
A Tutoring System to Learn Code Refactoring
Hieke Keuning

Open University of the Netherlands

and Utrecht University

h.w.keuning@uu.nl

Bastiaan Heeren

Open University of the Netherlands

bastiaan.heeren@ou.nl

Johan Jeuring

Open University of the Netherlands

and Utrecht University

j.t.jeuring@uu.nl

ABSTRACT
In the last few decades, numerous tutoring systems and assessment

tools have been developed to support students with learning pro-

gramming, giving hints on correcting errors, showing which test

cases do not succeed, and grading their overall solutions. The focus

has been less on helping students write code with good style and

quality. There are several professional tools that can help, but they

are not targeted at novice programmers.

This paper describes a tutoring system that lets students prac-

tice with improving small programs that are already functionally

correct. The system is based on rules that are extracted from in-

put by teachers collected in a preliminary study, a subset of rules

taken from professional tools, and other literature. Rules define

how a code construct can be rewritten into a better variant, without

changing its functionality. Rules can be combined to form rewrite

strategies, similar to refactorings offered by most IDEs. The student

can ask for hints and feedback at each step.

We describe the design of the system, show example sessions,

and evaluate and discuss its contribution and limitations.

CCS CONCEPTS
• Social and professional topics → Computer science educa-
tion; Software engineering education.

KEYWORDS
Learning programming, tutoring systems, code quality, refactoring

ACM Reference Format:
Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2021. A Tutoring Sys-

tem to Learn Code Refactoring. In Proceedings of the 52nd ACM Techni-
cal Symposium on Computer Science Education (SIGCSE ’21), March 13–
20, 2021, Virtual Event, USA. ACM, New York, NY, USA, 7 pages. https:

//doi.org/10.1145/3408877.3432526

1 INTRODUCTION
Student misconceptions have always had much attention in studies

on student programming [9, 28]. The focus has been mostly on

programming mistakes resulting in functionally incorrect code. At

the same time, there may be numerous functionally correct solu-

tions to the same programming exercise [23], which are not always

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’21, March 13–20, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8062-1/21/03. . . $15.00

https://doi.org/10.1145/3408877.3432526

equally good. In 2017, an ITiCSE working group investigated how

professionals, educators and students perceive code quality, finding
a great diversity in its definition [7]. Their study also concluded that

the topic of code quality is underrepresented in education. Recently,

there has been increased attention to the style and quality of student

solutions. Poor coding style and quality may lead to incomprehen-

sible code that has low maintainability and testability, which is an

issue even for professional software developers, not to mention

novices. While one might argue that novice programmers should

not be bothered too much with style and quality, these quality is-

sues might point at underlying misconceptions. Also, refactoring
code is an important skill that every programmer should possess,

and novices are usually confronted early with code analysis and

refactoring tools, which are increasingly a part of modern IDEs.

Teachers play an important part in how critically students view

their code, but large class sizes prevent them from giving person-

alised feedback on student solutions. In a previous study, we have

investigated how teachers would help students to improve their

code [19]. We showed experienced teachers a number of function-

ally correct, but imperfect student solutions and asked them which

hints they would give and how they would want a student to refac-

tor code. We compared the teacher hints with the output of profes-

sional static code analysis tools, and concluded that these tools are

not suitable for giving meaningful feedback to novices.

This paper describes a tutoring system to complement human

tutoring, giving hints and feedback on exercises in which students

improve code. The contributions are (1) the design of a tutoring

system that helps students learn about code improvement and

better suits the requirements for novice programmers, and (2) its

validation based on a technical evaluation, and student use. The

system is available online
1
.

Section 2 provides background and describes related tools. Sec-

tion 3 shows an example session. Section 4 shows the design, which

is evaluated and discussed in Section 5. Section 6 concludes and

describes future work.

2 BACKGROUND AND RELATEDWORK
This section provides some background on code quality and code

refactoring, and discusses professional tools and their use in educa-

tion, as well as tutoring systems specifically intended for education.

2.1 Code quality and refactoring
The aim of our system is to teach students about code quality in the

context of small programs, which are mostly single methods. The

definition of code quality we employ revolves around the directly

observable properties of source code, such as algorithmic aspects

1

www.hkeuning.nl/rpt

Paper Session: Feedback / Tutoring B SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

562

https://doi.org/10.1145/3408877.3432526
https://doi.org/10.1145/3408877.3432526
https://doi.org/10.1145/3408877.3432526
www.hkeuning.nl/rpt

(flow, expressions, language constructs) and structure (decomposi-

tion, modularization). Layout and commenting are also relevant, but

are beyond our research scope because they are not that complex,

and existing tools are often good enough to support students.

