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Abstract In this chapter, we present a simple classification scheme that utilizes
only 1-bit measurements of the training and testing data. Our method is intended to
be efficient in terms of computation and storage while also allowing for a rigorous
mathematical analysis. After providing somemotivation, we present our method and
analyze its performance for a simple data model. We also discuss extensions of the
method to the hierarchical data setting, and include some further implementation
considerations. Experimental evidence provided in this chapter demonstrates that
our methods yield accurate classification on a variety of synthetic and real data.

1 Introduction

In this work, we discuss the problem of classification. More precisely, a supervised
learning problem where one is given labeled training data, and from that data one
wishes to determine a rule with which to accurately assign labels to unlabeled future
test data points is considered. We focus on the setting where either by design or by
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application, the data is only available in a binary representation. Such representations
may be obtained through compressive sampling, as in applications that have restricted
bandwidth or energy constraints [19], or may be utilized to take advantage of simpler,
faster, and cheaper hardware implementations [31, 37]. In general, compression
and coarse quantization can be appealing due to efficient storage and computation.
Additionally, such representations can still be utilized when performing inference
tasks, e.g., see preliminarywork of [4, 22, 26, 27]. This chapter presents a framework
for learning inferences from highly quantized (single bit) data representations, with
the key example being classification. Let us begin with some mathematical tools and
notation.

1.1 Notation and Setup

Let {xi }pi=1 ⊂ R
n be a data set represented in matrix form

X = [x1 x2 . . . xp] ∈ R
n×p.

Let A : Rn → R
m be a linear map, and denote by sign : R → R the sign operator

defined by

sign(a) :=
{
1 a ≥ 0

−1 a < 0.

We generalize this operator for matrices elementwise, where for an m by p matrix
M , and (i, j) ∈ [m] × [p], we define sign(M) as the m × p matrix with entries

(sign(M))i, j := sign(Mi, j ).

We now consider the setting where our method has access to training data of the
form Q = sign(AX), along with the labels b = (b1, . . . , bp) ∈ {1, . . . ,G}p, that
identify each point xi as belonging to one of the G possible classes. The rows of the
m × n matrix A correspond to m hyperplanes in R

n and the sign information in Q
captures on which side of the hyperplane each data point lies.

Throughout this chapter, A is assumed to have independent identically distributed
standard Gaussian entries. We will present an approach from [41] that, given Q and
b, allows for classification of a new unlabeled data point x ∈ R

n from its binary
measurements sign(Ax), and we will discuss various extensions and open problems
associated with it.
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1.2 Related Work and Background

We briefly mention here a few related topics that motivated the method proposed in
[41]. We encourage the reader to see included references and others therein for more
thorough background and details of these large areas of work.

Support vector machines (SVM) [3, 14, 24, 32, 47] are a popular method for
classification. From labeled training data, SVMs seek an optimal hyperplane (or
multiple hyperplanes) that separates the data or maximizes the geometric margin
between the classes in the case where the data is not linearly separable. The approach
described in this chapter is similar in flavor, but instead of optimizing hyperplane
parameters to fit the data, it uses many random hyperplanes to identify separation of
the data, and aggregates that information to decide upon a label.

The use of dimension reduction, that is the transformation of high dimensional
data into geometrically similar lowdimensional representations, appears in numerous
contexts. The Johnson–Lindenstrauss Lemma guarantees the existence of a map
that embeds p points into O(ε−2 log(p)) dimensions while approximately (up to ε)
preserving the geometry [30]. In fact, a Johnson–Lindenstrauss map can be linear
and can be obtained (with high probability) via a random draw from an appropriate
distribution. Such random linear maps include those associated with Gaussian or
subgaussian matrices and those resulting from selecting random rows of the discrete
Fourier transform [1, 2, 5, 15, 35, 46]. Constructions of suchmaps play a crucial role
in the field of compressed sensing, where they are used to sample high dimensional
signals, yielding effective sampling rates that break the traditional Nyquist bounds
[12, 13, 16]. Mathematically, for a signal x ∈ R

n , one uses a measurement matrix
A ∈ R

m×n to acquire (possibly noisy) measurements of the form y = Ax + z, and
the goal is to recover the signal x . For Johnson–Lindenstrauss type matrices A, the
assumption that turns this ill-posed highly underdetermined problem into a well-
posed problem is that the signal x is s-sparse, meaning that ‖x‖0 := | supp(x)| =
s � n.

