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Abstract— Recognition of pain in equines (such as horses and
donkeys) is essential for their welfare. However, this assessment
depends solely on the ability of the observer to locate visible
signs of pain since there is no verbal communication. The use
of Grimace scales is proven to be efficient in detecting pain but
is time-consuming and also dependent on the level of training
of the annotators and, therefore, validity is not easily ensured.
There is a need for automation of this process to help training.
This work provides a system for pain prediction in horses, based
on Grimace scales. The pipeline automatically finds landmarks
on horse faces before classification. Our experiments show that
using different classifiers for different poses of the horse is
necessary, and fusion of different features improves results.
We furthermore investigate the transfer of horse-based models
for donkeys and illustrate the loss of accuracy in automatic
landmark detection and subsequent pain prediction.

I. INTRODUCTION

The recognition and quantification of pain in equines

is essential to maintain their welfare and improve their

convalescence [11]. However, contrary to humans, where

pain assessment is facilitated through verbal communication,

in animals, this process depends on the observer’s ability to

locate and quantify the pain, based on perceptible behaviour

and physiological patterns.

Several studies have found a correlation between pain

and behaviour changes in equines, such as aggressiveness,

reluctance to move, vocalisation and diminished socialisa-

tion [2]. However, to study more subtle changes, it is useful

to analyse the facial expressions of these animals [10]. This

method has been extensively used in other species, such

as mice [18], rabbits [17] and sheep [25] with promising

results. Several frameworks have been proposed for horse

pain estimation, the most important being the Horse Grimace

Scale (HGS) [7] and the Equine Utrecht University Scale for

Facial Assessment of Pain (EQUUS-FAP) [33], [34].

Although the use of grimace scales to assess pain is proven

to be efficient, it requires the training of observers and the

manual assessment of the pain score for each facial action

unit (AU). There is a clear necessity for automation. Recent

progress on action unit based estimation of sheep pain [24],

using Sheep Pain Facial Expression Scale (SPFES) [25],

illustrates the potential of this method. The foremost applica-

tion is the development of training programs for recognizing

pain in equines.

In this paper, we propose a hierarchical model for pain

estimation in equines, with a focus on horses. The system

is composed of a pose estimation step, followed by pose-

informed landmark location, with further feature extraction

of the regions of interest (ROI) and pose-specific pain

score estimation. The last step integrates different appear-

ance features to produce a more robust score. Additionally,

preliminary experiments were conducted with donkey faces,

evaluating the possibility of taking advantage of the higher

number of horse faces available to produce a robust model

for other equines.

The main contributions of this work are as follows:

• We present a horse and donkey dataset with manually

annotated landmarks and feature-level, detailed pain

score ground truth, given by a veterinarian expert.

• We implement a method for accurate head pose detec-

tion and automatic landmark detection, detecting either

44, 45, or 54 landmarks, depending on the head pose.

• We implement a hierarchical system for pose-specific

automatic pain prediction on horse faces, and explore

its extension for donkey faces.

II. RELATED WORK

Objective analysis of the human face is frequently

achieved using a Facial Action Coding System (FACS)

approach [8]. In this system, action units (AUs) are defined

based on the underlying facial muscles and can be used to

evaluate changes in an expression, for instance, associated

with pain [3], [22], [23]. The most accurate AU detection use

video as input, as facial movements can be very subtle, and

leveraging spatio-temporal cues seems essential [30]. Auto-

matic pain detection in humans, using facial expressions, is

based on automatic AU detection [19], [37], [22].

Using a similar approach, the EquiFACS system pro-

poses the systematic characterization of horse facial move-

ments [35]. These were identified based on the underlying

muscles of the horse, and through behavioural studies.

The systematization of changes in AUs for pain estimation

resulted in Grimace scales for multiple animals, including

equines. However, considering the time-consuming aspect

of manual pain assessment the idea of automating their

application gained more popularity and explored in the

literature for sheep [21] and mice [1], [32]. In mice, transfer

learning was used to optimize an InceptionV3 deep neural

network model, trained on ImageNet, for the binary pain

vs no-pain classification in laboratory mice [32]. In sheep,

a hierarchical system to estimate the pain levels based on
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the face was proposed by Mahmoud et al. [24]. Eight

facial landmarks were detected for specifying regions of

interest, using a modified version of Ensemble of Regression

Trees (ERT) with triplet interpolated feature (TIF) extraction

followed by a Histogram of Oriented Gradients (HOGs)

based classifier [21]. Further work on the estimation of

facial landmarks was developed [14] adding a pose esti-

mation step to the pipeline and improving the detection

for extreme poses. A complete pipeline was more recently

proposed [27], combining a fine-tuned SSD-Mobilenet model

for face detection, with a CNN-based pose estimation and

pose-informed landmark location method. HOGs features, as

well as geometric features and the quantitative pose values,

were used to train a binary Support Vector Machine (SVM)

classifier, adapted to different head rotations and consequent

self-occlusion.