Several terms are used to indicate problems with code quality,

such as flaws, issues, violations and the well-known code smells
introduced by Fowler [15]. Code smells are characteristics in code

that might point at a problem with the design of the code, although

it is functionally correct. These problems can have an impact on

quality attributes such as maintainability, performance and security.

Code refactoring is improving code step by step while preserving

its functionality. Fowler [15] provides a collection of refactorings,

mainly focused on code structure. Code Complete [24], a well-

known software construction handbook, describes refactorings on

multiple levels: data, statement, routine, class implementation, class

interface and system. We focus on data-, statement- and routine-

level refactorings, which are most relevant for beginner programs.

Examples of such issues include code duplication, overly complex

or unnecessary constructs, and unsuitable language constructs.

Multiple studies have investigated the presence of flaws in stu-

dent code that are not functional errors [8, 12, 13, 18, 27]. These

studies show that flaws are abundantly present, and there is not a

great deal of improvement for certain issues. Because studies show

varying results, fixing issues and preventing them in future tasks

seems to be highly dependent upon the context. There is also some

evidence that the presence of flaws that may point at actual bugs

during the process correlates with submitting incorrect code [13].

2.2 Professional tools
Relevant professional tools are either static analysis tools or refac-

toring systems. Both are often integrated in IDEs; static analysis

tools are usually also available as a stand-alone tool. Static analysis

tools automatically detect quality issues and code smells in code,

and generate a list of issues as output, which are usually violated

rules. Examples are FindBugs, Checkstyle, PMD, SonarQube, Re-

sharper, and linters. Several IDEs offer support for refactoring code,

either as integrated functionality or as an extension that can be

installed. Some examples are Visual Studio, Eclipse, and IntelliJ. A

2012 study showed that refactoring tools are being used infrequently

by professional programmers, and that programmers perform quite

a lot of low-level refactorings (at the block-level) [25].

Some research exists on the use of professional tools in education.

Nutbrown and Higgins [26] have studied whether static analysis

tools can be used for summative assessment of student programs.

The authors designed a grading mechanism based on the ratings

of PMD rules, and compared the automated grades to the grades

of instructors. They conclude that the correlation was not strong

enough and some manual assessment was still needed, in particular

for context-specific issues. Edwards et al. [14] explored whether the

FindBugs tool can be used to help struggling students, and found a

subset of tool warnings that correlate with incorrect code. However,

the authors have not used the tool with students yet.

2.3 Tutoring systems
A systematic literature review of tools that generate automated

feedback for programming exercises shows there has been a lot of

work focussing on the mistakes that students make, but less work

on the style and quality of student programs [21]. The study also

found that there is much more emphasis on assessment than on

guidance to help students improve their programs. Many of these

tools are automated assessment tools, which are usually more fo-

cussed on grading finished programs. Another type of tool is the

Intelligent Tutoring System (ITS), which helps students by guiding

them step by step towards a solution [31]. VanLehn [32] found

in his experiments that ITSs were nearly as effective as human

tutoring. Several ITSs exist for the programming domain [11], offer-

ing adaptive feedback (the ‘inner loop’), navigational support (the

‘outer loop’) and several additional features such as programming

plan support, reference materials and worked examples.

There are also some tools designed specifically for education that

analyse code quality. FrenchPress [6] is a plugin that reports student-

friendly messages for a small set of programming flaws. Style++

generates a report with style issues such as commenting, naming

and code size [5]. WebTA [30] is a programming environment that

reports on failed tests, common errors, and also more stylistic issues.

AutoStyle [10] gives stepwise feedback on how to improve the style

of correct programs. An experiment with students using AutoStyle

has shown improvements, but students also still struggled with

improving style [34]. AutoStyle is different from our tool because

it relies on historical student data.

2.4 Teachers’ perspective and conclusion
We recently conducted a study with 30 experienced CS teachers,

investigating how they address code quality in general, and having

them assess student code of low quality [19]. We asked which

hints they would give and how the student should improve the

code step by step. We compared their suggestions to the output of

PMD, Checkstyle and SonarQube. Based on these findings, other

literature, and some of our own observations, we generally consider

professional tools in their current form problematic for novice

programmers. We summarize the reasons:

i) The terminology and phrasing of messages can be too hard to

understand by novices.

ii) All issues are reported at once, which may overwhelm the

student and cause cognitive overload.

iii) Not all reported issues are relevant for novices.

iv) Because these tools do not know what the programmer is

working on, feedback is not tailored to the current task and its

requirements, and the level of the student.

v) IDEs execute a refactoring in a single step, which does not give

novices much insight into how a refactoring works.

vi) IDEs may offer code changes that are possible, but not neces-
sarily useful.

