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Abstract. We study two new versions of independent and dominat-
ing set problems on vertex-colored interval graphs, namely f-Balanced
Independent Set (f -BIS) and f-Balanced Dominating Set (f -BDS). Let
G = (V, E) be an interval graph with a color assignment function
γ : V → {1, . . . , k} that maps all vertices in G onto k colors. A sub-
set of vertices S ⊆ V is called f-balanced if S contains f vertices from
each color class. In the f -BIS and f -BDS problems, the objective is to
compute an independent set or a dominating set that is f -balanced.
We show that both problems are NP-complete even on proper interval
graphs. For the BIS problem on interval graphs, we design two FPT algo-
rithms, one parameterized by (f, k) and the other by the vertex cover
number of G. Moreover, for an optimization variant of BIS on interval
graphs, we present a polynomial time approximation scheme (PTAS) and
an O(n log n) time 2-approximation algorithm.

1 Introduction

A graph G is an interval graph if it has an intersection model consisting of
intervals on the real line. Formally, G = (V,E) is an interval graph if there is an
assignment of an interval Iv ⊆ R for each v ∈ V such that Iu ∩ Iv is nonempty if
and only if {u, v} ∈ E. A proper interval graph is an interval graph that has an
intersection model in which no interval properly contains another [10]. Consider
an interval graph G = (V,E) and additionally assume that the vertices of G
are k-colored by a color assignment1 γ : V → {1, . . . , k}. We define and study

1 We use the term color assignment instead of vertex coloring to avoid any confusion
with the general notion of vertex coloring; in particular, a color assignment γ can
map adjacent vertices to the same color.
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color-balanced versions of two classical graph problems: maximum independent
set and minimum dominating set on vertex-colored (proper) interval graphs.
In what follows, we define the problems formally and discuss their underlying
motivation.

f-Balanced Independent Set (f-BIS): Let G = (V,E) be an interval graph
with a color assignment of the vertices γ : V → {1, . . . , k}. Find an f-balanced
independent set of G, i.e., an independent set L ⊆ V that contains exactly f
elements from each color class.

The classic maximum independent set problem serves as a natural model for
many real-life optimization problems and finds applications across fields, e.g.,
computer vision [2], information retrieval [18], and scheduling [20]. Specifically,
it has been used widely in map-labeling problems [1,4,14,21], where an indepen-
dent set of a given set of label candidates corresponds to a conflict-free and hence
legible set of labels. To display as much relevant information as possible, one usu-
ally aims at maximizing the size or, in the case of weighted label candidates, the
total weight of the independent set. This approach may be appropriate if all
labels represent objects of the same category. In the case of multiple categories,
however, maximizing the size or total weight of the labeling does not reflect the
aim of selecting a good mixture of different object types. For example, if the aim
was to inform a map user about different possible activities in the user’s vicinity,
labeling one cinema, one theater, and one museum may be better than labeling
four cinemas. In such a setting, the f -BIS problem asks for an independent set
that contains f vertices from each object type.

We initiate this study for interval graphs which is a primary step to under-
stand the behavior of this problem on intersection graphs. Moreover, solving the
problem for interval graphs gives rise to optimal solutions for certain labeling
models, e.g., if every label candidate is a rectangle that is placed at a fixed
position on the boundary of the map [11].

While there exists a simple greedy algorithm for the maximum independent
set problem on interval graphs, it turns out that f -BIS is much more resilient
and NP-complete even for proper interval graphs and f = 1 (Sect. 2.1). Then,
in Sect. 3, we complement this complexity result with two FPT algorithms for
interval graphs, one parameterized by (f, k) and the other parameterized by
the vertex cover number. Section 4 introduces a polynomial time approxima-
tion scheme (PTAS) and an O(n log n) time 2-approximation algorithm for an
optimization variant (1-MCIS) of BIS on interval graphs.

The second problem we discuss is defined as follows.

f-Balanced Dominating Set (f-BDS): Let G = (V,E) be an interval graphs
with a color assignment of the vertices γ : V → {1, . . . , k}. Find an f-balanced
dominating set, i.e., a subset D ⊆ V such that every vertex in V \ D is adjacent
to at least one vertex in D, and D contains exactly f elements from each color
class.

The dominating set problem is another fundamental problem in theoretical
computer science which also finds applications in various fields of science and
engineering [6,12]. Several variants of the dominating set problem have been
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considered over the years: k-tuple dominating set [7], Liar’s dominating set [3],
independent dominating set [13], and more. The colored variant of the domi-
nating set problem has been considered in parameterized complexity, namely,
red-blue dominating set, where the objective is to choose a dominating set from
one color class that dominates the other color class [9]. Instead, our f -BDS prob-
lem asks for a dominating set of a vertex-colored graph that contains f vertices
of each color class. Similar to the independent set problem, we primarily study
this problem on vertex-colored interval graphs, which can be of independent
interest. In Sect. 2.2, we prove that f -BDS on vertex-colored proper interval
graphs is NP-complete, even for f = 1. Due to space constraints, please refer to
the appendix for missing proofs and detailed descriptions.

