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Abstract 

In this paper we present a publicly available tool for automatic 

analysis of speech prosody (AASP) in Dutch. Incorporating 

the state-of-the-art analytical frameworks, AASP enables users 

to analyze prosody at two levels from different theoretical 

perspectives. Holistically, by means of the Functional 

Principal Component Analysis (FPCA) it generates 

mathematical functions that capture changes in the shape of a 

pitch contour. The tool outputs the weights of principal 

components in a table for users to process in further statistical 

analysis. Structurally, AASP analyzes prosody in terms of 

prosodic events within the auto-segmental metrical framework, 

hypothesizing prosodic labels in accordance with 

Transcription of Dutch Intonation (ToDI) with accuracy 

comparable to similar tools for other languages. Published as a 

Docker container, the tool can be set up on various operating 

systems in only two steps. Moreover, the tool is accessed 

through a graphic user interface, making it accessible to users 

with limited programming skills. 

Index Terms: Dutch prosody, ToDI, FPCA, automatic 

prosody annotations 

1. Introduction 

Prosody (i.e. the melody of speech) is a critical aspect of 

spoken language. It provides the organizational structure of 

speech [1, 2] and is also vital to communication [3, 4, 5, 6]. 
Hence, implementing prosody in natural language systems 

such as speech synthesis and recognition is likely to augment 

system performance [7]. To this end, linguists and speech 

technologists working in the field have devoted much 

attention to the applications of Tones and Break Indices (ToBI) 

[8]. Taking a phonological perspective, ToBI considers 

prosody in terms of abstract prosodic events denoted by 

discrete prosodic labels, providing a symbolic representation 

of prosodic events. By spelling out a comprehensive set of 

rules, ToBI guides annotators throughout the annotation 

process. However, setting these labels manually is extremely 

labor-intensive (8-12 minutes per sentence per annotator) and 

costly in practice. Hence, an automatic solution is urgently 

needed.  

Recent years have seen significant advances in the field of 

automatic annotation of English prosody following the ToBI 

notation. Systems have been developed using different 

machine learning techniques, including decision trees [9], 

neural networks [10, 11], and support vector machines [12, see 

[13] for an overview]. More specifically, AuToBI is the first 

publicly available tool for automatic annotation of main 

stream American English-ToBI (MAE-ToBI) labels, providing 

a ready-to-use solution for researchers/engineers in need of 

ToBI annotations [14]. The system performs six classification 

tasks: 1) pitch accent detection, 2) pitch accent classification, 

3) intonational phrase detection, 4) intermediate phrase 

detection, 5&6) classification of phrase ending tones at both 

intonational and intermediate phrase boundaries. With logistic 

regression or support vector machine (SVM), the tool detects 

pitch accent with an accuracy of around 82.9%, and the 

boundaries of intonational phrase at 93.1% accuracy. The 

pitch accents were classified with a Combined Error Rate of 

0.284.  

However, using models of AuToBI to transcribe the 

prosody of another language yields mixed results. For example, 

using the AuToBI model to detect the pitch accent of Italian, 

French and German, [15] shows that the outcomes 

significantly differ across languages, pointing out the 

necessity of retraining the model using the data of the target 

language. Furthermore, by limiting prosody variations to a 

finite set of discrete labels, a ToBI-based  tool cannot capture 

the rich variations in pitch properties [16]. As a 

complementary approach, Functional Principal Components 

Analysis (FPCA) describes the dynamics of pitch movements 

over the course of an utterance by representing the dominant 

modes of variations among input curves in terms of principal 

components (PCs) and calculates for each input curve the 

extent to which each PC is applied on it (the PC scores) [17]. 

Like conventional acoustic measures such as pitch and 

duration, the PC scores can be used in further statistical tests.  

Taking into account the advantages of both phonological 

and functional approaches, the present project aims to develop 

the first publicly available tool that automatically analyses 

speech prosody – AASP in Dutch. Although it currently 

focuses on Dutch, it has the potential to be adjusted and used 

for other languages.  

AASP performs two levels of analysis on prosody 

automatically: holistic and structural. Holistically, AASP 

performs a functional principal component analysis (FPCA) 

[17] on pitch curves, generating PC weights for individual 

curves for further statistical tests. Structurally, AASP predicts 

prosodic labels within the ToDI framework [18]. ToDI 

(Transcription of Dutch Intonation) is a transcription system 

of prosody designed specifically for standard Dutch. Sharing a 

similar philosophy with ToBI, ToDI analyzes Dutch prosody 

in terms of prosodic events such as pitch accents and prosodic 

boundaries, representing them by discrete labels. Different 

from MAE-ToBI [19], ToDI only defines one level of 
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prosodic phrasing, instead of two. Moreover, the two systems 

differ in how pitch accents are analyzed. In MAE-ToBI, pitch 

accents captures both the contour leading towards the accented 

target and the contour leading off the accented target, whereas 

ToDI’s pitch accents capture the contour leading off the 

accented target [20, 21, 22]. Table 1 shows the ToDI inventory, 

which consists of the location of the most salient part in a 

speech flow (pitch accent), pitch movements associated with 

the stressed syllable of a word (pitch accent types), the 

location of prosodic phrasal boundaries (prosodic boundaries), 

and pitch movements at the boundaries of an intonational  

phrase (prosodic boundary tones). 