3 A TUTORING SESSION
In this section we demonstrate how our system works by showing

two tutoring sessions for different exercises. The target audience

are students in higher education who already know the basics of

programming (control structures, loops, arrays, methods, etc.), who

would typically be CS majors. The system offers exercises in which

an exercise specification and a functionally correct, but inelegant

program is given. It is the student’s task to improve (refactor) the

Paper Session: Feedback / Tutoring B SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

563

Figure 1: Web application for the tutoring system.

program tomake it more elegant/efficient/readable. Currently, there

are six exercises, and new similar exercises can be added easily.

Fig. 1 shows a screenshot of the web interface of the system.

For editing code we used the open source Ace editor [3], which

supports syntax highlighting, automatic indentation, highlighting

matching parentheses, code folding and more. A student has two

ways to ask for feedback during programming: check progress

and get hints. The check progress button checks the current

state of the program and reports on mistakes (syntax errors, failed

test cases, known incorrect steps) or successful steps. The system

presents hints in a tree structure, of which the first option is shown

by default. The student can click on explain more (denoted by

the Ç symbol) to get a more detailed hint, or click on another

hint (denoted by the ; symbol). In the examples we show parts

of the hint tree and fold certain branches for clarity (theÇ and ;

symbols indicate there are more hidden hints), and we only show

affected code fragments, omitting details and highlighting the major

changes. We show the output as text in a sans-serif font.

3.1 Example 1: Sum of values
The first exercise is taken from another study [23], with the most

popular student solution as the starting program.

Tutor. The sumValues method adds up all numbers from the
array parameter, or only the positive numbers if the positivesOnly
boolean parameter is set to true. The solution is already correct,
but can you improve this program?
1 int sumValues(int [] values , boolean positivesOnly) {

2 int sum = 0;

3 for (int i = 0;i < values.length;i++) {

4 if (positivesOnly == true) {

5 if (values[i] >= 0) {

6 sum += values[i];

7 }

8 }

9 else {

10 sum += values[i];

11 }

12 }

13 return sum;

14 }

Student. The student asks for a hint right away.

Tutor. The tutor responds with a tree of hints that the student

expands step by step by clicking on theÇ icon.

Can you simplify a boolean expression? ;
== true may be removed.

Try to use this example code: positivesOnly

Student. The student removes the equals true and asks the tutor

to check her step, and then asks for a new hint.

1 for (int i = 0;i < values.length;i++) {

2 if (positivesOnly) {

3 ..

4 }

5 ..

6 }

Tutor. That was a correct step, well done!

Can you simplify the condition in the if? ;

Student. The student notices that when values[i] contains 0,
addition has no effect.

1 if (values[i] > 0) {

2 sum += values[i];

3 }

Tutor. That was a correct step, well done!

There is some duplication, can you simplify the if-statements
to remove it? ;

Can you combine the conditions, so you only need 1
if? Ç

Student. The student incorrectly combines the conditions.

1 if (! positivesOnly && values[i] > 0) {

2 sum += values[i];

3 }

Tutor. The tutor recognises this step as an incorrect attempt to

combine two conditions.

Student. The student expands the last hint, uses the code example

for the first step and asks for the next hint.

1 if((positivesOnly && values[i] > 0) || !positivesOnly)

2 sum += values[i];

Tutor. Can you shorten the expression between the brackets?
1 if (values[i] > 0 || !positivesOnly)

2 sum += values[i];

Tutor.

Can you replace the for-loop by a foreach-loop? Ç

Student. The student rewrites the for-loop.
1 for (int i: values) {

2 if (i > 0 || !positivesOnly)

3 sum += i;

4 }

Tutor. Well done, no more improvements left.

Paper Session: Feedback / Tutoring B SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

564

3.2 Example 2: Odd sum
The starting program for this exercise, taken from our previous

study [19], is a mix of a number of student solutions collected at

the university one of us works at.

Tutor. The method oddSum returns the sum of the numbers at
odd indices in the array parameter, until the number -1 is seen at
an odd index. The solution is already correct, but can you improve
this program?
1 int oddSum(int [] array) {

2 int total = 0;

3 boolean stop = false;
4

5 for (int i = 1;i < array.length;i = i + 2) {

6 if (stop == false) {

7 if (array[i] != -1) {

8 total += array[i];

9 } else if (array[i] == -1) {

10 stop = true;
11 }

12 }

13 else {

14 total = total;

15 }

16 }

17 return total;

18 }

Student. The student explores her options by clicking on alter-

native ;, and makes three edits.

Tutor.

Do you know a shorter way to write a calculation? Ç
You’re assigning a variable to itself, is that useful? Ç
Can you simplify a boolean expression? Ç ;

1 for (int i = 1;i < array.length;i += 2) {

2 if (!stop) {

3 ..

4 }

5 // removed the else -block

6 }

Tutor. All test cases still pass.

