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Abstract. A simple drawing D(G) of a graph G is one where each pair
of edges share at most one point: either a common endpoint or a proper
crossing. An edge e in the complement of G can be inserted into D(G)
if there exists a simple drawing of G + e extending D(G). As a result
of Levi’s Enlargement Lemma, if a drawing is rectilinear (pseudolinear),
that is, the edges can be extended into an arrangement of lines (pseu-
dolines), then any edge in the complement of G can be inserted. In con-
trast, we show that it is NP-complete to decide whether one edge can
be inserted into a simple drawing. This remains true even if we assume
that the drawing is pseudocircular, that is, the edges can be extended to
an arrangement of pseudocircles. On the positive side, we show that,
given an arrangement of pseudocircles A and a pseudosegment σ, it
can be decided in polynomial time whether there exists a pseudocircle
Φσ extending σ for which A ∪ {Φσ} is again an arrangement of
pseudocircles.
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1 Introduction

A simple drawing of a graph G (also known as good drawing or as simple topo-
logical graph in the literature) is a drawing D(G) of G in the plane such that
every pair of edges shares at most one point that is either a proper crossing or a
common endpoint. In particular, no tangencies between edges are allowed, edges
must not contain any vertices in their relative interior, and no three edges inter-
sect in the same point. Simple drawings have received a great deal of attention in
various areas of graph drawing, for example in connection with two long-standing
open problems: the crossing number of the complete graph [30] and Conway’s
thrackle conjecture [26].

In this work, we study the problem of inserting an edge into a simple drawing
of a graph. Given a simple drawing D(G) of a graph G = (V,E) and an edge e of
the complement G of G we say that e can be inserted into D(G) if there exists
a simple drawing of G′ = (V,E ∪ {e}) that contains D(G) as a subdrawing.

A pseudoline arrangement is an arrangement of simple biinfinite arcs, called
pseudolines, such that every pair of pseudolines intersects in a single point that is
a proper crossing. Similarly, an arrangement of pseudocircles is an arrangement
of simple closed curves, called pseudocircles, such that every pair of pseudocircles
intersects in either zero or two points, where in the latter case, both intersection
points are proper crossings. A simple drawing D(G) is called pseudolinear if the
drawing of every edge can be extended to a pseudoline such that the extended
drawing forms a pseudoline arrangement. Likewise, D(G) is called pseudocircular
if the drawing of every edge can be extended to a pseudocircle such that the
extended drawing forms an arrangement of pseudocircles.

Pseudoline arrangements were introduced by Levi [24] in 1926 and have since
been extensively studied; see for example [13]. One of the most fundamental
results on pseudoline arrangements, nowadays well known as Levi’s Enlargement
Lemma, stems from Levi’s original paper1. It states that, for any given pseudoline
arrangement L and any two points p and q not on the same pseudoline of L, it
is always possible to insert a pseudoline through p and q into L such that the
resulting arrangement is again a valid pseudoline arrangement.

From Levi’s Enlargement Lemma, it immediately follows that given any pseu-
dolinear drawing D(G) and any set E∗ of edges from G, it is always possible
to insert all edges from E∗ into D(G) such that the resulting drawing is again
pseudolinear. To the contrary, as shown by Kynčl [23], this is in general not the
case for simple drawings, not even if G is a matching plus two isolated vertices
which are the endpoints of the edge to be inserted [22]. The latter implies that an
analogous statement to Levi’s Enlargement Lemma is not true for arrangements
of pseudosegments (simple arcs that pairwise intersect at most once). Moreover,
Arroyo, Derka, and Parada [2] recently showed that given a simple drawing D(G)
and a set E∗ of edges from G, it is NP-complete to decide whether E∗ can be
inserted into D(G) (such that the resulting drawing is again simple). However,

1 Also known as Levi’s Extension Lemma. Several different proofs of Levi’s Enlarge-
ment Lemma have been published since then [3,14,31–33].
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the cardinality of E∗ required for their hardness proof is linear in the size of
the constructed graph. The main open problem posed in [2] is the complexity of
deciding whether one single given edge e of G can be inserted into D(G).