Previous work in horses used a combination of thinning,

color histograms and HOG features to predict the pain level

of the horse [15]. This work used a smaller dataset than ours

but a similar set of landmarks and pain features. However, the

extracted features were not sufficiently discriminative, and

SVM-based classification did not produce a high accuracy.

There are several important challenges in horse pain esti-

mation. There is much less data available for studying animal

faces, compared to the vast amounts of data on human faces.

Furthermore, the appearance of a horse’s head is affected

much more (compared to humans) by the variance in color of

horse coats, potentially including patches of different colors,

such as a white blaze often found on the head. Also, the

bounding box of a horse’s head is typically not square. Most

human-face analysis approaches assume a scaled image with

equal width and height, this is not possible with horse faces

unless we distort the faces severely for larger pose angles.

Another important challenge is that there is no verbal ground

truth for the pain level of the horse, whereas humans can rate

their own pain, albeit subjectively.

III. DATA AND ANNOTATIONS

The dataset used in this study consists of 1854 images

of horse heads and 531 images of donkey heads. A vet-

erinarian specialist scored the pain level of the horses and

donkeys based on six pain features. These pain features are

derived from both the HGS [7] and the EQUUS-FAP [33],

scoring the stand of the ears, the visibility of the sclera, the

angulation of the upper eyelid, tightening of the orbital, the

widening of the nostrils, and the corners of the mouth. A

score is given separately for each feature, in a 0-2 scale:

“0” (no pain), “1” (mild pain) or “2” (severe pain). The

label distribution is imbalanced, most pain indicators are on

nostrils, eyelid, and mouth (Fig. 1).

The horse images we use in this study come from three

different sources. The first one was gathered from a clinical

study, where the pain was clinically induced and the images

were taken over time [15]. The second subset was gathered

from a home housing older horses. Within each of these

subsets, the recording conditions are similar. The third subset

consists of images provided by horse owners. This subset

Fig. 1. The distribution of the pain scores per relevant feature

(a) (b) (c)

Fig. 2. Manually annotated landmarks of (a) a frontal head pose containing
54 landmarks, (b) a side head pose containing 45 landmarks and (c) a tilted
head pose containing 44 landmarks. The red dots indicate the landmarks of
interest, while the magenta dots indicate the contour landmarks. The image
width is fixed, but the width-height ratio is not changed to illustrate the size
differences. Best viewed in color.

is more diverse compared to the first and second subsets,

containing a variety of horses in different settings. Addition-

ally, a set of donkey images were provided by a donkey

sanctuary. The characteristics of the images are similar and

multiple images are present per donkey. Part of the dataset

and annotations can be obtained by request from the authors.

To provide a solid ground truth, the landmarks of every

image were manually annotated. These landmarks depend on

the head pose, which we grouped into three: a frontal pose

(54 landmarks), a profile pose (45 landmarks), and a tilted

pose (44 landmarks), respectively. The landmarks of interest

describe the ear(s), the eye(s), the nostril(s) and the mouth

of the face. Additional landmarks describe the contour of the

face.

IV. METHODOLOGY

The complete processing pipeline is visualized in Fig. 3.

We describe each stage separately. The horse dataset was

split into a training set (1496 images) and a test set (357),
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maintaining the head pose distribution of full dataset in each

subset. One horse may appear in multiple images, so we

have ensured that none of the horses are present in both

the training and the test set. The hyperparameters of all the

models are optimized using a 5-fold cross-validation within

the training set, and the test set is kept separate.

A. Pose Estimation

Head pose variations cause evident changes in the facial

appearance in equines due to self-occlusion. For this reason,

using the pose information to define the areas of interest

visible from a specific pose would be pertinent for both

landmark detection and further pain estimation.

We implemented a 5-class pose classifier to distinguish

tilted and frontal faces, as well as the sign of their rotation.