Can you find an else-if condition that is not necessary?
We don’t need the check in the else-if, because we know
it will be true. Ç

Can we immediately exit from the loop once we’re done?

1 if (array[i] != -1) {

2 total += array[i];

3 } else {

4 stop = true;
5 }

6 }

Student. The student removes the if.

We omit the rest of this session.

4 DESIGN
This section describes a technical view of the design of the tutoring

system. The system has been developed using a ‘design science’

approach, described by Wieringa [33] as ‘design and investigation

of artifacts in a context’. A design cycle is composed of problem

investigation, treatment design and treatment validation, and is part

of a larger engineering cycle, in which the treatment is implemented

and evaluated in the real world. A design cycle is typically executed

multiple times in a project. This paper focuses on the initial design

cycle, for which problem investigation has mostly been done in our

preliminary study (see Section 2.4).

The tutor supports refactoring strategies consisting of multiple

steps, which transform an imperfect solution into an improved

solution. Appropriate feedback messages are attached to the steps

in the strategy. The tutor supports exercises of class 3 according to

the classification of Le and Pinkwart [22], implying a student can

follow multiple solution strategies to solve an exercise. To add a

new exercise, the following elements have to be provided:

● A file with the starting code to be refactored.

● A text file describing the exercise.

● A set of test cases, consisting of input/output pairs. These are

currently hard-coded, but should be provided in a separate

file in the near future.

The supported programming language is a subset of Java that

includes assignments, arithmetic/comparison/boolean operators,

several primitive data types (ints, bools, strings, doubles), arrays,

branching, loop statements, and methods. The system uses an inter-

nal data type of a fairly generic object-oriented language, so using

another language would require translation to that data type. We

expect this to be feasible, but have not attempted this yet.

Section 4.1 describes the architecture. Sections 4.2 and 4.3 focus

on the implementation of the domain knowledge, and Section 4.4 on

how the system generates its output by providing feedback services.

4.1 Architecture
The system consists of a web-based interface and a backend that

processes JSON requests and replies with JSON responses. This

design makes it possible to create a different user interface or (IDE)

plugin, which uses the hint and feedback services from the existing

backend. The backend calls the Oracle Java compiler to retrieve

compiler error messages. All requests and responses are logged in a

database. The current state of the code is attached to these requests.

4.2 Technology
We have developed our tutoring system on top of the Ideas frame-

work [4] for developing ITSs. Tutors built with Ideas (Interac-

tive domain-specific exercise assistants) can provide stepwise auto-

mated hints for exercises in various domains, such as mathematics

and programming [17]. Various feedback services are offered, such

as next-step hints, validation of steps, and showing complete so-

lution paths. Rules and strategies have to be specified to provide

these services. Rules are transformations on the data type of the

domain, such as refining or rewriting (parts of) a student program.

In the refactoring context, a simple example of such a rule is rewrit-

ing x==true into x (more in Section 4.3). Each rule or refactoring

should preserve the functionality of the program.

We use normalisations to transform (parts of) a program to a

normal form, by applying a large set of rewrite rules that are not

Paper Session: Feedback / Tutoring B SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

565

necessarily refactorings, such as changing the order of a calcu-

lation (y+1+x ↝ 1+x+y) and removing syntactic sugar (x+=2 ↝
x=x+2). Normalisation has been used before in programming tu-

tors [16, 29, 35], mainly to recognise more variants of the same

program. In the context of refactoring, it also simplifies the defini-

tion and implementation of refactorings, because fewer variants

have to be considered. To generate feedback specific for a student’s

implementation, normalisations have to be ‘undone’ [29], which

we currently have not implemented, causing the hints with code

examples to not exactly match with the student’s code at times.

4.3 Rules and strategies
The rules are the main building blocks of the tutoring system. We

have based the rules on several sources from the literature as well

as best practices from software engineering:

● Rewrite steps suggested by teachers, identified in our previ-

ous study [19].

● Semantic Style Indicators (SSIs) identified in student pro-

grams by DeRuvo et al. [12]. An SSI is defined as ‘a pattern

of a short sequence of statements that in some circumstances

could be considered sub-optimal’. Currently 10 of their 16

SSIs are implemented in our system.

● Semantics-preserving variations (SPVs) that occur in student

programs, of which Xu and Chee [35] distinguish 13 types.

An SPV changes the computational behaviour of a program

while preserving computational results. We account for sev-

eral of these variations in our rules and other normalisations.

● Rules from professional tools, in particular the code sugges-

tions from PMD [1], a static analysis tool mostly used for

Java, and IntelliJ [2], a Java IDE that provides many code

analysis and refactoring options.

● Equality rules from arithmetic and logic (e.g. absorption or

identity operations).