In this work, we show that this decision problem is NP-complete, even if G is
a matching plus two isolated vertices which are the endpoints of e. This implies
that, given an arrangement S of pseudosegments and two points p and q not on
the same pseudosegment, it is NP-complete to decide whether it is possible to
insert a pseudosegment from p to q into S such that the resulting arrangement
is again a valid arrangement of pseudosegments (Sect. 2). On the positive side,
we observe that the decision problem is fixed-parameter tractable (FPT) in the
number of crossings of the drawing (Sect. 4).

Snoeyink and Hershberger [32] showed the following analogon to Levi’s
Enlargement Lemma for arrangements of pseudocircles: For any arrangement
A of pseudocircles and any three points p, q, and r, not all of them on one pseu-
docircle of A, there exists a pseudocircle Φ through p, q, and r such that A∪{Φ}
is again an arrangement of pseudocircles. Refining our hardness proof, we show
that the edge-insertion decision problem remains NP-complete when D(G) is a
pseudocircular drawing, regardless of whether the resulting drawing is required
to be again pseudocircular or allowed to be any simple drawing. This holds even
if we are in addition given an arrangement of pseudocircles extending D(G). On
the positive side, we show that, given an arrangement A of pseudocircles and
a pseudosegment σ, it can be decided in polynomial time whether there exists
an extension Φσ of σ to a simple closed curve such that A ∪ {Φσ} is again an
arrangement of pseudocircles (Sect. 3).

One of the implications of the results presented in this paper concerns so-
called saturated drawings [22]. A simple drawing D(G) of a graph G is called
saturated if no edge e from G can be inserted into D(G). It is known that there
are saturated simple drawings with a linear number of edges [16]. A natural
question is to determine the complexity of deciding whether a simple drawing is
saturated. Our hardness result implies that the straight-forward idea of testing
whether D(G) is saturated by checking for every edge in G whether it can be
inserted into D(G) is not feasible unless P = NP.

The problem of inserting an edge (or multiple edges or a star) into a planar
graph has been extensively studied in the contexts of determining the crossing
number of the resulting graph [6,29] and of finding a drawing of the resulting
graph in which the original planar graph is drawn crossing-free and the drawing
of the resulting graph has as few crossings as possible [10,11,15,28]. In relation
to our work, a main difference is that we consider inserting edges into some
given non-plane drawing of a graph. Furthermore, the question considered in
this paper is strongly related to work on extending partial representations of
graphs. Here, we are usually given a representation of a part of the graph G
and are asked to extend it into a full representation of G such that the partial
representation is a sub-representation of the full one. Recent years have seen a
plethora of results in this topic [1,4,5,7–9,12,17–21,25,27].

Proofs of statements marked with � are deferred to the full version of this
work.
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2 Inserting One Edge into a Simple Drawing Is Hard

Theorem 1. Given a simple drawing D(G) of a graph G = (V,E) and an edge
uv of G, it is NP-complete to decide whether uv can be inserted into D(G), even
if V \ {u, v} induces a matching in G and u and v are isolated vertices.

It is straightforward to verify that the problem is in NP (see Arroyo et al. [2]
for a combinatorial description of our problem using the dual of the planariza-
tion of the drawing). We show NP-hardness via a reduction from 3SAT. Let
φ(x1, . . . xn) be a 3SAT-formula with variables x1, . . . , xn and set of clauses
C = {C1, . . . , Cm}. An occurrence of a variable xi in a clause Cj ∈ C is called a
literal. For convenience, we assume that in φ(x1, . . . , xn), each clause has three
(not necessarily different) literals. In a preprocessing step, we eliminate clauses
with only positive or only negative literals via the transformation from Lemma 1.

Lemma 1 (�). The following transformation of a clause with only positive or
only negative literals, respectively, preserves the satisfiability of the clause (y is
a new variable and false is the constant value false):

xi∨xj ∨xk ⇒
{

xk∨y ∨ false (i)
xi∨xj ∨¬y (ii)

¬xi∨¬xj ∨¬xk ⇒
{

¬xi∨¬xj ∨y (iii)
¬xk∨¬y∨false (iv)

After the preprocessing, we have a transformed 3SAT-formula where each
clause is of one of the following four types: Type (i) two positive literals and one
constant false; Type (ii) one negative and two positive literals; Type (iii) one
positive and two negative literals, and finally, Type (iv) two negative literals and
one constant false.