Based on results from the literature, we decided to use

Histogram of Oriented Gradients (HOG) features [6] with

a support vector classifier (SVM) for this purpose. All the

horse faces were cropped according to the location of the

manually given landmarks, with an added margin considering

the original image size. Additionally, both tilted and profile

faces were augmented by flipping the image vertically,

reducing the data imbalance between different poses. For

the individual performance metrics, the class of interest was

labeled as “positive” and all the others as “negative”. We

have calculated Precision, Recall, and the F1-Score based

on this labeling. A higher weighted F1-score was achieved

with 9 orientations, 8 × 8 pixels per cell and 4 × 4 cells

per block, associated with a weighted SVM classifier with a

linear kernel.

B. Landmarking

Precise landmark detection is essential for further extrac-

tion of the areas of interest and accurate pain prediction.

Although little work has been done for landmark detection in

animals, several methods have emerged for transfer learning

from landmarking models for human faces. Hewitt et al.
proposed a pose-informed Ensemble of Regression Trees

(ERT) approach [14] and Rashid et al. [28] explored the

fine-tuning of a network implemented for human faces, by

correcting the differences in shapes of equines and human

faces.

In this work, we compare the performance of two state-

of-art landmark detection algorithms originally developed

for human faces, namely ERT [16] and Supervised Descent

Model (SDM) based on SWIFT features [36], as well as a

mean shape model for baseline.

The horse faces were cropped based on the landmark

location and resized according to the face proportions in each

of the pose bin. This reflected in an image of 265× 500 for

frontal faces, 500 × 447 for tilted faces and 500 × 363 for

profile faces. Further, all faces were rotated according to their

absolute pose.

The amount of augmentation to apply for each pose bin

was evaluated, and a performance plateau was observed in

the ERT model when increasing the number of perturbations

above 30, for frontal and profile faces, and above 10, for

tilted faces. This observation is coherent with the number

of images per bin. Additionally, a mean shape model was

calculated for each pose bin based on the training set land-

marks. The results presented later refer to the performance

in the un-augmented test set, with a total of 90 frontal faces,

177 tilted faces, and 90 profile faces.

C. Facial alignment and augmentation

We have a small number of annotated training faces for

training our models. To create a robust pain classification

model, the training set needs to be augmented and properly

aligned.

Images can be aligned using either a rigid alignment

or a non-rigid alignment. The non-rigid alignment allows

deformation of the image, while the rigid alignment

only allows rotation, scaling, and translation [9]. Since

we want to preserve local detail for pain estimation,

we use a rigid alignment approach, namely, Procrustes

Analysis (PA). PA states that the shape of I: l × p is the

same as the shape I’: l×p after the following transformation:

I ′ = IΓ + 1NγT . (1)

Where Γ is the rotation matrix, 1N is an N vector of ones

and γ is the translation matrix of the size p × 1 [12].

A mean shape per head pose was generated by using the

Generalized Procrustes Analysis (GPA) [13]. This algorithm

creates a consensus shape from the input set of shapes by

optimizing the residual-sum-of-squares error after alignment.

During aligning each face to the mean shape, the faces are

scaled and reflected if necessary.

We augment the training set by injecting some noise to the

landmarks before the alignment, which results in different

aligned images per original image. The random noise was

determined by adding maximally 2% and maximally 6% of

the eye-nostril distance to the landmark coordinates, sepa-

rately (Fig. 4). The noise added could either be positive or

negative. If the noisy coordinate exceeds the image boundary,

the original coordinate was chosen.

D. Pain Estimation

The difference in pain scores is caused by variations in the

AU appearance. For this reason, each face was cropped based

on several Regions of Interest (ROIs); the eyes, ears, nostrils,

and the mouth, respectively. Previous work on estimating

pain in sheep extracted HOG features from the ROIs and

used an SVM for pain classification [21].

In this paper, we experimented with HOG, Local Bi-

nary Pattern (LBP) [26], Scale Invariant Feature Transform

(SIFT) [20], as well as with features created by a VGG16

deep neural network model [31] with weights trained on the

ImageNet database.

Before any features were extracted, the background of

the image was subtracted and the faces were aligned to a

consensus shape. The consensus shapes have a bounding box

dimension of 1358×2424 for the tilted head pose, 243×542
for the frontal head pose and 363× 403 for the profile head

pose. Next, the ROIs were determined by adding a bounding
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Fig. 3. The training pipeline for the pain classification approach. The output is a set of SVM models, which are used to predict pain scores per feature.

box around the landmarks of interest which extends the box

described by the landmarks by 2% of the normalization

distance. The number of ROIs differed per head pose; the

profile head pose has four ROIs, the frontal head pose has

six ROIs and the tilted head pose has five.