For any digital compression scheme to be practical, one must consider the need
to quantize, that is, to restrict data to a discrete set of values. Pushing quantiza-
tion to the extreme in compressed sensing, the so-called 1-bit compressed sensing
problem captures only a single bit per measurement and asks to recover the mea-
sured signal x [4]. Formulated mathematically, one acquires measurements of the
form y = sign(Ax), possibly with pre- or post-quantization noise. Clearly the nor-
malization of x is lost under such scalar-invariant measurements, but under a norm
assumption, efficient methods have been developed that accurately recover x [21,
29, 31, 42, 43, 55]. This normalization assumption can be overcome by introducing
dithers to the measurements and modifying the methods [6, 34]. These branches of
work have sparked recent interest in binary embeddings, those that map vectors to
the binary cube while preserving angular information among the mapped vectors
[7, 17, 20, 44, 53, 54]. The 1-bit compressed sensing problem and these binary
embeddings motivate the work presented in this chapter, although the end goal of
our consideration is classification rather than reconstruction.



132 D. Molitor et al.

Lastly, no modern chapter on classification would be complete without mention-
ing the burgeoning work on deep learning, which learns data representations using
multiple levels of abstraction, usually referred to as layers or levels. Each layer can be
viewed as a function that learns its parameters from the training data, so that its input
data is transformed into a slightly more abstract and composite representation. From
the composition of these functions, a (neural) network is constructed that solves the
desired learning task (e.g., classification) by extracting relevant features of data.With
the abundance of large data sets, these neural networks have become state of the art,
yielding often astoundingly good results and techniques that continue to improve
[33, 45, 50, 51]. On the other hand, although there is theoretical analysis (see e.g.,
[38, 40]), their success is often difficult to quantitatively analyze and interpret [56].
While the work presented in this chapter may be similar in flavor at a high scale, the
aim is quite different—we intend to develop a simple approach to classification that
allows for quantitative success bounds and simple geometric interpretability.

1.3 Organization

The remainder of the chapter is organized as follows. Section2 motivates and
describes the classificationmethod. Section2.1 provides an analysis for a simple data
model, bounding the probability that a new test point is correctly labeled. Section2.2
presents experimental results for the method on several synthetic and real exam-
ples. Section3 extends the method to the setting of hierarchical classification, where
the class labels have additional structure. Section4 proposes several implementation
variants that help guide parameter selection. We conclude with some final remarks
in Sect. 5.

2 Simple Classification Approach

We next turn to a description of the classification method put forth in [41]. Let us
first build some intuition for the approach. Consider the two-dimensional data X
shown in the left plot of Fig. 1, consisting of three labeled classes (green, blue, red),
and suppose we only have access to the binary data Q = sign(AX). Note that Q
contains information giving the side of each hyperplane (corresponding to the rows
of A) on which each data point lies. Consider the four hyperplanes shown in the same
plot, and suppose that we are given the new test point x (which visually appears to
belong to the blue class) and its binary data q = sign(Ax). Then, at first glance, a
reasonable algorithm is to simply cycle through the hyperplanes and decide which
class x matches most often. For example, for the hyperplane colored purple in the
plot, x has the same sign (i.e., lies on the same side) as the blue and green classes.
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Fig. 1 Two motivating examples for the classification method

For the black hyperplane, x only matches the blue class, and so on. For this example,
x will clearly match the blue class most often, and we could correctly assign it that
label.