Table 1: ToDI inventory.  

Prosodic events Decibels 

Pitch accent Accented/unaccented 

Pitch accent types H*, !H*, H*L, !H*L, L*HL, L*, L*H, 

H*LH 

prosodic boundary Yes/no 

prosodic boundary 

tones 

%L, %HL, %H, H%, L%, % 

 

AASP is freely distributed as a Docker container 1 , which 

encapsulates the code and all its dependencies, so that the 

application runs quickly and uniformly in spite of differences 

between operation systems. The application and user manual 

of AASP can be downloaded from  

https://github.com/UUDigitalHumanitieslab

/AASP 

To use the tool, users first need to install Docker on their own 

machine, download AASP to a local directory, and set up a 

Container for AASP in Docker, which can be done in only two 

steps by following the manual provided in the link. Different 

from existing tools of automatic prosody annotation, AASP is 

presented with a graphic user interface, which makes it 

friendly to users with limited programming skills. 

2. System schematic 

AASP consists of two independent analytical modules: 

AuToDI and FPCA. Figure 1 displays its schematic. First, 

users select the analysis of their choice. Then they are 

requested to specify a directory of files which should be 

analyzed. Only one type of analysis can be performed at a 

time, because the two modules require different input formats. 

Assuming that users need both analyses, they will need to 

execute the procedure twice.   

 
Figure 1: Schematic diagram of AASP 

                                                                  
1 https://www.docker.com/resources/what-container 

2.1. AuToDI 

AuToDI performs four classification tasks abiding to the ToDI 

conventions: 1) pitch accent detection; 2) pitch accent type 

classification; 3) prosodic boundary detection; 4) prosodic 

boundary tone classification.  

AuToDI requires two types of user inputs: 1) audio files 

(in .wav format), which can be either a single long wave or a 

bunch of short waves contained in a folder; 2) the 

corresponding Praat TextGrid files containing word 

segmentations, which can be generated by external services 

provided by the OH-portal supported by CLARIN ERIC [23]. 

With the input data, AuToDI first extracts features including 

pitch, intensity and spectral information on a word level from 

the waveforms using the feature extraction module of AuToBI 

[14]. With the features, the tool first detects the locations of 

pitch accent and prosodic boundaries. Then, for words bearing 

pitch accents, the pitch accent types are predicted, and for 

words located at the prosodic boundaries, the boundary tones 

are predicted. Finally, the hypothesized labels are output to 

TextGrid files, which can be downloaded to a local directory 

of the users’ choice. 

2.2. FPCA 

The operation of FPCA implements the workflow described in 

[17], which consists of three steps with the second step being 

optional: 1) smoothing, 2) landmark registration, 3) FPCA. 

First, the raw pitch curves are smoothed using B-spline 

interpolation and also rescaled according to the same time 

window. With this treatment, the micro-pitch variations 

irrelevant to experimental manipulation are smoothed out, 

resulting in a smooth curve. After smoothing, the curves can 

be further adjusted by aligning the time points of common 

internal landmarks shared by the curves, e.g. common phone 

boundaries [17] or common syllabic boundaries [24], if such 

common landmarks exist. By doing this, the pitch movements 

are aligned with respect to the common landmarks. Lastly, 

Functional PCA is conducted to extract the principal 

components as well as their weights for each curve. The 

aforementioned workflow is implemented as an R script, 

which is adapted from an open access script provided by [17]. 

FPCA requires two types of inputs from users: wave files 

and TextGrids containing boundaries of the domains of 

interest (DOI) and if applicable, locations of landmarks. The 

FPCA workflow starts with extracting relevant acoustic 

measures from the DOI, including f0 values at a step of 5 ms, 

the duration of the DOI, and if applicable, the duration of the 

region between landmarks, using Python implementations of 

Praat scripts. Then, the previously mentioned three steps (or 

two, if users do not need landmark registration) will be 

performed sequentially. In the process of smoothing, users 

will see a plot in a pop-up window showing the results of 

cross-validation of different combinations of the smoothing 

parameters: k and lambda. Users have to specify their choice 

of smoothing parameters so that the smoothing can proceed. 

The general principle is to pick from the combinations that 

yields similar smoothing results the combination that consists 

of the smallest k and the largest lambda (for details see [17]). 