Table 1 summarises the rules currently in our system. The columns

TCH (teacher hints and steps), SSI ([12]), PT (professional tools)

and A/L (arithmetic and logic rules) indicate the source of the rules.

It is important to consider the soundness and completeness of our
rule set. Although we do not strive for completeness, because it

is impossible to foresee every single solution to a programming

problem, we want to minimise cases in which our system tells the

student there are no hints left, while their solution is imperfect.

Although we do not formally prove soundness, we believe the rules

are sound because they represent mathematical and logical rules,

and adhere to the semantics of programming language constructs.

Continually checking a program against a set of test cases also

ensures that the behaviour of the program is preserved.

An example of a simple rule is removal of a useless condition:

if (c) a; else if (!c) b; ↝ if (c) a; else b;

If the pattern on the left of the arrow is detected, the statement

can be rewritten into the statement on the right. More complex

rules, such as the transformation of a for-loop into a foreach, require

verifying several conditions in advance, such as checking that all

array values are addressed from first to last, and that the array is

not being modified inside the loop. If all conditions are met, the

corresponding foreach will be generated.

Table 1: Rule summary. Entries denoted by * have several
accompanying rules.

Description TCH SSI PT A/L
Expressions
Simplify boolean expressions*
Optimise calculation
Improve odd/even check
Use compound, incr., decr. operators*
Remove self-assignment
Branching
Simplify by removing duplication/nesting*
Extract duplicate statement from if/else*
Remove redundant conditional check
Remove empty or useless if/if-else/else*
Reverse negative if-else
Loops
Change for-loop into foreach
Change for-loop into while
Exit loop when done with condition or break*
Replace loop by calculation
Remove break from loop

Statements
Remove empty statements*
Simplify if/else returning bools by single return*
Buggy
Incorrect collapsing of if/else*
Incorrect equals true replacement

The Ideas framework also supports the definition of buggy rules,
which describe invalid transformations that change the computa-

tional semantics of code. For now we have only implemented a

small set of these buggy rules. An example of a simple buggy rule

is the incorrect disjunction of the two if conditions c1 and c2:

if (c1) if (c2) a; ↝ if (c1 || c2) a;

Rules are combined to define more elaborate strategies, which
describe the step-by-step solution to a problem. In strategies, rules

can be combined in sequences, chosen as (prioritised) options, and

navigation rules can traverse the abstract syntax tree to apply rules

at specific locations. From our teacher input we derived that teach-

ers advise to clean-up code first before moving on to more complex

refactorings; we implemented this in the strategy by enforcing

cleanup rules before enabling certain other rules.

4.4 Feedback services
The system offers the following feedback services:

Hint tree. Hints are generated by calculating the first possible

steps of the strategy. The hint tree contains all available hints in a

hierarchical structure, as described in Section 3. A feedback script

is used to store the hint messages attached to each step. The script

contains key-value pairs that can easily be adjusted by a teacher.

The example below shows the feedback messages for two levels

of hints for the same issue. The third level of feedback is usually a

code fragment demonstrating the refactoring.

feedback removeUselessIfS = Do we need the if-statement?
feedback removeUselessIf .1 = The condition in the if is always

true , so we don 't need the if

Hints remaining. The current number of top-level hints.

Paper Session: Feedback / Tutoring B SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

566

Diagnosis. This function checks the current state of the student

program. If the program cannot be parsed, it produces an error

message. Next, it tries to recognise if a buggy rule has been applied.

If not, it uses test cases to verify that the program still has the

required functional behaviour. If it detects that a known rule has

been correctly applied, it reports that the student just successfully

applied that rule. If multiple rules have been applied, or unknown

edits have been done, it just reports that the program is correct.

5 EVALUATION AND DISCUSSION
We provide a technical evaluation, summarise the results of an

evaluation with students, and discuss results and limitations.

5.1 Teacher data evaluation
Our technical evaluation checks if edits to program states are recog-

nised. We use the two exercises from the example tutoring session,

for which we also have teacher data: SumValues and OddSum.

In [19] we asked teachers how they would want a student to refac-

tor these programs step by step. We analysed data of 27 teachers

who provided 76 new program states (excluding the start state)

for SumValues. We excluded 11 functionally incorrect programs

that our tutor rightly identified, 5 programs that used language

constructs our tutor does not support, and 3 other invalid states.

We let our system generate all available hints for the remaining 57

programs: for 43 programs the teacher’s edits for that step were in

this hint set (75.4%), for 3 some edits were in the set but some were

not (5.3%), and for 11 none of the edits were in the set (19.3%).

For the OddSum exercise 27 teachers provided 66 valid program

states. We found that for 41 programs the teacher’s edits were in the

hint set (62.1%), and for 16 the edits were partially in the set (24.2%).