However, this may not work well for more complicated data. As an example,
consider data as shown in the right plot of Fig. 1. Assuming that each point cloud has
(approximately) the same cardinality, we have that for the blue and red hyperplanes,
2
3 of the points lying in the same half-space as x are from the blue class. At the same
time, for the purple and green hyperplanes 2

3 of the points lying in the same half-space
as x are from the red class. Thus, it is not possible to correctly classify x using just
the information provided by individual hyperplanes. If we now consider hyperplane
pairs, and find the class label that x most often agrees with (that is, we we find the
class with points that most often share cones bounded by the pairs of hyperplanes
with x), we are able to correctly classify x . Indeed, we have the following:

Pair Blue class in the cone Red class in the cone

Blue and red 2
3

1
3

Blue and purple 1 0

Blue and green 1
2

1
2

Red and purple 1 0

Red and green 1
2

1
2

Purple and green 1
2

1
2

Overall 25
6

11
6

We now describe the approach more formally. Again, denote by X ∈ R
n×p the

matrix whose columns contain the data points. Let A ∈ R
m×n have rows correspond-

ing to the normal vectors of m randomly oriented hyperplanes that pass through the
origin (e.g., A could have i.i.d. Gaussian entries), and Q = sign(AX) denote the
binary sign information. Then, the training algorithm proceeds in L “levels”. In the
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�th level, m index sets Λ�,i ⊂ [m], |Λ�,i | = �, i = 1, . . . ,m, are randomly selected,
and each index set corresponds to an �-tuple of hyperplanes. Let QΛ�,i ∈ R

�×p be the
submatrix consisting of the rows of Q whose indices belong to Λ�,i . Each column
of QΛ�,i then gives a sign pattern of length � corresponding to a training data point
and the � hyperplanes contained in Λ�,i . Let us denote the number of different sign
patterns of training points corresponding toΛ�,i (that is, number of different columns
of QΛ�,i ) by T�i .

At a given level �, for the t th sign pattern and gth class, amembership index param-
eter r(�, i, t, g) that uses knowledge of the number of training points in class g hav-
ing the t th sign pattern, is calculated for every �-tuple Λ�,i . Below, Pg|t= Pg|t (Λ�,i )

denotes the number of training points from the gth class with the t th sign pattern at
the i th set selection in the �th level:

r(�, i, t, g) = Pg|t∑G
j=1 Pj |t

∑G
j=1 |Pg|t − Pj |t |∑G

j=1 Pj |t
. (1)

Note that the first fraction in (1) indicates the proportion of training points in class
g out of all points with sign pattern t (at the �th level and i th set selection). The second
fraction in (1) is a balancing term that gives more weight to group g when that group
is much different in size than the others with the same sign pattern. Intuitively, larger
values of r(�, i, t, g) suggest that the t th sign pattern is more heavily dominated by
class g; thus, if a signal with unknown label corresponds to the t th sign pattern, we
will be more likely to classify it into the gth class. With this intuition, we can then
assign a label to a new test point x using its binary data q = sign(Ax). For each class
g, we simply sum the membership index function values over all �, i , and t , for those
sign patterns t that match the sign pattern of the new test point x (which is known
via the data q). Thus, we obtain a value for each class g and the label for x is then
decided by simply taking the class g corresponding to the largest sum. The training
and classification portions of this method are summarized in Algorithms 1 and 2.

Algorithm 1: Training
Input: binary training data Q, training labels b, number of classes G, number of layers L
for � from 1 to L, i from 1 to m do

select: Randomly select Λ�,i ⊂ [m], |Λ�,i | = �

determine: Determine the T�,i ∈ N unique column sign patterns in QΛ�,i

for t from 1 to T�,i , g from 1 to G do
compute: Compute r(�, i, t, g) by (1)

end
end
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Algorithm 2: Classification
Input: binary data q, number of classes G, number of layers L , learned parameters

r(�, i, t, g), T�,i , and Λ�,i from Algorithm 1
Initialize: r̃(g) = 0 for g = 1, . . . ,G.
for � from 1 to L, i from 1 to m do

identify: Identify the pattern t� ∈ [T�,i ] to which qΛ�,i corresponds
for g from 1 to G do

update: r̃(g) = r̃(g) + r(�, i, t�, g)

end
end

scale: Set r̃(g) = r̃(g)
Lm for g = 1, . . . ,G

classify: b̂x = argmaxg∈{1,...,G} {r̃(g)}

2.1 Analytical Justification

One of the benefits of this simple approach to classification is that it can be mathe-
matically analyzed and understood. Indeed, we present here a result from [41] that
bounds the probability of accurate classification for a simple data model, showcas-
ing the potential of this method to be rigorously supported mathematically. Here, we
focus on the setting where the signals are two-dimensional, belonging to one of two
classes, and consider a single level (i.e., L = 1, n = 2, and G = 2). For simplicity
of analysis, we consider the continuous setting and assume the true classes G1 and
G2 are two disjoint cones in R

2 in which the training data lies in a uniform density.
See Fig. 2 for a visualization of the setup; we will describe the relevant parameters
next.