2 Complexity Results

In this section we show that f -BIS and f -BDS are NP-complete even if the
given graph G is a proper interval graph and f = 1. Our reductions are from
restricted, but still NP-complete versions of 3SAT, namely 3-bounded 3SAT [19]
and 2P2N-3SAT (hardness follows from the result for 2P1N-SAT [22]). In the
former 3SAT variant a variable is allowed to appear in at most three clauses and
clauses have two or three literals, in the latter each variable appears exactly four
times, twice as positive literal and twice as negative literal.

2.1 f-Balanced Independent Set

We first describe the reduction. Let φ(x1, . . . , xn) be a 3-bounded 3SAT formula
with variables x1, . . . , xn and clause set C = {C1, . . . , Cm}. From φ we construct
a proper interval graph G = (V,E) and a color assignment γ of V as follows.
We choose the set of colors to contain exactly m colors, one for each clause in
C and we number these colors from 1 to m. We add a vertex ui,j ∈ V for each
occurrence of a variable xi in a clause Cj in φ. Furthermore, we insert an edge
{ui,j , ui,j′} ∈ E whenever ui,j was inserted because of a positive occurrence of
xi and ui,j′ was inserted because of a negative occurrence of xi. Finally, we color
each vertex ui,j ∈ V with color j. See Fig. 1 for an illustration. It is clear that
the construction is in polynomial time. The graph G created from φ is a proper
interval graph as it consists only of disjoint paths of length at most three and
can clearly be constructed in polynomial time and space.

Theorem 1. The f-balanced independent set problem on a graph G = (V,E)
with a color assignment of the vertices γ : V → {1, . . . , k} is NP-complete, even
if G is a proper interval graph and f = 1.

Proof. The problem is clearly in NP since for a given solution it can be checked
in linear time if it is an independent set and contains f vertices of each color.

We already described the reduction. It remains to argue the correctness.
Assume G = (V,E) was constructed as above from a 3-bounded 3SAT formula
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(x1 x2 x4) (x1 x3 x4) (x3 x4) (x1 x2 x3)

x1 x2 x3 x4

Negative

Positive u1,1u1,2 u1,4 u2,1 u2,4
u3,2 u3,3 u3,4 u4,1 u4,3u4,2

Fig. 1. The graph resulting from the reduction for 1-balanced independent set in The-
orem 1 depicted as interval representation with the vertex colors being the colors of
the intervals.

φ(x1, . . . , xn) and let V ′ ⊆ V be a solution to the 1-balanced independent set
problem on G.

We construct a variable assignment for x1, . . . , xn as follows. By definition
we find for each color j precisely one vertex ui,j ∈ V ′. If ui,j was inserted for
a positive occurrence of xi, then we set xi to true and otherwise xi to false.
Moreover, all variables xi with i = 1, . . . , n for which we do not find a corre-
sponding interval in V ′ are also set to false. Since V ′ is an independent set in
G this assignment is well defined. Now assume it was not satisfying, then there
exists a clause Cj for which none of its literals evaluates to true. Hence, none of
the at most three vertices corresponding to the literals in Cj is in V ′. Recall that
there is a one-to-one correspondence between clauses and colors in the instance
of 1-balanced independent set we created. Yet, V ′ does not contain a vertex of
that color, a contradiction.

For the opposite direction assume we are given a satisfying assignment of
the 3-bounded 3SAT formula φ(x1, . . . , xn) with clauses C = {C1, . . . , Cm}. Fur-
thermore let G = (V,E) be the graph with a color assignment of the vertices γ
constructed from φ as described above. We find a 1-balanced independent set of
G from the given assignment as follows. For each clause Cj ∈ C we choose one
of its literals that evaluates to true and add the corresponding vertex v ∈ V to
the set of vertices V ′. Since there is a one-to-one correspondence between the
colors and the clauses and the assignment is satisfying, V ′ clearly contains one
vertex per color. It remains to show that V ′ is an independent set of vertices
in G. Assume for contradiction that there are two vertices vi,j , vi′,j′ ∈ V ′ and
{vi,j , vi′,j′} ∈ E. Then, by construction of G, we know that i = i′ and further
that vi,j , vi′,j′ correspond to one positive and one negative occurrence of xi in φ.
By the construction of V ′ this implies a contradiction to the assignment being
satisfying. ��

2.2 f-Balanced Dominating Set

We reduce from 2P2N-3SAT where each variable appears exactly twice positive
and twice negative. Let φ(x1, . . . , xn) be a 2P2N-3SAT formula with variables
x1, . . . , xn and clause set C = {C1, . . . , Cm}. For variable xi in φ we denote
with Cxi

= {C1
t , C2

t , C1
f , C2

f} the four clauses xi appears in, where C1
t , C2

t are
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clauses with positive occurrences of xi and C1
f , C2

f are clauses containing negative
occurrences of xi.