Given a transformed 3SAT-formula φ = φ(x1, . . . , xn) with set of clauses
C = {C1, . . . , Cm}, satisfiability of φ will correspond to being able to insert
a given edge uv into a simple drawing D of a matching constructed from the
formula φ. The main idea of the reduction is that the variable and clause gadgets
in D act as “barriers” inside a simple closed region R of D, in which we need to
insert a simple arc γ from one side to the other to connect u and v. Crossing a
barrier in some way imposes constraints on how or whether we can cross other
barriers afterwards.

To simplify the description, we first focus our attention to the inside of the
simple closed region R. We assume that γ cannot cross the boundary of R. In
the following we use two lines, named λ and μ, to bound the regions in which
a variable and clause gadget will be placed. Particularly, these lines will be
identified with opposite segments on R’s boundary.

Variable Gadget. A variable gadget W is bounded from above by a horizontal
line λ and from below by a horizontal line μ. Additionally, it contains a vertical
segment κ between λ and μ, a set P of pairwise non-crossing arcs (parts of later-
defined edges), each with one endpoint on κ and the other endpoint on μ, and a
set N of pairwise non-crossing arcs, each with one endpoint on κ and the other
endpoint on λ. On κ, all the endpoints of arcs in P lie above all the endpoints
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of arcs in N , implying that every arc in P crosses every arc in N . Finally, we
choose two points u and v such that u is to the left of all arcs in W and v is to
the right of them; see Fig. 1 for an illustration. The arcs in P and N correspond
to positive and negative appearances of the variable, respectively.

Lemma 2 (�). Let W be a variable gadget. Any arc between the horizontal lines
λ and μ that connects u and v crosses either all arcs in P or all arcs in N .

Fig. 1. Variable gadget. The orange
arcs belong to N , the green ones to P .
(Color figure online)

Fig. 2. Clause gadget.

Clause Gadget. Similar to a variable gadget, a clause gadget K is bounded from
above and below by two horizontal lines λ and μ, respectively. Additionally, it
contains three horizontal arcs (parts of later-defined edges) γa, γb, and γc, where
the former two have one endpoint on λ and the latter has one endpoint on μ.
On λ, the endpoint of γa lies to the right of the one of γb. The other endpoints of
γa, γb, and γc are called a, b, and c, respectively. None of these three arcs cross.
Moreover, K contains two points d and g and an edge dg that crosses γa, γc,
and γb in that order when traversed from d to g. Notice that we do not require
any specific rotation of the crossings of dg with γa and γb (where the rotation is
the clockwise order of the endpoints of the crossing arcs). However, to simplify
the description, we assume that the rotations of the crossings are as in Fig. 2.
The rotation of the crossing of dg with γc is forced by the order of the crossings
along dg. Finally, we again choose two points u and v such that u is to the left
of all arcs in K and v is to the right of them; see Fig. 2 for an illustration.

Lemma 3 (�). Let K be a clause gadget. Any arc uv between the horizontal
lines λ and μ that connects u and v crosses either dg twice or at least one of the
arcs γa, γb, and γc.
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Fig. 3. The simple drawing ©� presented
in [22].

The Reduction. Let φ(x1, . . . , xn) be a
transformed 3SAT-formula with clause
set C = {C1, . . . , Cm} (each clause
being of one of the four types iden-
tified above). To build our reduction
we need one more gadget. First, we
introduce the following simple draw-
ing introduced by Kynčl et al. [22,
Figure 11] and depicted in Fig. 3. Here,
we denote this drawing by ©� . Follow-
ing the notation by Kynčl et al., we
denote its six arcs by a1, a2, a3, b1, b2,
and b3; and its eight cells by X, A1, A2, A3, B1, B2, B3, and Y ; see Fig. 3 for
an illustration. The core property P of ©� is that it is not possible to insert an
edge between a point in cell X and another point in cell Y such that the result
is a simple drawing [22, Lemma 15].

For our reduction, we first choose two arbitrary points u and v in the cells X
and B2 and insert them as vertices into ©� . Let ©� ′ be the obtained drawing.
Further, let b∗

2 be the part of the arc b2 between the crossing point of b2 and a2

and the crossing point of b2 and b3, see again Fig. 3.

Lemma 4 (�). The edge uv cannot be inserted into ©� ′ without crossing b∗
2.