We noticed that some teachers solved some issues differently from

the concrete hints the system gave, but we mark these edits as

successful because the hint does not appear any more.

We can conclude that the hints generated for the majority of

the states lead to what the teacher would suggest to do next. Usu-

ally multiple hints are available for a state (even for final states),

allowing for the various solution paths we saw in the teacher data.

5.2 Student evaluation
Because this paper is primarily a software report describing a tool,

we have focussed on the functional and technical design of the

system. However, we have recently conducted a study with 133

students using the system. The log data and student evaluations

show that the hints help students to solve refactoring exercises, and

that students request hints at various levels, regularly check their

solutions against the test cases, and value working with the system.

We have also derived several improvements from this analysis to

be incorporated in the next cycle of our design science process. We

provide a detailed analysis elsewhere [20].

5.3 Discussion
In this section we summarise and discuss how our tool attempts to

solve the problems listed in Section 2.4:

i) Terminology and phrasing are targeted at novices, and can

be adjusted by teachers. Most high-level hints are phrased as

questions, which teachers often did as well.

ii) Issues can be shown gradually by letting the student ask to

make a hint more specific, or to request a different hint.

iii) We have selected a subset of issues relevant for novices. In

future work teachers should be able to switch off rules they

may find unsuitable for a particular group of students or course.

iv) Although the issues we support go beyond what professional

tools detect, we consider exercise- and student-specific feed-

back to be future work.

v) Our system can guide a student through more complex refac-

torings step by step.

vi) Our system does not offer edits with no particular goal, instead

we offer edits based on the input of experienced teachers.

The proposed system is a practice tool encouraging students to

critically assess code and think of alternative solutions. It provides

an opportunity to explore other language constructs, and more

carefully consider control flow and structure. The hints are sugges-

tions that should trigger further discussion among teachers, and

between teachers and students. Although novices often produce

verbose code, because they might find it easy to understand (or

perhaps it just worked), at a certain time they should move beyond

that. We therefore advice the system to be used by students with

some programming experience who are ready for the next step.

5.4 Limitations
The system currently contains six exercises with accompanying

rules, which may raise questions on the generalisability of the feed-

back mechanism of the system. However, the majority of the rules

are not specific to an exercise, and can be reused for other exercises

as well. We do need to expand the set of rules, and also implement

a more dynamic way of devising rules, which is described as future

work in Section 6. Studies analysing how students use the tutoring

system, and how they learn from it, should give us more insight

into the effectiveness of the system.

6 CONCLUSION AND FUTUREWORK
This paper describes the functionality and design of a tutoring sys-

tem that teaches students about improving code. We have shown a

tutoring session in which students receive hints on how to improve

an already correct piece of code, and get feedback on the correct-

ness of their steps. We have shown that the behaviour of the tutor

matches with how teachers want students to improve their code.

We also show that the tutor goes beyond what professional static

analysis tools and IDEs do, and better meets the needs of students.

We have obtained encouraging results from our exploratory study

of students using the system to solve refactoring exercises.

As part of our design science process, we will iteratively improve

the system based on the findings. We plan to add new features,

such as having the teacher provide model solutions, from which

additional improvement rules can be extracted and dynamically

used in the system. Also, we want to add more buggy rules. Future

experiments could compare the effects of using the tutoring system

to those of professional tools, and study the effect on student code

quality in the long run.

Paper Session: Feedback / Tutoring B SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

567

ACKNOWLEDGMENTS
This research is supported by the Dutch Research Council (NWO),

grant number 023.005.063.

REFERENCES
[1] 2018. PMD. (2018). https://pmd.github.io/pmd-6.9.0/

[2] 2019. IntelliJ IDEA Community Edition 2019.2. (2019). https://www.jetbrains.

com/idea

[3] 2020. Ace editor. (2020). https://ace.c9.io/

[4] 2020. Ideas. (2020). http://hackage.haskell.org/package/ideas

[5] Kirsti Ala-Mutka, Toni Uimonen, and Hannu-Matti Jarvinen. 2004. Supporting

students in C++ programming courses with automatic program style assessment.

Journal of Information Technology Education: Research 3 (2004), 245–262.