We construct a graph G = (V,E) from φ(x1, . . . , xn) as follows. For each
variable xi we introduce six vertices t1, t2, f1, f2, ht, and hf and for each clause
Cj with occurrences of variables xj1 , xj2 , and xj3 we add up to three vertices
ck for each k ∈ {j1, j2, j3} (In case a clause has less than three literals we add
only one or two vertices). If the connection to the variable is clear, we also
write c1t , c2t , c1f , and c2f for the vertices introduced for this variable’s occurrences
in the clauses C1

t , C2
t , C1

f , and C2
f , respectively. Furthermore, we add for each

variable xi the edges {ht, t1}, {ht, t2}, {hf , f1}, and {hf , f2}, as well as for each
clause Cj all possible edges between the three vertices introduced for Cj . For
each variable xi we introduce five colors, namely z1t , z2t , z1f , z2f , and zh. We set
γ(ht) = γ(hf ) = zh. Finally, we set γ(t1) = γ(c1t ) = z1t . Equivalently for t2, f1,
and f2. See Fig. 2 for an example.

In total we create 6n + 3m many vertices and 4n + 3m many edges, thus the
reduction is in polynomial time. All variable and clause gadgets are independent
components and only consist of paths of length three and triangles, hence G is a
proper interval graph. Furthermore, G can clearly be constructed in polynomial
time and space.

To establish the correctness of our reduction for 1-BDS we first introduce a
canonical type of solutions for the graphs produced by our reduction. We call
VD canonical, if for each variable xi we either find {ht, f1, f2, c

1
t , c

2
t } ⊂ VD or

{hf , t1, t2, c
1
f , c2f} ⊂ VD. If for a variable x ∈ X and a 1-balanced dominating set

VD ⊆ V we find one of the two above sets in VD, we say x is in canonical form
in VD. The next lemma shows that if G has a 1-balanced dominating set we can
turn it into a canonical one.

Lemma 1. Let G = (V,E) be a graph generated from a 2P2N-3SAT formula
φ(x1, . . . , xn) with clause set C = {C1, . . . , Cm} as above and VD ⊆ V a 1-
balanced dominating set, then VD can be transformed into a canonical 1-balanced
dominating set in O(|V |) time.

Proof. Let x be not in canonical form in VD. Since VD is a 1-balanced dominating
set we know that either ht or hf of x is in VD. Without loss of generality assume
that ht ∈ VD. Consequently, we find that f1, f2 ∈ VD and c1f , c2f 	∈ VD. Now, we

Positive Negative Positive Negative Positive Negative

Fig. 2. Illustrations of three variable gadgets and a clause gadget from Theorem 2 as
interval representations. Vertex colors correspond to interval colors.
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obtain the set V ′
D from VD by removing any occurrence of t1 or t2 from VD and

inserting all missing elements of {c1t , c
2
t }. Clearly x is in canonical form in V ′

D. We
need to show that V ′

D is still a 1-balanced dominating set. It is straight forward
to verify that every color appears exactly once in V ′

D if VD was 1-balanced. Now
assume there was a vertex u ∈ V that is not dominated by any vertex in V ′

D.
Yet, we at most deleted t1 and t2 in V ′

D but since ht ∈ V ′
D both and all their

neighbors are dominated. As our operations only affected vertices introduced for
x and occurrences of x we can simply iterate this process for each variable until
every variable xi is in canonical form. ��
Theorem 2. The f-balanced dominating set problem on a graph G = (V,E)
with a color assignment of the vertices γ : V → {1, . . . , k} is NP-complete, even
if G is a proper interval graph and f = 1.

Proof. The problem is clearly in NP as we can verify if a given set of vertices
is an f -balanced dominating set by checking if it is a dominating set and if it
contains f vertices of each color in linear time.