The final piece we need for our reduction is a set F of mI + mIV + 4 arcs
that we insert into ©� ′, where mI is the number of clauses of Type (i) and mIV

the number of clauses of Type (iv). For an arc f ∈ F we will place one of its
endpoints on a horizontal line κF inside A2 and the other one inside B2. The
only crossings of f with ©� ′ are with the arcs a2, a1, b3, and b2, in that order,
when traversing f from its endpoint on κF to its endpoint in B2. Furthermore,
when f is traversed in that direction, it crosses from A2 to A1, from A1 to B3,
from B3 to Y , and from Y to B2.

Consider the mI + mIV + 4 endpoints on κF sorted from left to right. We
denote by fj the arc in F incident with the j-th such endpoint. When traversing
b2 from its endpoint in A2 to its endpoint in B1, the crossings of arcs in F with b2
appear in the same order as their endpoints on κF . More precisely, the crossings
of b2, when b2 is traversed in that direction, are with a2, a1, b3, f1, f2, . . . , f|F |,
and b1, in that order.

The arcs fmI+1, fmI+2, fmI+3, and fmI+4 will behave differently than the
other arcs in F . In the following, we denote these four arcs by r2, r1, 	1, and 	2,
respectively. There are only two crossings between arcs in F , namely, between r1
and r2, and between 	1 and 	2, and both these crossings are inside B2. These four
crossing arcs divide B2 into three regions. Let R denote the region with b∗

2 on its
boundary; let Rr denote the (other) region incident with the crossing between r1
and r2; and let R� denote the (other) region incident with the crossing between
	1 and 	2. Arcs r1, r2, 	1, and 	2 must be drawn such that the vertex v lies in R;
see the red arcs in Fig. 4 for an illustration. The precise endpoints of the edges
in F \ {r1, r2, 	1, 	2} will be fixed when we insert the clause gadgets.
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Type (i)Type (ii)Type (iii)Type (iv)

Fig. 4. Illustration of the reduction. (Color figure online)

Lemma 5 (�). The edge uv cannot be inserted into ©� ′ without crossing every
arc in F in the closure of A1 or of B3.

It remains to insert inside R the clause and variable gadgets and precisely
define the endpoints of arcs in F \{	1, 	2, r1, r2}. For simplicity, we first insert the
variable gadgets and then the clause gadgets. The idea is that each clause and
variable gadget is inserted in R separating b∗

2 from v. This is done by identifying
the endpoints that were lying on λ or μ with points on 	1, 	2, r1, r2, or b2. As
a result, Lemmas 2 and 3 can be applied to the arc that we insert connecting u
and v in the final drawing, since it has to cross b∗

2 by Lemma 4.
We now insert the variable gadgets into R. Let W (i) be the variable gadget

corresponding to variable xi. For a gadget W (i), the arcs in N are drawn such
that the endpoints on λ lie on the part of 	1 that bounds R. The arcs in P
are drawn similarly, but with the endpoints on μ lying on the part of r1 that
bounds R. Moreover, we identify vertex v in the gadget with vertex v in ©� ′.
Gadgets corresponding to different variables are inserted without crossing each
other. We now specify how they are inserted relative to each other. As we traverse
	1 from its endpoint on κF to its endpoint in R, we encounter the endpoints of
arcs in W (i) before the endpoints of arcs in W (i+1). Analogously, as we traverse
r1 from its endpoint on κF to its endpoint in R, we encounter the endpoints of
arcs in W (i) before the endpoints of arcs in W (i+1). See Fig. 4 for an illustration.

In a similar way we insert the clause gadgets. Let K(j) be the clause gadget
corresponding to clause Cj . If Cj is of Type (i), K(j) is inserted such that the
endpoints on λ lie on the part of 	2 that bounds R. If Cj is the j′-th clause
of Type (i), we identify c with the endpoint of the arc fj′ . Similarly, if Cj is of
Type (iv), K(j) is inserted such that the endpoints on λ lie on the part of r2 that
bounds R. If Cj is the j′-th clause of Type (iv), we identify c with the endpoint
of the arc fmI+4+j′ . If Cj is of Type (ii), K(j) is inserted such that the endpoints
on λ lie on the part of 	2 that bounds R and the endpoint on μ lies on the part
of r2 that bounds R. Similarly, if Cj is of Type (iii), K(j) is inserted such that
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the endpoint on μ lies on the part of 	2 that bounds R and the endpoints on λ
lie on the part of r2 that bounds R. The crossings in R of arcs from different
clause gadgets are of arcs with an endpoint in r2 with arcs in {fj : 1 ≤ j ≤ mI}.