Let A1 denote the angular measure of G1 and define A2 similarly for G2. Also,
define A12 as the angle between classes G1 and G2. Assume all angles are such that
no hyperplane will intersect both classes at once, i.e., A12 + A1 + A2 ≤ π. Suppose

Fig. 2 Visualization of the
analysis setup for two classes
in two dimensions
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that the test point x ∈ G1, partitioning A1 into two disjoint pieces, yielding angles
θ1 and θ2, where A1 = θ1 + θ2 (see Fig. 2).

The membership index parameter (1) is still used; however, in this continuous
setting, we use the analogous formula with angles instead of numbers of training
points:

r(�, i, t, g) = Ag|t∑G
j=1 A j |t

∑G
j=1 |Ag|t − A j |t |∑G

j=1 A j |t
, (2)

where Ag|t denotes the angle of class g with the t th sign pattern for the i th �-tuple
of hyperplanes in the �th layer. Denote by t�i the sign pattern of the test point x
with the i th hyperplane at the first level (i.e., � = 1). Let b̂x denote the classification
label assigned to x by Algorithm 2. Then Theorem 1 below describes the probability
that x is classified correctly with b̂x = 1. For simplicity, Theorem 1 is stated under
the assumption that A1 = A2 and the test point x lies in the middle of class G1

(i.e., θ1 = θ2). The analysis follows similarly for the general case, with more tedious
computations and messier results, see [41] for the proof details.

Theorem 1 (From [41]) Let the classes G1 and G2 be two cones in R
2 defined by

angular measures A1 and A2, respectively, and suppose regions of the same angular
measure have the same density of training points. Suppose A1 = A2, θ1 = θ2, and
A12 + A1 + A2 ≤ π. Then, the probability that a data point x ∈ G1 gets classified
in class G1 by Algorithms 1 and 2 using a single level and a measurement matrix
A ∈ R

m×2 with independent standard Gaussian entries is bounded as follows,

P[̂bx = 1] ≥ 1 −
m∑
j=0

m∑
k1,θ1=0

m∑
k1,θ2=0

m∑
k2=0

m∑
k=0

j+k1,θ1+k1,θ2+k2+k=m, k1,θ2≥9( j+k1,θ1 )

(
m

j, k1,θ1 , k1,θ2 , k2, k

)

×
(
A12

π

) j ( A1

2π

)k1,θ1+k1,θ2
(
A1

π

)k2 (
π − 2A1 − A12

π

)k

. (3)

Although the bound on the probability given in this theorem is quite cumbersome,
some useful properties are immediate. For example, this probability bound tends to 1
asm grows large. Indeed, the following two corollaries show precisely this behavior.

Corollary 1 Consider the setup of Theorem 1. Suppose A12 ≥ A1 and A12 ≥ π −
2A1 − A12. Then P[̂bx = 1] → 1 as m → ∞.

Corollary 2 Consider the setup of Theorem 1. Suppose A1 + A12 > 0.58π and
A12 + 3

4 A1 ≤ π
2 . Then P[̂bx = 1] → 1 as m → ∞.

These asymptotic results are noteworthy, but of course one more importantly
would like to know at what rate this probability increases to 1 as a function of the
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Fig. 3 P[̂bx = 1] versus the number of hyperplanesm when A12 is varied (see legend), A1 = A2 =
15◦, and θ1 = θ2 = 7.5◦. The solid lines indicate the true (simulated) probability and the dashed
lines indicate the bound (3) provided in Theorem 1

number m of hyperplanes. Indeed, it can be seen from the proofs in [41] that the
probability converges to 1 exponentially in m. To illustrate this, the rates of the
bound provided by Theorem 1 are displayed in Fig. 3 along with the (simulated) true
value of P[̂bx = 1]. Although the bound is clearly not sharp, it exhibits the same
overall behavior as the true probability of accurate classification.