Let G = (V,E) be constructed from a 2P2N-3SAT formula φ(x1, . . . , xn) with
clause set C = {C1, . . . , Cm} as above and let VD be a 1-balanced dominating set
of G. By Lemma 1 we can assume VD is canonical. We construct an assignment
of the variables in φ by setting xi to true if its ht ∈ VD and to false otherwise.
Assume this assignment was not satisfying, i.e., there exists a clause Cj ∈ C
such that none of the literals in Cj evaluates to true. For each positive literal
of Cj we then get that the corresponding variable xi was set to false. Hence,
hf ∈ VD for xi and consequently c1t , c

2
t 	∈ VD. Equivalently for each negative

literal we find ht ∈ VD and c1f , c2f 	∈ VD. As a result we find that none of the
vertices introduced for literals in Cj is in VD and especially that none of them
is dominated as they are each others only neighbors. Yet, VD is a 1-balanced
dominating set by assumption, a contradiction.

In the other direction, assume we are given a satisfying assignment of a 2P2N-
3SAT formula φ(x1, . . . , xn) with clause set C = {C1, . . . , Cm}. Furthermore, let
G = (V,E) be the graph constructed from φ as above. We form a canonical
1-balanced dominating set VD ⊆ V of G in the following way. For every variable
xi that is set to true in the assignment we add {ht, f1, f2, c

1
t , c

2
t } to VD and for

every variable xi′ that is set to false we add {hf , t1, t2, c
1
f , c2f}. This clearly is a

1-balanced set and it is canonical. It remains to argue that it dominates G. For
the vertices introduced for variables this is clear, since we pick either ht or hf ,
as well as f1, f2 or t1, t2 for every variable xi. Now, assume there was a clause
Cj ∈ C and none of the vertices introduced for literals in Cj was in VD. Then,
by construction of VD, we find that for any positive (negative) occurrence of a
variable xi in Cj the variable xi was set to false (true). A contradiction to the
assignment being satisfying. ��
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3 Algorithmic Results for the Balanced Independent Set

In this section, we take a parameterized perspective on f -BIS and provide two
FPT algorithms2 with different parameters. The algorithms described in this
section can be easily generalized to maximize the value of f in f -BIS.

3.1 An FPT Algorithm Parameterized by (f, k)

Assume we are given an instance of f -BIS with G = (V,E) being an interval
graph with a color assignment of the vertices γ : V → {1, . . . , k}. We can con-
struct an interval representation I = {I1, . . . , In}, n = |V |, from G in linear
time [15]. Our algorithm is a dynamic programming based procedure that work
as follows. Firstly, we sort the right end-points of the n intervals in I in ascend-
ing order. Next, we define a function prev : V → {1, . . . , n}. for each interval
Ii ∈ I, the prev(Ii) is the index of the rightmost interval with its right endpoint
left to Ii’s left endpoint. If no such interval exists for some interval Ii, we set
prev(Ii) = 0.

For each color κ ∈ {1, . . . , k}, let êκ denote the k-dimensional unit vector
of the form (0, . . . , 0, 1, 0, . . . , 0), where the element at the κ-th position is 1
and the rest are 0. For a subset I ′ ⊆ I we define a cardinality vector as the
k-dimensional vector CI′ = (c1, . . . , ck), where each element ci represents the
number of intervals of color i in I ′. We say CI′ is valid if all ci ≤ f and the set
I ′ is independent.

The key observation here is that there are at most O((f + 1)k) many dif-
ferent valid cardinality vectors as there are only k colors and we are inter-
ested in at most f intervals per color. In the following let Uj , j ∈ {1, . . . , n},
be the union of all valid cardinality vectors of the first j intervals in I. Let
U0 = {(0, . . . , 0)} in the beginning. To compute an f -balanced independent
set the algorithm simply iterates over all right endpoints of the intervals in
I and in the i-th step computes Ui as Ui = {u + êγ(Ii) | u ∈ Uprev(Ii)

and u + êγ(Ii) is a valid cardinality vector} ∪ Ui−1. Checking if a new cardi-
nality vector is valid can be done easily by remembering for each u ∈ Ui−1 one
representative interval set with u as its cardinality vector. Finally, we check the
cardinality vectors in Un and return true in case there is one cardinality vector
w ∈ Un with entries being all f and false otherwise. Moreover, the representative
interval set of w builds an f -balanced independent set.

Theorem 3. Let G = (V,E) be an interval graph with a color assignment of
the vertices γ : V → {1, . . . , k}. We can compute an f-balanced independent set
of G or determine that no such set exists in O(n log n + k(f + 1)kn) time.