We now specify how different clause gadgets are inserted relative to each
other. As we traverse 	2 from its endpoint on κF to its endpoint in R, we first
encounter the endpoints of arcs corresponding to Type (iii) clauses, followed by
the ones corresponding to Type (ii) clauses, and finally the ones corresponding
to Type (i) clauses. Analogously, as we traverse r2 from its endpoint on κF to its
endpoint in R, we first encounter the endpoints of arcs corresponding to Type (iv)
clauses, followed by the ones corresponding to Type (iii) clauses, and finally the
ones corresponding to Type (ii) clauses. Moreover, as we traverse 	2 and r2 in
the specified directions, the endpoints of arcs corresponding to the j′-th clause
of a certain type are encountered before the endpoints of arcs corresponding to
the (j′ − 1)-st clause of this type. An illustration can be found in Fig. 4.

Finally, we connect arcs from variable and clause gadgets inside the regions R�

and Rr. This is done such that if a literal in a clause is xk then the corresponding
arc in the clause gadget, that has an endpoint on 	2, is connected with an arc
in N of the gadget W (k), that has an endpoint on 	1. Thus, these connections
can lie in R�. Analogously, if a literal in a clause is ¬xk then the corresponding
arc in the clause gadget, that has an endpoint on r2, is connected with an arc
in P of the gadget W (k), that has an endpoint on r1. Thus, these connections
can lie in Rr. Since, without loss of generality, we can assume that R� and Rr are
convex regions and the endpoints we want to connect are pairwise distinct points
on the boundaries of those regions, the connections can be drawn as straight-
line segments. (For clarity, in Fig. 4, these connections have one bend per arc.)
Therefore, there is at most one crossing between each pair of connecting arcs.

Each connecting arc is concatenated with the arcs in a variable and in a
clause gadget that it joins. These concatenated arcs are edges in our drawing
that have one endpoint in a variable gadget and the other one in a clause gadget.
By construction, each such edge corresponds to a literal in the formula φ and
each pair of them crosses at most once. Similarly, the arcs in F \ {	1, 	2, r1, r2}
have one endpoint in a clause gadget and also define edges in our final drawing
that we denote by the same names as the corresponding arcs.

We now have all the pieces that constitute our final drawing. It consists of (i)
the simple drawing ©� ′; (ii) the edges fi ∈ F drawn as the described arcs (with
their endpoints as vertices); (iii) the edges corresponding to literals (with their
endpoints as vertices); and (iv) the edges dg in each clause gadget (with d and g
as vertices). Observe that the constructed drawing is a simple drawing, as it is
the drawing of a matching (plus the vertices u and v) and, by construction, any
two edges cross at most once.

It remains to show that the presented construction is a valid reduction.

Lemma 6 (�). The above construction is a poly-time reduction from 3SAT to
the problem of deciding whether an edge can be inserted into a simple drawing.
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Remarks and Extensions. As our reduction from 3SAT constructs a simple draw-
ing D(G) of a matching, the general problem is NP-hard even if G is as sparse as
possible. We remark that if we do not require G to be a matching, our variable
gadget can be simplified by identifying all the vertices on κ and removing the
crossings between edges in N and P . Moreover, from the constructed drawing
D(G), one can produce an equivalent instance that is connected: This is done
by inserting an apex vertex into an arbitrary cell of the drawing, and then sub-
dividing its incident edges so that the resulting drawing D∗ is simple. If uv can
be inserted into D(G) then it can be inserted also into D∗. Finally, it is possible
to show that the simple drawings produced by our reduction are pseudocircular
implying the following result.

Corollary 1 (�). Given a pseudocircular drawing D(G) of a graph G = (V,E)
and an edge uv of G, it is NP-complete to decide whether uv can be inserted
into D(G), even if an arrangement of pseudocircles extending the drawing of the
edges in D(G) is provided.