[6] Hannah Blau and J. Eliot B. Moss. 2015. FrenchPress Gives Students Automated

Feedback on Java Program Flaws. In Proceedings of ITiCSE. 15–20. DOI:https:
//doi.org/10.1145/2729094.2742622

[7] Jürgen Börstler, Harald Störrle, Daniel Toll, Jelle van Assema, Rodrigo Duran,

Sara Hooshangi, Johan Jeuring, Hieke Keuning, Carsten Kleiner, and Bonnie

MacKellar. 2017. "I know it when I see it" Perceptions of Code Quality. In

Proceedings of ITiCSE, Working Group Reports. 70–85. DOI:https://doi.org/10.
1145/3174781.3174785

[8] Dennis Breuker, Jan Derriks, and Jacob Brunekreef. 2011. Measuring Static

Quality of Student Code. In Proceedings of ITiCSE. 13–17. DOI:https://doi.org/10.
1145/1999747.1999754

[9] Neil CC Brown and Amjad Altadmri. 2017. Novice Java programming mistakes:

large-scale data vs. educator beliefs. ACM Transactions on Computing Education
(TOCE) 17, 2 (2017), 7. DOI:https://doi.org/10.1145/2994154

[10] Rohan Roy Choudhury, Hezheng Yin, and Armando Fox. 2016. Scale-Driven

Automatic Hint Generation for Coding Style. In International Conference on
Intelligent Tutoring Systems. Vol. 9684 LNCS. 122–132. DOI:https://doi.org/10.
1007/978-3-319-39583-8_12

[11] Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. 2018. Intelligent

tutoring systems for programming education: a systematic review. In Proceedings
of the 20th Australasian Computing Education Conference. ACM, 53–62. DOI:
https://doi.org/10.1145/3160489.3160492

[12] Giuseppe De Ruvo, Ewan Tempero, Andrew Luxton-Reilly, Gerard B. Rowe, and

Nasser Giacaman. 2018. Understanding Semantic Style by Analysing Student

Code. In Proceedings of the Australasian Computing Education Conference. 73–82.
DOI:https://doi.org/10.1145/3160489.3160500

[13] Stephen Edwards, Nischel Kandru, and Mukund Rajagopal. 2017. Investigating

static analysis errors in student Java programs. In Proceedings of the 2017 ACM
Conference on International Computing Education Research. ACM, 65–73. DOI:
https://doi.org/10.1145/3105726.3106182

[14] Stephen Edwards, Jaime Spacco, and David Hovemeyer. 2019. Can Industrial-

Strength Static Analysis Be Used to Help Students Who Are Struggling to Com-

plete Programming Activities?. In Proceedings of the 52nd Hawaii International
Conference on System Sciences. 7825–7834. DOI:https://doi.org/10.24251/HICSS.
2019.941

[15] Martin Fowler. 1999. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[16] Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and Thomas van Binsbergen. 2017.

Ask-Elle: an adaptable programming tutor for Haskell giving automated feedback.

International Journal of Artificial Intelligence in Education 27, 1 (2017), 65–100.

[17] B. Heeren and J. Jeuring. 2014. Feedback services for stepwise exercises. Science
of Computer Programming 88 (2014), 110–129. DOI:https://doi.org/10.1016/j.scico.
2014.02.021

[18] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. Code Quality Issues

in Student Programs. In ITiCSE. 110–115. DOI:https://doi.org/10.1145/3059009.
3059061

[19] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2019. How Teachers Would

Help Students to Improve Their Code. In ITiCSE. 119–125. DOI:https://doi.org/
10.1145/3304221.3319780

[20] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2020. Student Refactor-

ing Behaviour in a Programming Tutor. In Proceedings of the 20th Koli Call-
ing International Conference on Computing Education Research. DOI:https:
//doi.org/10.1145/3428029.3428043

[21] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A systematic literature

review of automated feedback generation for programming exercises. ACM
Transactions on Computing Education (TOCE) 19, 1 (2018). DOI:https://doi.org/10.
1145/3231711

[22] Nguyen-Thinh Le and Niels Pinkwart. 2014. Towards a Classification for Pro-

gramming Exercises. InWorkshop on AI-supported Education for Computer Science.
51–60.

[23] Andrew Luxton-Reilly, Paul Denny, Diana Kirk, Ewan Tempero, and Se-Young

Yu. 2013. On the Differences Between Correct Student Solutions. In Proceedings
of ITiCSE. 177–182. DOI:https://doi.org/10.1145/2462476.2462505

[24] Steve McConnell. 2004. Code Complete: A Practical Handbook of Software Con-
struction, Second Edition. Microsoft Press.

[25] Emerson Murphy-Hill, Chris Parnin, and Andrew P Black. 2011. How we refactor,

and how we know it. IEEE Transactions on Software Engineering 38, 1 (2011),

5–18. DOI:https://doi.org/10.1109/TSE.2011.41
[26] Stephen Nutbrown and Colin Higgins. 2016. Static analysis of programming

exercises: Fairness, usefulness and a method for application. Computer Science
Education 26, 2-3 (2016), 104–128. DOI:https://doi.org/10.1080/08993408.2016.
1179865

[27] Raymond Pettit, John Homer, Roger Gee, Susan Mengel, and Adam Starbuck.