Proof. Let I = {I1, . . . , In} be an interval representation of G on which we
execute our algorithm. For U0 the set just contains the valid cardinality vector
with all zeros which is clearly correct. Let Ui−1 be the set of valid cardinality

2 FPT is the class of parameterized problems that can be solved in time O(g(k)nO(1))
for input size n, parameter k, and some computable function g.
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vectors computed after step i − 1. Now, in step i ≤ n we calculate the set
Ui as the union of Ui−1 and the potential new solutions based on independent
sets of intervals containing Ii. Assume Ix ⊆ {I1, . . . , Ii} is an independent set
of intervals such that its cardinality vector CIx

is valid, but there is no valid
cardinality vector CI′ ∈ Ui such that CI′ is larger or equal in every component
than CIx

. Since Ui−1 contained all valid cardinality vectors for the intervals
in {I1, . . . , Ii−1} we know that CIx

is such that Ii ∈ Ix. Yet, the set Uprev(Ii)

contained all valid cardinality vectors for the set of intervals {I1, . . . , Iprev(Ii)}.
Since Ii has overlaps with all intervals in {Iprev(Ii)+1, . . . , Ii−1} and hence cannot
be in any independent set with any such interval we can conclude that CIx

−
êγ(Ii) ∈ Uprev(Ii). Though, we also find CIx

∈ Ui, a contradiction.
Next we consider the running time. The key observation is that there are at

most (f + 1)k different valid cardinality vectors. Checking the validity can be
done in O(1) time for each new vector as only one entry changes. Computing
the sets Ui can be done in time O(k(f + 1)k), by storing the cardinality vectors
in lexicographic sorted order for each set. Keeping the sets in sorted order does
not require any extra running time, as U0 is clearly sorted in the beginning
(it only contains one element) and we only increase the same entry for each
vector in Uprev(Ii) when forming the union, thus not changing their ordering.
Hence, the set Uprev(Ii) and Ui−1 can be assumed to be sorted in lexicographic
order. Consequently, by merging from smallest to largest element the set Ui

is again lexicographically sorted after the union. Furthermore, we can easily
discard double entries by comparing also against the vector we inserted last into
Ui. Finally, we have to sort the intervals themselves. Using standard sorting
algorithms this works in O(n log n) time. Altogether, this results in a running
time of O(n log n + k(f + 1)kn). ��

3.2 An FPT Algorithm Parameterized by the Vertex Cover
Number

Here we will give an alternative FPT algorithm for f -BIS, this time parameter-
ized by the vertex cover number τ(G) of G, i.e., the size of a minimum vertex
cover of G.

Lemma 2. Let G = (V,E) be a graph. Consider a vertex cover Vc in G and
its complement Vind = V \ Vc. Then any maximal independent set M of G can
be constructed from Vind by adding the subset M ∩ Vc of Vc and removing its
neighborhood in Vind, namely M = (Vind ∪ (M ∩ Vc)) \ N(M ∩ Vc).

Proof. For a fixed but arbitrary maximal independent set M , in the following,
we denote the set (Vind ∪ (M ∩ Vc)) \ N(M ∩ Vc) as Mswap.

We first prove the independence of Mswap. Note that by the definition of
a vertex cover Vind is an independent set. Furthermore, the set (M ∩ Vc), as
a subset of the independent set M , is also independent. Then, in the union
Vind ∪ (M ∩Vc) of these two independent sets, any adjacent pair of vertices must
contain one vertex in M ∩ Vc and one in Vind. Hence, after removing all the
neighboring vertices of M ∩ Vc, the set Mswap is independent.
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Next we prove that M ⊆ Mswap. Assume there exists one vertex vm in M
but not in Mswap. Since vm ∈ M it must also be in the set Vind ∪ (M ∩ Vc).
With the assumption that vm /∈ Mswap, we get that vm must be in N(M ∩ Vc).
Consequently, vm is in the independent set M and is at the same time a neighbor
of vertices in M , a contradiction.

Finally we prove M = Mswap. We showed above that Mswap is an independent
set and also M ⊆ Mswap. Since M is a maximal independent set by assumption
we get M = Mswap. ��
Lemma 3. Let G = (V,E) be a graph with vertex cover number τ(G). There
are O(2τ(G)) maximal independent sets of G.

Proof. Consider a minimum vertex cover Vc in G and its complement Vind =
V \ Vc. Note that since Vc is a (minimum) vertex cover, Vind is a (maximum)
independent set. Furthermore, any maximal independent set M of G can be
constructed from Vind by adding M ∩Vc and removing its neighborhood in Vind,
namely M = (Vind∪(M ∩Vc))\N(M ∩Vc) by Lemma 2. Thus there are O(2τ(G))
maximal independent sets of G. ��
Theorem 4. Let G = (V,E) be an interval graph with a color assignment of
the vertices γ : V → {1, . . . , k}. We can compute an f-balanced independent set
of G or determine that no such set exists in O(2τ(G) · n) time.