3 Extending an Arrangement of Pseudocircles Is Easy

In the previous section we proved that deciding whether an edge can be inserted
into a pseudocircular drawing such that the result is a simple (or a pseudo-
circular) drawing is hard. In this section we focus on extending arrangements
instead of drawings of graphs. Snoeyink and Hershberger [32] showed that given
an arrangement A of pseudocircles and three points, not all three on the same
pseudocircle, one can find a pseudocircle Φ through the three points such that
A∪{Φ} is again an arrangement of pseudocircles. Now, given any arrangement A
and a pseudosegment σ intersecting each pseudocircle in A at most twice, it is
not always possible to extend σ to a pseudocircle Φσ ⊃ σ such that A ∪ {Φσ} is
again an arrangement of pseudocircles. Two examples are shown in Figs. 5 and 6.
In either, any pseudocircle Φσ extending σ crosses one red or blue pseudocircle
at least four times. However, we show in the following that the extension decision
question can be answered in polynomial time:

Theorem 2. Given an arrangement A of n pseudocircles and a pseudoseg-
ment σ intersecting each pseudocircle in A at most twice, it can be decided in
time polynomial in n whether there exists an extension of σ to a pseudocircle Φσ

such that A ∪ {Φσ} is an arrangement of pseudocircles.

Proof. Throughout this proof we write R := R
2 \ R for the complement of a

set R ⊆ R
2. An arrangement (of pseudocircles) partitions the plane into ver-

tices (0-dimensional cells), edges (1-dimensional cells), and faces (2-dimensional
cells). Since tangencies are not allowed, all vertices are proper crossings. Two
arrangements are combinatorially equivalent (or, isomorphic) if the correspond-
ing cell complexes are isomorphic, that is, if there is an incidence- and dimension-
preserving bijection between their cells. By possibly transforming A into an
isomorphic arrangement while preserving the incidences of σ, we can assume
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without loss of generality that σ is a horizontal segment. Let u and v be the
left and right endpoints of σ, respectively. Further, we can assume that u is
incident with the unbounded cell and that the intersection points of σ with the
pseudocircles in A are all proper crossings. Our algorithm aims to compute a
pseudocircle Φσ = σ ∪σ′ such that A∪{Φσ} is an arrangement of pseudocircles,
or determine that no such σ′ exists. We call σ′ an extension of σ.

σ

Fig. 5. Obstruction where all pseudo-
circles intersect σ twice.

σ

Fig. 6. Obstruction where one pseudo-
circle intersects σ only once.

We partition the set of pseudocircles of A into three sets C0, C1, and C2,
where for each i ∈ {0, 1, 2}, Ci is the set of pseudocircles in A crossing σ exactly i
times. Note that u lies outside all pseudocircles φ ∈ A while v lies outside of all
φ ∈ C0 ∪C2 and inside all φ ∈ C1, that is, each φ ∈ C1 separates u and v. Further,
an extension σ′ must not cross any φ ∈ C2, it needs to cross every φ ∈ C1 exactly
once, and it can cross each φ ∈ C0 either twice or not at all.

The idea is to construct a finite sequence R0 ⊂ R1 ⊂ . . . of closed subsets
of R

2, each consisting of cells of A ∪ σ that cannot be reached by σ′. Each
set Ri will be a simply connected closed region of R2 with both u and v on its
boundary. Further, for each Ri and each φ ∈ C0, we will maintain the invariant
that int(φ) ∩ Ri is either a connected region or empty, where int(φ) denotes the
interior of the bounded area enclosed by φ. (Note that int(φ) ∩ Ri is connected
if and only if Ri \ int(φ) is connected.) The construction will either end by
determining that σ cannot be extended, or with a set Rm such that routing σ′

closely along the boundary of Rm gives a valid extension of σ.
Let R′

0 be the union of σ and all the closed disks bounded by the pseudo-
circles in C2 and consider the faces induced by R′

0. Since u is incident with the
unbounded cell of R′

0, and since σ′ must not intersect the interior of R′
0, σ′ can-

not reach any bounded face of R′
0. Let R0 be the closure of the union of these

bounded faces and σ. We may assume that v ∈ ∂R0, as otherwise no extension σ′

exists and we are done.
To see that the invariant holds for R0, assume that there exists a pseudocircle

φ ∈ C0 such that R0 \ int(φ) is not connected. As φ does not intersect σ, there
exists a component D of R0 \ int(φ) that is disjoint from σ. Further, as int(φ) is
simply connected, D∩∂R0 �= ∅. Moreover, any point x on ∂D∩∂R0 lies on some
circle φx ∈ C2. On the other hand, any path from a point of σ to x must enter
and leave int(φ) and hence intersect φ at least twice. As φx intersects σ twice
and lies in R0, we get that φx intersects φ in at least four points, a contradiction.