After smoothing, the program will carry out landmark 

registration if users have opted for them and otherwise 

proceed with FPCA. Finally, the tool outputs PC weights of 

each PC for individual curves in a .csv file and plots showing 

how each PC manipulates the mean curve. These will be 
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returned to users as a compressed folder, which can be saved 

at the location of their choice. 

3. Methodology 

The training set comprised of 4269 Dutch utterances collected 

in previous studies on Dutch intonation [25, 26]. The data set 

consists of 134 speakers of 6 Dutch dialects including 

Nijmeegs in  South Guelderish, Zeelandic in Zuid-Beveland, 

Hollandic in Rotterdam and Amsterdam (AM) (all Low 

Franconian), West Frisian in Grou and Low Saxon in 

Winschoten. The utterances vary in sentence types (statements, 

yes/no questions and rhetorical questions) and also in the 

locations of pitch accent (IP-medial, IP-final). The utterances 

were scripted speech elicited from a dialogue setting, ensuring 

a fair representation of natural speech. The data were 

annotated by experienced annotators following ToDI 

conventions. Prosodic boundaries were annotated on the 

whole data set. Pitch accents and the associated accent types 

were annotated on a portion of the set (2600 utterances), 

resulting in a total number of 2868 instances distributed across 

the nine pitch accent types with an inter-annotator agreement 

of 0.998 (Cronbach’s alpha) [25]. During annotation, 

annotators’ uncertainty was denoted by “?”, and an unrealized 

pitch target of a pitch accent was indicated by “()”, resulting in 

additional 4 atypical classes including H*L?, H*(L), !H*(L) 

and !H*L?. Given that the main difference between an 

atypical instance and a typical one lies in phonetics rather than 

phonology and that the number of the atypical instances was 

small compared to the number of typical instances (e.g. H*L? 

only occurs 5 times in the whole set), the “?” cases were 

merged with the typical cases (e.g. H*L? converted to H*L), 

and the “()” cases were merged with the typical instances 

without the unrealized tone targets (e.g. H*(L) converted to 

H*). The number of instances for each accent type is shown in 

Table 2. The number of pitch accent types used in the analysis 

was reduced to seven by discarding H*LH because of scarce 

instances.  

Table 2: Number of instances per pitch accent class 

Pitch accent type  Count  

H*L 1014 

H* 187 

L* 44 

L*H 617 

H*LH 2 

!H*L 178 

!H* 34 

L*HL 794 

 

Acoustic features were extracted from the input files at the 

word level using the feature extraction module of AuToBI 

[14]. For each word, pitch, intensity, duration, and spectral 

information with mean, standard deviation, maximum, 

minimum, medium, slope, and range were obtained. 

Regarding pitch and intensity, the features were normalized 

using z-score to eliminate speaker differences. In addition, 

these features were also normalized relative to neighboring 

words. As in AuToBI, a unique set of features was constructed 

for each classifier (for more details of the feature extraction 

module see [14]). 

The classifiers were trained using the Weka machine 

learning software [27] with 10-fold cross-validation. For each 

task, the performance of three types of classifiers were 

compared, the support vector machine (SVM) with linear 

kernel, logistic regression, and J48 (the java version of C4.5). 

We used Accuracy, Precision, and Recall as evaluation criteria 

to choose the model with the best performance. 

 

4. Results 

Table 3 shows the performance of SVM, logistic regression 

and J48 in the four classification tasks, pitch accent detection, 

pitch accent classification, prosodic boundary detection, and 

prosodic boundary tone classification. In general, SVM shows 

the highest accuracy in all four tasks, outperforming logistic 

regression and J48.  

Table 3: Accuracy of the three types of classifiers in 

the four detection and classification tasks 

Style Name  Classifier  Accuracy 

Pitch accent detection SVM 94.6% 

 Logistic 86.9% 

 J48 83.3% 

Pitch accent classification SVM 75.4% 

 Logistic 68.2% 

 J48 54.1% 

Prosodic boundary detection SVM 88.98 % 

 Logistic 79.43% 

 J48 72.6% 

Prosodic boundary tone 

classification 

SVM 84.7% 

 Logistic 77.4% 

 J48 78.6% 

 

For pitch accent detection, SVM yielded the highest 

performance with an accuracy of 94.6% with a weighted 

average F-Measure 0.946 (Precision: 0.946, Recall = 0.946). 