Proof. According to Lemma 3, there are O(2τ(G)) maximal independent sets of
G. The basic idea is to enumerate all the O(2τ(G)) maximal independent sets and
compute their maximum balanced subsets. Enumerating all maximal indepen-
dent sets of an interval graph takes O(1) time per output [17]. Given an arbitrary
independent set of G we can compute an f -balanced independent subset in O(n)
time or conclude that no such subset exists. Therefore, the running time of the
algorithm is O(2τ(G) · n). ��

4 Approximation Algorithms for the 1-Max-Colored
Independent Set

Here we study a variation of the BIS, which asks for a maximally colorful inde-
pendent set.

1-Max-Colored Independent Set (1-MCIS): Let G = (V,E) be an interval
graph with a color assignment of the vertices γ : V → {1, . . . , k}. The objective
is to find a 1-max-colored independent set of G, i.e., an independent set L ⊆ V ,
whose vertices contain a maximum number of colors and L contains exactly 1
element from each color class.

We note that the NP-completeness of 1-BIS implies that 1-MCIS is an NP-
hard optimization problem as well.
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Fig. 3. Comparison of a solution S of the algorithm and an optimal solution O. Subset
M ⊆ O contains two colors (red and blue) missing from S, but each interval in M
contains the right endpoint of a different interval from S. (Color figure online)

4.1 A 2-Approximation for the 1-Max-Colored Independent Set

In the following, we will show a simple sweep algorithm for 1-MCIS with approx-
imation ratio 2.

First, we sort the intervals from left to right based on their right end-points.
Then, our algorithm scans the intervals from left to right, and at each step selects
greedily an interval of a distinct color such that no interval of the same color
has been selected before. Moreover, we maintain a solution array S of size k to
store the selected intervals.

For each interval Ii in this order, we check if the color of Ii is still missing
in our solution (by checking if S[γ(Ii)] is not yet occupied). If yes, we store Ii

in S[γ(i)] and remove all the remaining intervals overlapping Ii. Otherwise, if
S[γ(Ii)] is not empty, we remove Ii and continue scanning the intervals. This
process is repeated until all intervals are processed. Then, by using a simple
charging argument on the colors in an optimal solution that are missing in our
greedy solution, we obtain the desired approximation factor.

Theorem 5. Let G = (V,E) be an interval graph with a color assignment of the
vertices γ : V → {1, . . . , k}. In O(n log n) time, we can compute an independent
set with at least � c

2 colors, where c is the number of colors in a 1-max-colored
independent set.

Proof. It is clear from the above description that the greedy algorithm finds an
independent set. We maintain a solution array S, and it is possible to check if an
interval of a particular color is already available in S in constant time. Therefore,
the entire algorithm runs in O(n log n) time.

In order to prove the approximation factor, we compare the solution S of our
greedy algorithm with a fixed 1-max-colored independent set O (see Fig. 3). Let
M = {Ii ∈ O | �Ij ∈ S with γ(Ij) = γ(Ii)} be the subset of O consisting of
intervals of missing colors in S. Now, consider an interval Im ∈ M . There must
be at least one interval Is ∈ S, whose right endpoint is contained in the interval
Im. Otherwise, since there is no interval of the same color as Im in S, the greedy
algorithm would scan Im as the interval with the leftmost right endpoint in the
process and select it in S. Thus, the function ρ, which maps each interval Im

in M to an interval Is in S such that Is is the rightmost interval in S with its
right endpoint is contained in Im, is well-defined. Furthermore, ρ is an injective
function because of the independence of the set M . Therefore, we can conclude
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that the cardinality of the set S is greater than or equal to the cardinality of M .
Note that, |M | + |S| ≥ |O|. Hence, S has size at least � c

2. ��

4.2 A PTAS for the 1-Max-Colored Independent Set

In this section, we present a polynomial time approximation scheme (PTAS) for
1-Max-Colored Independent Set (1-MCIS). Our algorithm is based on the careful
usage and analysis of the local search technique. We prove that, this algorithm
is, in fact, a PTAS for 1-MCIS on interval graphs. Let L be the solution of the
local search algorithm. We aim to bound the size of an optimal solution O in
terms of |L |. To this end, we construct a bipartite planar conflict graph between
the subsets of L and O. Then, by applying a version of the planar separator
theorem [8], we obtain the desired bounds. Mustafa and Ray [16] were the first
to show the usefulness of local search to obtain a PTAS for the geometric hitting
set problem. Here, we use an analysis that is similar to the one used by Chan
and Har-Peled for the maximum independent set problem on pseudo-disks [5].