For the iterative step, consider the arrangement Aφ
i formed by ∂Ri and a

pseudocircle φ ∈ C0 ∪ C1, and the cells of it that lie in Ri. If φ ∈ C1 and an
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extension σ′ exists, then the only two such cells that can be intersected by σ′ are
the ones incident to u and v, respectively. Similarly, if φ ∈ C0, then σ′ can only
intersect the cell(s) incident to u and v, plus the (by the invariant) unique cell
int(φ)∩Ri. In both cases, all other cells of this arrangement should be added to
the forbidden area. We denote all cells Aφ

i ∩ Ri that can possibly be intersected
by σ′ as reachable (by σ′) and all other cells as unreachable (by σ′).

Assume that there exists some pseudocircle φ ∈ C0∪C1 such that the arrange-
ment Aφ

i of φ and ∂Ri contains unreachable cells. Then we obtain R′
i+1 by adding

all those cells to Ri. If v lies in a bounded face of R′
i+1, then no extension σ′

exists and we are done. Otherwise, Ri+1 = R′
i+1 is a simply connected region

that has both u and v on its boundary. It remains to show that the invariant is
still maintained for Ri+1.

Lemma 7 (�). If Ri fulfills the invariant and u and v both lie in the unbounded
region of R′

i+1 then Ri+1 also fulfills the invariant.

Now assume that both u and v lie on the boundary of all sets Ri constructed
in this way. Then the iterative process stops with a set Rm where for each
φ ∈ C0 ∪ C1, all cells in the arrangement Aφ

m of φ and ∂Rm that are contained
in Rm are reachable by σ′. Note that m = O(n4) as A has Θ(n4) cells, as in
every iteration i, at least one cell of A has been added to Ri, and as each cell
of A is added at most once. Consider a path P from u to v in Rm that is routed
closely along the boundary ∂Rm (note that there are two different such paths).
Then for any φ ∈ C1, P intersects exactly two cells of Aφ

m, namely, the ones
incident to u and v, respectively. Hence P crosses φ exactly once. Similarly, for
any φ ∈ C0, the path P intersects at most three cells of Aφ

m, namely, the one(s)
incident to u and v plus possibly the cell int(φ) ∩ Rm, which is one cell by the
invariant. Hence P crosses φ at most twice. Thus σ′ = P is a valid extension
for σ, which completes the correctness proof.

Note that computing R0 and σ′ (in case that the algorithm didn’t terminate
with a negative answer before) can be done in poly-time. Also, for each Ri and
each φ ∈ C0 ∪ C1, the set of unreachable cells of Aφ

i can be determined in poly-
time. As we have O(n4) iteration steps, we can hence compute Rm from R0 (or
determine that σ is not extendible) in poly-time, which concludes the proof.

As an immediate consequence of Theorem 2 we have the following result:

Corollary 2. Given an arrangement A of n pseudocircles and a pseudoseg-
ment σ, it can be decided in polynomial time whether σ can be extended to a
pseudocircle Φσ ⊃ σ such that A ∪ {Φσ} is an arrangement of pseudocircles.

4 FPT-Algorithm for Bounded Number of Crossings

In this section we show that for drawings with a bounded number of crossings
it can be decided in FPT-time whether an edge can be inserted. Given a simple
drawing D(G) with k crossings, one can construct a kernel of size O(k) by
exhaustively removing isolated vertices and uncrossed edges from D(G). For a
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simple drawing D(G) of a graph G = (V,E) and e ∈ E, let D(G − e) be the
subdrawing of D(G) without the drawing of e. Similarly, for an isolated vertex
u ∈ V let D(G − u) be the subdrawing of D(G) without the drawing of u.

Observation 1. Given a simple drawing D(G) of a graph G = (V,E) and an
isolated vertex w ∈ V , an edge uv of G can be inserted into D(G) if and only if
uv can be inserted into D(G − w).

Lemma 8. (�). Given a simple drawing D(G) of a graph G = (V,E) and an
edge e ∈ E that is uncrossed in D(G), an edge uv of G can be inserted into D(G)
if and only if uv can be inserted into D(G − e).

Theorem 3. (�). Given a simple drawing D(G) of a graph G = (V,E) and an
edge uv of G, there is an FPT-algorithm in the number k of crossings in D(G)
for deciding whether uv can be inserted into D(G).
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