2015. An Empirical Study of Iterative Improvement in Programming Assignments.

In Proceedings of SIGCSE. 410–415. DOI:https://doi.org/10.1145/2676723.2677279
[28] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and Other

Difficulties in Introductory Programming: A Literature Review. ACM Transactions
on Computing Education (TOCE) 18, 1, Article 1 (2017), 1:1–1:24 pages. DOI:
https://doi.org/10.1145/3077618

[29] Kelly Rivers and Kenneth R Koedinger. 2017. Data-driven hint generation in

vast solution spaces: a self-improving python programming tutor. International
Journal of Artificial Intelligence in Education 27, 1 (2017), 37–64. DOI:https:
//doi.org/10.1007/s40593-015-0070-z

[30] Leo C. Ureel II and Charles Wallace. 2019. Automated Critique of Early Pro-

gramming Antipatterns. In Proceedings of SIGCSE. ACM, 738âĂŞ744. DOI:
https://doi.org/10.1145/3287324.3287463

[31] Kurt VanLehn. 2006. The Behavior of Tutoring Systems. International Journal of
Artificial Intelligence in Education 16, 3 (2006), 227–265.

[32] Kurt VanLehn. 2011. The Relative Effectiveness of Human Tutoring, Intelligent

Tutoring Systems, and Other Tutoring Systems. Educational Psychologist 46, 4
(2011), 197–221. DOI:https://doi.org/10.1080/00461520.2011.611369

[33] Roel Wieringa. 2014. Design science methodology for information systems and
software engineering. Springer. DOI:https://doi.org/10.1007/978-3-662-43839-8

[34] Eliane S. Wiese, Michael Yen, Antares Chen, Lucas A. Santos, and Armando

Fox. 2017. Teaching Students to Recognize and Implement Good Coding Style.

In Proceedings of Learning @ Scale (L@S). 41–50. DOI:https://doi.org/10.1145/
3051457.3051469

[35] Songwen Xu and Yam San Chee. 2003. Transformation-based diagnosis of student

programs for programming tutoring systems. IEEE Transactions on Software
Engineering 29, 4 (2003), 360–384. DOI:https://doi.org/10.1109/TSE.2003.1191799

Paper Session: Feedback / Tutoring B SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

568

https://pmd.github.io/pmd-6.9.0/
https://www.jetbrains.com/idea
https://www.jetbrains.com/idea
https://ace.c9.io/
http://hackage.haskell.org/package/ideas
https://doi.org/10.1145/2729094.2742622
https://doi.org/10.1145/2729094.2742622
https://doi.org/10.1145/3174781.3174785
https://doi.org/10.1145/3174781.3174785
https://doi.org/10.1145/1999747.1999754
https://doi.org/10.1145/1999747.1999754
https://doi.org/10.1145/2994154
https://doi.org/10.1007/978-3-319-39583-8_12
https://doi.org/10.1007/978-3-319-39583-8_12
https://doi.org/10.1145/3160489.3160492
https://doi.org/10.1145/3160489.3160500
https://doi.org/10.1145/3105726.3106182
https://doi.org/10.24251/HICSS.2019.941
https://doi.org/10.24251/HICSS.2019.941
https://doi.org/10.1016/j.scico.2014.02.021
https://doi.org/10.1016/j.scico.2014.02.021
https://doi.org/10.1145/3059009.3059061
https://doi.org/10.1145/3059009.3059061
https://doi.org/10.1145/3304221.3319780
https://doi.org/10.1145/3304221.3319780
https://doi.org/10.1145/3428029.3428043
https://doi.org/10.1145/3428029.3428043
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3231711
https://doi.org/10.1145/2462476.2462505
https://doi.org/10.1109/TSE.2011.41
https://doi.org/10.1080/08993408.2016.1179865
https://doi.org/10.1080/08993408.2016.1179865
https://doi.org/10.1145/2676723.2677279
https://doi.org/10.1145/3077618
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1145/3287324.3287463
https://doi.org/10.1080/00461520.2011.611369
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1145/3051457.3051469
https://doi.org/10.1145/3051457.3051469
https://doi.org/10.1109/TSE.2003.1191799

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Code quality and refactoring
	2.2 Professional tools
	2.3 Tutoring systems
	2.4 Teachers' perspective and conclusion

	3 A tutoring session
	3.1 Example 1: Sum of values
	3.2 Example 2: Odd sum

	4 Design
	4.1 Architecture
	4.2 Technology
	4.3 Rules and strategies
	4.4 Feedback services

	5 Evaluation and discussion
	5.1 Teacher data evaluation
	5.2 Student evaluation
	5.3 Discussion
	5.4 Limitations

	6 Conclusion and future work
	Acknowledgments
	References