The Algorithm. Let G = (V,E) be a vertex-colored interval graph with a k-
coloring γ : V → {1, . . . , k} for some k ∈ N. Furthermore, set n = |V | and
m = |E|. For two subsets L, L′ ⊆ V , we say L and L′ are b-local neighbors if
their differences are bounded by some b ∈ R, i.e., |L′ \ L| ≤ b and |L \ L′| ≤ b.
Let N(L) be the set of all b-local neighbors of L. Observe, that for each subset
L ⊆ V we find |N(L)| ≤ O(

(
n
2b

)
). We denote with c(L) the number of different

colors among the vertices in L. An independent set L ⊆ V is b-locally optimal
for the 1-MCIS problem on G if for each L′ ∈ N(L) we find that either L′ is not
an independent set or c(L′) ≤ c(L).

Our algorithm first computes an initial solution L by executing the algorithm
described in Sect. 4.1. In case c(L) = k we return L as there is no chance
to improve the solution. Assume c(L) < k. To turn L into a b-locally optimal
solution for some fixed b ∈ R we perform a local search over the b-local neighbors
of L. If a b-local neighbor L′ of L is an independent set for G and c(L′) > c(L)
we set L′ as the current solution and restart the local search with L′. Once the
local search terminates without finding such an L′ or when c(L) = k we return
the current solution L.

Run-Time. Clearly, checking for a set L ⊆ V if it is an independent set for G can
be done in O(m) time. Furthermore, we can compute c(L) in time O(|L|). Recall,
that for L ⊆ V , the set N(L) has at most O(

(
n
2b

)
) elements. It remains to bound

the number of times we might swap the current solution in the second step of
our algorithm. Let L ⊆ V be the current solution in the second step, then we
swap L for some L′ ∈ N(L) only if c(L′) > c(L). This happens at most k times
as after k such improvements we would have found an optiomal solution to the
1-MCIS problem on G. Consequently, the running time of the whole algorithm
is bounded by O(k · n2b+1).
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Analysis. Let L be a 1
ε2 -locally optimal solution for 1-MCIS on G obtained by

our local search approach for a fixed constant ε and O is a fixed but arbitrary
optimal solution for the same problem on G. To ease the following analysis,
we assume each solution set contains for each color at most one vertex. Let
L = L \O and O = O\L . Next, we construct a graph H = (VH , EH) containing
a vertex u ∈ VH for every interval in L ∪ O and there is an edge between two
vertices u, v ∈ VH (with u 	= v) such that, either the corresponding intervals of u
and v intersect or γ(u) = γ(v). We distinguish between these two types of edges:
the former edges are called interval-edges and the latter are called color-edges.

Observation 1. Let H = (VH , EH) be a graph constructed as above, then a
vertex u ∈ VH is incident to at most one color-edge.

Lemma 4. Let graph H = (VH , EH) be constructed as above, H is bipartite and
planar.

Proof. Let VH = L ∪ O be the set as used in the definition of H. Since L and O
are both independent sets in G and contain for each color at most one vertex it
follows that H is bipartite.

It remains to show that H is also planar. We are going to show that H cannot
contain a K3,3 as subgraph. For the sake of contradiction, assume H did in fact
contain a K3,3 and let V ′ ⊆ VH be its vertices and E′ ⊆ EH its edges. To make
the following arguments easier we fix an arbitrary interval representation I =
{I1, . . . , In} of G. Let IL = {I1� , I2� , I3� } be the set of three intervals corresponding
to vertices in V ′∩L and IO = {I1o , I2o , I3o} the set of three intervals corresponding
to vertices in V ′ ∩O. Without loss of generality we assume that the intervals are
ordered by their left endpoints. Since the corresponding vertices are part of the
independent sets L and O we get that I1� is completely to the left of I2� which
is in turn completely to the left of I3� . The same holds for the Ii

o with i = 1, 2, 3.
We differentiate two cases, namely if there are nesting intervals in IL ∪ IO or

not. First, assume there are no nesting intervals in IL ∪ IO. Among the edges in
E′ at most three are color-edges by Observation 1. Hence, the other edges must be
interval-edges and consequently, every interval in IO has to intersect at least two
intervals in IL and vice versa. Furthermore, since the intervals in IL are pairwise
non-intersecting, no interval in IO can intersect all three intervals in IL. Conse-
quently, every interval in IL has to intersect two intervals in IO and every interval
in IO has to intersect two intervals in IL. An impossibility since no nestings are
allowed. Second, assume that there are two intervals nesting and let u ∈ EH be
the vertex corresponding to the nested interval. But then, u has degree at most
two in H[V ′]. This is since the intervals in IL and IO are pairwise non-intersecting
and by Observation 1 at most one of the edges is a color-edge. ��

Since H is planar, we can follow a similar analysis as in [5] using the following
lemma. For a set U ⊆ (O ∪L), let Γ (U) ⊆ VH be the set of neighbors of vertices
in U .