2.2 Experimental Results

We present here a small collection of experimental results for the classification
method that show its performanceon synthetic and real data. Thefirst experiment con-
siders synthetic data consisting of eight Gaussian clouds, belonging to four classes.
A new test point is drawn according to one of these distributions and is then classified
by the method. The average correct classification rate (where the “correct” label is
deemed to be the label matching the point cloud from which the test point x was
drawn) is calculated over 50 trials and displayed. Figure4 showcases the classifica-
tion accuracy for various numbers of levels L , showing that as one expects, more
levels are needed for accurate classification for complicated data geometries.

Next, we test themethod on several real data sets. First, Fig. 5 shows average accu-
racy results for classifying the “0” versus “1” handwritten digits from the MNIST
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Fig. 4 Data (top) is eight Gaussian clouds and four classes (G = 4), L = 1, . . . , 4, n = 2, 50 test
points per group, and 30 trials of randomly generating A. Average correct classification rate versus
m and for the indicated number of training points per class for: (middle left) L = 1, (middle right)
L = 2, (bottom left) L = 3, (bottom right) L = 4
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Training Data

Fig. 5 Classification experiment using the handwritten “0” and “1” digit images from the MNIST
data set, with 50 test points per group, L = 1, n = 28 × 28 = 784, and 30 trials of randomly
generating A. Left: example data. Right: average correct classification rate versus m and for the
indicated number of training points per class

data set [36]. For this data, we only needed one level to get accurate results, perhaps
because the images of the “0” and “1” digits are well separated in space. Not sur-
prisingly, when classifying all ten digits, more levels are needed in order to obtain
decent accuracy; see Fig. 6.

We also tested the method on the problem of facial classification, using the YaleB
data set [8–10, 28]. Figure7 shows classification results using six layers. Note that
the results appear noisier due to the smaller size of the data set.

Lastly, we tested the method on recently acquired survey data from patients with
Lyme disease, from theMyLymeData project hosted by lymedisease.org that nowhas
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Fig. 6 Correct classification rate (right) versus m when using all ten (0–9) handwritten digits
from the MNIST data set (left) with 1,000, 3,000, and 5,000 training points per group, L = 18,
n = 28 × 28 = 784, 800 test points per group (8,000 total), and a single instance of randomly
generating A
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over 10,000 patients enrolled. Figure8 shows classification results using the survey
responses for the symptom-related questions as our data matrix. This matrix consists
of 3686 “unwell” patients and 362 “well” patients (4048 patients in total), that each
answered 12 symptom-related questions (the “well” patients were asked about their

Fig. 7 Classification experiment using two individuals from the extended YaleB data set (top),
L = 6, n = 32 × 32 = 1024, 30 test points per group, and 30 trials of randomly generating A.
Bottom: average correct classification rate versus m and for the indicated number of training points
per class

Fig. 8 Left: Results from classification approach on symptom data using 5 layers for various
numbers of randomly selected training points (patients). Right: Means on the survey questions for
these groups
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worst symptoms while being sick). We randomly select a number of those patients
from each group to serve as our training data, and the remaining as our test data. The
left plot of Fig. 8 demonstrates the ability to accurately identify well versus unwell
patients from the symptoms (current or past) that they report. Since the “well” patients
were asked about their worst prior symptoms, one might ask whether it is simply
the case that “well” patients showcase higher (or lower) symptom levels in general,
making classification easy. However, the right plot of the figure demonstrates this is
not the case, and that perhaps more intricate and complex symptom patterns are at
work.

3 Hierarchical Classification

Next, we extend the classification approach described in the previous sections to the
problem of hierarchical or multi-scale classification. In this setting, the class labels
have additional structure, often taking the formof a tree. For example, in image classi-
fication problems, the datamay contain images of inanimate and living objects. Then,
within each of those classes the data may be further identified as images of vehi-
cles and toys, or humans and animals. The data could then be further subdivided into
classes of various animal types, and so on.Visualized as a tree,we view the children of
each node as corresponding to its subclasses. Each data point in this casewould have a
label corresponding to a leaf of the tree, but also possesses the characteristics of all the
labels of its ancestors. Hierarchical classification makes use of this information and
structure between groups in classifying the data [23, 49]. Extensions of popular clas-
sification methods such as the support vector machine (SVM) to the hierarchical set-
ting are not straightforward, and such approaches often decompose the problem into
many subproblems leading to higher computational complexities [11, 52]. Here, we
apply the simple classificationmethod discussed in Sect. 2 to this hierarchical setting,
and show that computational advantages are often possible. In particular, the method
is likely to be particularly useful for hierarchical data in which certain subclasses of
data are more or less difficult to classify than others.

