 Android 228 Machine-learning 94

2 Android-library 45 Deep-learning 89

3 Rxjava 28 Tensorflow 60

4 Animation 27 Pytorch 43

5 Spring-boot 24 Data-science 29

6 Material-design 20 Natural-language-processing 26

7 Library 20 computer-vision 26

8 Database 17 security 24

9 Elasticsearch 14 linux 23

10 Python 12 flask 20

11 SQL 12 Docker 20

12 HTTP 12 neural-network 20

13 Docker 11 django 17

14 Big-data 11 CLI 16

15 Microservices 10 HTTP 16

(b) Domain-Specific

Nr Matlab Topics Count R Topics Count

1 Deep-learning 35 Rstats 137

2 Machine-learning 24 ggplot 45

3 Computer-vision 24 Cran 44

4 Image-processing 14 Data-visualisation 42

5 Octave 11 Shiny 31

6 Caffe 11 Data-science 30

7 Robotics 11 Machine-learning 20

8 Convolutional-neural-networks 11 peer-reviewed 19

9 Cvpr 10 Rmarkdown 16

10 Dataset 10 Tidyverse 14

11 Super-resolution 7 Dplyr 12

12 Image-retrieval 7 Rstudio 9

13 Semantic-segmentation 7 API 9

14 Neuroscience 7 Data-analysis 8

15 Statistics 6 Text-mining 7

could retrieve the most popular repositories, which do not lack the

topic-label field, and work with topic-labels instead of descriptions.

To evaluate this assumption, a new data set was retrieved by mining

topics through labels apposed through descriptions, and revealed

more interesting topics for all programming languages, which is

shown in Table 3. The results indicate a weakness of this study

can be overcome by analyzing topic-labels instead of descriptions.

However, these results from the current data set cannot be taken

seriously as a vast difference in the number of topic-labels for each

repository is present. Table 3, indicates the frequency of topics

for general-purpose programming languages, and domain-specific

programming languages.

7 CONCLUSION

In this research, no relation between technical variety and produc-

tivity and robustness can be proven. The research does show there

is a higher technical variety for general-purpose programming lan-

guage ecosystems than there is for domain-specific programming

language ecosystems. The interpretation of the retrieved measure

for technical variety can, however, be done in multiple ways. More

research is required to further specify the term variety in the con-

text of software ecosystems. As the goal of the metrics is to describe

the degree to which it opens up niche opportunities, empirical ev-

idence is required to determine from what kind of varieties are

beneficial for creating niche opportunities. Two forms of technical

variety are uncovered, regular variety and specificity. The first one

describes a large number of topics with considerable traction in

the ecosystem. The second one describes a large number of unique

topics that imply a higher degree of specification in the software

ecosystem. The proposed method for gathering technical variety

does open up opportunities for creating clusters through social

network analysis in the form of correlation clusters in word clouds.
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