Lemma 5. ([8]) There are constants c1, c2 and c3, such that for any planar
graph G = (V,E) with n vertices, and a parameter r, one can find a set of X ⊆ V
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of size at most c1n√
r
, and a partition of V \ X into n

r sets V1,...,Vn
r
, satisfying:

(i) |Vi| ≤ c2r, (ii) Γ (Vi) ∩ Vj = ∅, for i 	= j, and (iii) |Γ (Vi) ∩ X| ≤ c3
√

r.

Now, we apply Lemma 5 to H with r = 1
ε2(c2+c3)

. Let X ⊆ VH be the
separator set in Lemma 5 and V1, . . . , Vn

r
be the resulting vertex partition. For

each i ∈ {1, . . . , n
r }, let Li = Vi ∩ L, Oi = Vi ∩ O. The following two lemmas

equip us with the necessary bounds to show the result.

Lemma 6. Let Oi be obtained from H as defined above, then |Oi| ≤ |Γ (Oi)| for
every i = 1, . . . , n

r .

Proof. We show |Oi| ≤ |Γ (Oi)| by contradiction. First, with r = 1
ε2(c2+c3)

we
obtain that |Oi| ≤ |Vi| ≤ c2r = c2

ε2(c2+c3)
≤ 1

ε2 , and |Γ (Oi)| ≤ |Vi|+|Γ (Vi)∩X| ≤
c2r + c3

√
r ≤ (c2 + c3)r = 1

ε2 . Now, Γ (Oi) contains exactly the intervals of L,
which have the same color as or intersect with intervals in Oi. Thus, the set
L′ = (L ∪ Oi) \ Γ (Oi) is an independent set and contains each color at most
once. If |Oi| > Γ (Oi), then |L′| > |L|. Moreover, the sizes of Oi and Γ (Oi) are
both bounded by 1

ε2 . A contradiction to our assumption that L is a 1
ε2 optimal

solution and L is a subset of L . ��
Lemma 7. Let H = (L ∪ O,EH) be the graph constructed as above from sets L

and O, then |L| ≥ 1−O(ε)
1+O(ε) |O|.

Proof. Let X ⊆ V be the set guaranteed to exist by Lemma 5 and the Oi for
i = 1, . . . , n

r be constructed as above, then

|O| ≤
∑

i

|Oi| + |X|

≤
∑

i

Γ (Oi) + |X| (by Lemma 6)

≤
∑

i

(|Li| + |Γ (Oi) ∩ X|) + |X|

≤ |L| +
∑

i

|Γ (Vi) ∩ X| + |X|

≤ |L| + c3
√

r · |O| + |L|
r

+ c1 · |O| + |L|√
r

≤ |L| + (c1 + c3) · |O| + |L|√
r

= |L| + (c1 + c3)ε
√

c2 + c3(|O| + |L|)
= |L| + O(ε)(|O| + |L|).

Now, rearranging the final inequality gives us |L| ≥ 1−O(ε)
1+O(ε) |O| as desired. ��

Using Lemma 7 we obtain the following theorem which implies that our
algorithm is indeed a PTAS for 1-MCIS on interval graphs.
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Theorem 6. Let G = (V,E) be a vertex-colored interval graph with a k-coloring
γ : V → {1, . . . , k} for some k ∈ N. For a sufficiently small parameter ε, each
1
ε2 -locally optimal solution L ⊆ V to the 1-MCIS problem on G contains at least
1−O(ε)
1+O(ε) · opt distinct colors, where opt is the number of colors in an optimal
solution to the 1-MCIS problem on G.

Proof. From Lemma 7, |L | = |L| + |L ∩ O| ≥ 1−O(ε)
1+O(ε) |O| + |L ∩ O| ≥ 1−O(ε)

1+O(ε)

|O|. ��

5 Conclusions

In this paper, we have studied the f -Balanced Independent and Dominating set
problem for interval graphs. We proved that these problems are NP-complete and
obtained algorithmic results for the f -Balanced Independent Set problem. An
interesting direction is to obtain algorithmic results for f -Balanced Independent
Set problem for other geometric intersection graphs, e.g., rectangle intersection
graphs, unit disk graphs etc. Our results may help to tackle these problems
since algorithms for computing (maximum weighted) independent sets of geo-
metric objects in the plane often use algorithms for interval graphs as subrou-
tines. Another interesting problem is to design approximation or parameterized
algorithm for the f -Balanced Dominating Set problem for interval graphs.
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