We now describe the proposed adjustment for handling hierarchical classifica-
tion, based on [39], where the labels possess some sort of tree structure. We use the
same notation as for the methods described in previous sections. The key observation
for the modification is that, if we know in advance that certain classes may require
fewer levels for classification with sufficient accuracy, we may isolate these classes
in an initial classification that uses fewer levels and then further classify among the
remaining classes using more levels, as needed. This strategy leads to computational
savings without sacrificing accuracy when some classes are more easily discerned
from the others. Fortunately, this type of structure occurs naturally in many applica-
tions. For example, in medical brain imaging, it is typically much easier to classify
patients with tumors than patients with various types of dementia [18, 25]. In cases
like this, the method may utilize fewer levels for the easier classification steps. This
approach is described formally in Algorithms 3 and 4.
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Algorithm 3: Proposed adjustment for hierarchical classification (training).
Input: binary training data Q, training labels b, set of class groupings Sc for each node Hc in

the tree of classifications H , number of levels L = (L1, . . . LC ) to be used in each
classification.

for Hc ∈ H do
identify: Qc, the submatrix of rows of Q corresponding to training labels of b contained
in some set in Sc.
define: b̃ as labels indicating to which set of Sc a given row of Qc corresponds.
train: a classifier as in Algorithm 1 with training data Qc, labels b̃, number of groups
|Sc| and number of levels Lc as input.

end

Algorithm 4: Proposed adjustment for hierarchical classification (testing).
Input: binary testing data q, set of class groupings Sc, learned parameters r(�, i, t, g), T�,i

and Λl,i for the classification associated to each node Hc in the tree of classifications
H , number of levels L = (L1, . . . LC ) to be used in each classification.

set: Hc = H1, the root classification.
while Hc is not null, do

classify: q into one of the sets contained in Sc, as in Algorithm 2, with learned
parameters r(�, i, t, g), Tl,i , Λl,i from Hc.
if q is predicted to belong to a single class then

set: Hc to be null.
else

set: Hc to the node corresponding to the predicted set of classes within Sc.
end

end

3.1 Experimental Results

In this section, we showcase experiments from [39] that demonstrate the computa-
tional gains achieved by Algorithms 3 and 4 compared with direct classification into
each individual group via “flat multiclass classification” as in Algorithms 1 and 2
(see Fig. 9). We first consider a simple two-dimensional example to aid in visual-
ization; the data is shown in Fig. 10, where each color represents a different class
from six classes in total. Since we expect classifying points from the red and yellow
classes to be easier, we may use fewer levels than in classifying points as green,
black, blue or cyan. Therefore, we first predict whether a test point is red or yellow
versus green, black, blue or cyan using only one level. If the test point was predicted
to be red or yellow, we then discern between these two classes again using only
a single level. If the test point was predicted to be green, black, blue or cyan, we
then predict among these classes by using varying numbers of levels. Accuracy and
computational results are shown in Fig. 10 for varying numbers of measurements m.
We see a significant reduction in computational cost using the hierarchical strategy
without sacrificing accuracy. Note that the computational savings are realized for the
test points predicted to belong to the red or yellow class, since classifying into these
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H1
S1 = {{red, yellow}, {green, black, blue, cyan}}

H2
S2 = {red, yellow}

H3
S3 = {green, black, blue, cyan}

Fig. 9 Hierarchical classification tree used to classify two-dimensional synthetic data as shown in
Fig. 10