Regarding pitch accent classification, SVM outperformed the 

other two classifiers with an accuracy of 75.4% with a 

weighted average F-Measure of 0.751 (Precision = 0.751, 

Recall = 0.754). In Table 4, the confusion matrix shows that 

H*L, L*HL, !H*L were relatively easy to classify with F-

Measures ranging from 0.700 to 0.850, while L* exhibits the 

lowest F-measure 0.286. It is also clear from Table 4 that 

some accent types are easily confusable, suggesting some 

degree of similarity between pitch accent types. Specifically, 

L*H is misclassified as L*HL in 149 out of 617 instances, and 

L* is misclassified as L*H in 29 out of 44 instances. 

Also, !H*L and H*L were easily confusable – 44 out of 178 

cases of !H*L were classified as H*L.  

Table 4: Confusion matrix of pitch accent types  

Classified 

as  

a b c d e f g F-

Measure 

a = L*H 399 10 149 10 45 3 1 0.627 

b = L* 29 10 0 0 4 0 1 0.286 

c = L*HL 121 0 647 3 20 0 3 0.810 

d = H* 32 1 0 101 43 7 3 0.591 

e = H*L 66 5 7 30 872 1 33 0.850 

f = !H* 2 0 0 7 9 14 2 0.437 

g = H*L 6 0 0 4 44 5 119 0.700 
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With respect to prosodic boundaries, the results show that the 

locations of prosodic boundaries can be detected by SVM with 

an accuracy of 88.98% with a weighted average F-Measure  of 

0.882 (Precision: 0.885, Recall = 0.890), and the tone types at 

prosodic boundaries can be classified with an accuracy of 

84.7%. 

With regard to FPCA, the tool outputs PC weights for raw 

curves in a .csv file, which can be read into statistical software, 

such as R or SPSS, for further statistical tests. For examples of 

prosody research using FPCA output, the readers are referred 

to  [17, 28, 29, 30]. 

5. Discussion 

In general, the results of Automatic ToDI label predictions are 

consistent with the results reported in previous studies. That is, 

pitch accent detection and prosodic boundary detection are 

relatively easy, performing with high accuracy, whereas pitch 

accent classification is the hardest, showing the lowest 

accuracy of all. Specifically, our tool predicts the location of 

pitch accent with an accuracy of 94.8% using SVM, 

comparable to the 90% reported in [11]. And for prosodic 

boundary detection, our tool shows an accuracy of 88.98% 

using SVM. One reason for the yielded high accuracy is that 

the training set contained reliable annotations (high inter-

annotator agreement). With regard to pitch accent 

classification, the classifier with the best performance, which 

is SVM, shows an accuracy of 75.4%, slightly better than the 

70.8% reported in [13], which adopted the same number of 

pitch accent types as the current tool. Note that our result is 

only based on seven types of pitch accent, excluding H*LH, 

which only had two instances in the original training set and 

was therefore discarded. In fact, although its pattern is 

phonologically distinguishable from other types, H*LH’s are 

restricted to pre-final accent locations and may be even more 

infrequent in natural speech. The difficulty in predicting pitch 

accent types may be partially due to the scarce data of certain 

accent types. In our training set, the number of instances 

across types was unbalanced (e.g. 34 !H* vs. 1014 H*L). 

Further, the difficulty in classifying pitch accents might lie in 

the fact that the boundaries between accent types are naturally 

fuzzy. To deal with the resemblances between certain pitch 

accent types, some researchers divided the original accent 

types into groups based on the extent to which one type of 

pitch accent was similar to the other, and consequently, gained 

an improvement in model performance. For example, by 

grouping ToBI accents into high (H*, L+H*, H+!H*), 

downstepped (!H*, L+!H*), and low (L* and L*+H), [31] 

gained an accuracy of 81.3%, and [32] achieved an accuracy 

of 87.17% using ensemble learning methods, generally higher 

than studies adopting original categories. Besides more 

training data and a grouping criterion, the performance of 

pitch accent classification might be improved by adopting new 

features, especially the features that portray the characteristics 

of pitch contours. In this regard, FPCA shows great potential 

as it captures the main mode of variations among the contour 

shapes. This will be further investigated in our future work. 

6. Conclusions 

We presented an initial version of AASP, which is the first 

publicly available tool to automatically annotate Dutch 

prosody. It enables users to perform two types of analysis: 

ToDI and FPCA. With respect to ToDI, the tool performs four 

tasks including pitch accent detection, pitch accent 

classification, prosodic boundary detection, and prosodic 

boundary tone classification. Using SVM, the tool performs 

with accuracy comparable to similar tools of other languages. 

Regarding FPCA, AASP outputs the weights of principal 

components in a .csv file, which can be directly used for 

further statistical tests. 

         The tool is packaged as a Docker container that can run 

on a wide range of operating systems. Also, it comes with a 

graphical user interface to ensure ease of use for users with 

limited programming skills. Future work will explore new 

features such as the PC weights generated by Functional 

Principal Component Analysis (FPCA) in order to examine if 

they can improve the accuracy of pitch accent classification. 
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