Fig. 10 For the data distributed as given in the upper left plot, where each color represents a different
class, we classify test data either by flat multiclass classification or our proposed hierarchical
classification strategy where the first classification discerns between red or yellow versus green,
black, blue or cyan. Accuracy and testing flops required are given in the subsequent plots using
varying numbers of levels and m = 20, 50 and 100 respectively. Results are averaged over 10 trials

groups requires fewer levels and thus fewer calculations. The computational savings
of the hierarchical strategy are thus highly dependent on the distribution of the test
data. In this experiment, we classify 200 test points from each of the red and yellow
classes and 100 test points from each of the green, black, blue, and cyan classes, so
that there are an equal number of test points from the “arc” and from the Gaussian
clusters.
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Although not inherently hierarchical in nature, we demonstrate that our hierarchi-
cal strategy can lead to computational savings on the MNIST data set of handwritten
digits [36]. Consider the digits 1–5. Intuitively and in practice, the digit 1 tends to be
easier to classify correctly than the other digits. For example, if we apply the mul-
ticlass classification from [41] to classify the digits 1–5 using 1000 training points
for each class, 10 levels and testing on 200 training points from each class, we find
that 98.5% of the 1s are classified correctly, whereas the overall accuracy of classify-
ing the digits 1–5 was 89.2% (the accuracy for classifying digits 2–5 was 86.88%).
Thus, it is reasonable to expect that fewer levels are required for sufficiently accurate
classification of the 1s than are required to classify the remaining digits.

Considering the digits 1–5, we can thus induce hierarchical structure by first
classifying into 1s (which tend to be easier) versus the other digits, followed by clas-
sification into the digits 2, 3, 4, and 5. Five levels are used for the first classification
into 1s versus 2–5s and a varying number of levels (5–10) are used for the subsequent
classification. We again see a reduction in the total testing flops required to achieve
a given accuracy. Since this tree is fairly “shallow,” as expected the improvements
are mild. We would expect a more significant reduction in computation via a hier-
archical strategy for real data that has a larger and more imbalanced tree structure.
Additionally, the test data includes an equal number of points corresponding to each
digit, so we see computational savings for approximately 1/5 of the test points. If we
expected the frequency of the digit 1 to be higher, wewould expect the computational
savings to be more significant as well.

4 Implementation Considerations

Here, we consider some implementation details and remarks for future work in this
direction.

4.1 Parameter Selection

The key parameters the user must select in this simple classification approach are the
number ofmeasurementsm and the number of levels L . The relationship between the
number ofmeasurementsm and the performance of themethod (seeCorollaries 1 and
2) conforms with their analogous relationship in other settings like 1-bit compressed
sensing and binary hashing (see e.g., [4, 22, 48]).Namely, increasingm exponentially
improves the success probability of the method at hand. Henceforth, we focus here
on the choice of levels L . We propose a simple scheme that uses the membership
index function values on the training data to decide how many levels L are sufficient
for accurate classification. This scheme can be viewed as a simple analog of cross-
validation (Fig. 11).
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Fig. 11 Accuracy and testing flops required for flat multiclass classification versus the proposed
hierarchical classification strategy in classifying digits 1–5 in the MNIST data set are given using
m = 50, 100, 200, and 500, respectively. Results are averaged over 10 trials

Intuitively, the membership index values correspond to the level of confidence
that a point belongs to a certain class. Thus ideally, for a fixed data point, we hope
to see a single large membership value for one class and small values for the other
classes. This motivates a scheme where examining the largest membership function
value across classes, averaged over all the data, dictates an appropriate choice of L .
More precisely, for a given level �, one could consider running the testing method
Algorithm 2 over all (or part of) the training data and computing the functions r̃(g)

for all represented classes g. Doing this at level � for a data point with sign pattern t
yields a value r̃(g) for each class g, which we will now write as r̃�,t (g). We may then
consider the average over all sign patterns at the level � of the largest membership
indices that is given by

μ� := 1

T

∑
t∈T

max
g

r̃�,t (g),

where T is a set containing all represented sign patterns in the training data. We
view large values of μ� as informing us that level � is providing strong classification
accuracy. Thus, if we view these values over various �, we could stop using more
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levels once these values plateau or start decreasing. To verify this approach, we test
this scheme onMNISTdata for classifying 0–1 digits or 0–5 digits (with p = 500 and
m = 50), see Figs. 12 and 13. Here, we notice that there appears to be a correlation
between the level � that yields maximal value μ� (right) and the point where using
more levels does not lead to significant more accuracy (left).

Investigating this correlation quantitatively and theoretically will be an interesting
direction for future work. For example, if we assume that the angle between any two
classes is at least θ, we conjecture that after L ≤ O

(
1

θn−1

)
levels (where n is the

ambient dimension of the problem), the plateau begins, as adding more hyperplanes
will create empty cones with high probability. Of course, a better bound should also
depend on the total numberm of hyperplanes out of which we select, and the number
of test points p. Drawing such connections would be fruitful future directions of
work.

Fig. 12 MNIST 0–1 digits (single trial). Left: Average classification rate as function of levels.
Right: Mean membership index function

Fig. 13 MNIST 0 and 5 digits. Left: Average classification rate as function of levels. Right: Mean
membership index function
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4.2 Dynamic Hyperplane Selection

Another implementation concern and possible direction for future research is the
optimal choice of hyperplanes on each layer. In the presented implementation of
the classification algorithm, for each layer � ∈ {1, . . . , L}, the collections Λ�,i of
hyperplanes are selected uniformly at random out of all possible �-tuples. While this
approach allows one to derive nice theoretical bounds such as Theorem 1, it might
be beneficial for reconstruction if one instead chooses sets Λ�,i in a data-dependent
way, so that hyperplanes in Λ�,i together provide a good separation of the training
data. One might achieve this by using cross-validation or an approach similar to that
described in Sect. 4.1, so that for each layer � we reuse information obtained from
the previous levels to decide which �-tuples of hyperplanes could potentially allow
for good class separation.

For instance, in the example described in Fig. 1 (right), we can see that for the
blue and red hyperplanes, we have that in one half-space 2

3 of all point are blue and
1
3 are red, and in the other half-space all the points are red. Similarly, for the purple
and green hyperplanes, we have that in both half-spaces, 1

3 of all points are blue and
2
3 are red. We can deduce that these pairs of points are “similar” in the sense that they
divide the training data in similar ways. Thus it may be more beneficial to consider
pairs of hyperplanes from different groups for the next level, that is {red, purple},
{blue, green}, {red, green}, and {blue, purple}. One can see that these pairs are
indeed enough to separate clusters of training points. Alternatively, one could simply
ignore hyperplane tuples that produce empty cones, which could happen frequently
especially in high dimensions. Such dynamic selection of hyperplane tuples could
lead to improved performance but perhaps more challenging analysis.

4.3 Efficient Representations

Next, we consider settings where the data in raw form is either not available or is
too large to measure. Often, such data is instead available only by its adjacency
graph, capturing distance measures between points. Such graphs arise naturally in
many applications such aswireless communications, sensor networks and astronomy.
Alternatively, we may wish to use such a representation to improve the classification
accuracy. In this section, we demonstrate empirically that our approach is also robust
to this type of data representation. In our first experiment, we use the MNIST 0–1
handwritten digit data but rather than measuring this data directly, we select a subset
of training data and compute its adjacency matrix X where Xi j is the (Euclidean)
distance between the i th and j th image.We thenmeasure Q = sign(AX) andproceed
as usual. The results are shown in Fig. 14 (left), where actuallywe see an improvement
in classification accuracy. We conjecture the improvement arises from the fact that
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Fig. 14 Graph representations, average classification rate as function of levels. Left: MNIST 0–1
digits. Right: MNIST 0–9 digits

the adjacency columns are more linearly separable than the original raw data. Next,
we use all ten digits of the MNIST data and create the adjacency matrix. Since the
adjacency matrix scales with the number of training points, we are no longer free to
use as many as we wish without bogging down computation. Thus, we are forced
to use a smaller number of training points than in Fig. 6, and unsurprisingly, we see
less accurate classification results, as shown in Fig. 14 (right). It would be interesting
futurework to study the geometry of such adjacency data and to develop an analogous
analysis.

5 Conclusion

We have presented a simple classification method from [41] that can be applied to
data represented in binary form. We have provided experimental results showcasing
its classification accuracy on real and synthetic data as well as supporting theoretical
analysis. In addition, we have demonstrated that the classification algorithm can be
readily adapted to classify data in a hierarchical way that improves computational
efficiency. In addition, we present some preliminary implementation modifications
that can yield both computational and accuracy gains, and point out interesting direc-
tions for future work.
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