SIFT keypoints are extracted from each ROI. A codebook

was prepared by an 3000-means clustering using all the

keypoints in the training set. This codebook is then used

to create a 3000-bin histogram to serve as a Bag of Words

for the image, using all the keypoints of all the ROIs in that

specific image. The histogram was then normalized using

L2-normalization.

To extract the HOG features, first, the ROIs were resized

to 64 × 128, then the HOG features were extracted using

8 × 8 pixels per cell and nine orientations. The histograms

were normalized using four cells and L2-normalization. LBP

features were extracted using a cell radius of eight pixels

and the number of points was set to 24. Finally, for features

generated from VGG16, the ROI image was resized to 244×
244 and directly used as input for the VGG16 model. The

features were extracted by removing the softmax layer of the

model, so the output of the VGG16 is a vector of the length

of 4096.

First, the dataset was divided per head pose. Next, a single

SVM regressor was optimized and trained per pain scoring

metric, seperately. To classify the pain, all the ROIs extracted

were included for each pain prediction. Sample weights were

added, using higher weights for the class ‘2’, since the

cost of not correctly classifying a horse in pain is higher

than the cost of not correctly classifying a horse with no

pain. We use rounding to the nearest value to convert the

regression prediction to a classification. We experimented

with linear kernels, histogram intersection kernels [4] and

the generalized histogram intersection kernels [5] for each

pain model, separately. The models are trained and tested

using solely the manual ground truth landmarks.

E. Classifier Fusion

Combining models trained with different types of features

could improve the pain detection. For this purpose, simple

fusion and weighted fusion approaches are implemented. The

Fig. 4. Illustration of the eye-nostril distance used for normalization (green
line). Limits of the noise surrounding a ground truth landmark (red dot) for
augmentation are given in blue (minor - 2%) and in yellow (severe - 6%)
to illustrate the perturbation in the augmentation. Best viewed in color.

results generated by feature-specific predictors (using SIFT,

HOG, LBP, and VGG16, respectively) are fused using both

methods. The simple fusion extracts the minimum predicted

value or the mean of all the predicted values. The weighted

fusion assigns weights to each score separately as described

in Eq.2, where Wx is the weight and Sx is the predicted

score of a model.

Sfused =W1 ∗ S1 +W2 ∗ S2 (2)

The weights for fusion are optimized using a 5-fold cross-

validation.

F. Donkey classification

For donkey classification, both donkey and horse images

are grouped based on their head poses and were aligned to

a single mean shape per head pose before pain estimation.

All the horse images were used in the training set, 80% of

the donkey images were used as the validation set, while
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the remaining donkey images were used as a test set. An

SVM regressor was trained on the training set and the hyper-

parameters of the model were optimized using the validation

set. The final model was trained on the combination of the

validation set and the training set and predicted the test set

containing exclusively donkey images. Due to a lack of data,

the frontal head pose of the donkeys was excluded from the

predictions.

G. Performance Measures

The performance of different stages of our model are

measured separately. For landmark localization on human

faces, the inter-ocular distance is typically used as a normal-

ization factor, and landmarks automatically located within 10

per cent of inter-ocular distance are considered to be accu-

rate [30], [22]. In horses, there is no accepted normalization

factor for facial landmark analysis. In this paper, we propose

to use the distance between the center of an eye and the

center of the underlying nostril for this purpose (see Fig. 4).

These two features are present in every pose of the horse

face, as opposed to two eyes required for the inter-ocular

distance, thus the distance can be measured independent of

the head pose position. Furthermore, the eye-nostril distance

is sufficiently long to make it robust against errors. However,

some poses of the horse (especially, changing pitch) will

distort this distance. The error of the automatic landmark-

ing is calculated by computing the Euclidean distance of

the prediction to the ground truth landmark. The opposed

normalization distance is used to normalize the error.

For the assessment of pain scores, we use the F1-scoring

metric. The F-scoring equation is described in Eq. 3:

Fβ =
(β2 + 1)PR

β2P +R
, (0 ≤ β ≤ ∞), (3)

where P is the precision, R is the recall and β is a parameter,

set to 1.

V. EXPERIMENTAL RESULTS

A. Pose Estimation

The implemented pose classifier proved to be efficient

in distinguishing the five pose classes, especially when one

considers the wide variety of head poses represented in our

dataset. Table I summarizes the results in terms of precision,

recall, and F1-Score. The errors observed were often related

to ambiguous head poses or extreme angles.

B. Landmarking

The Ensemble of Regression Trees model has shown

promising results for the landmark location, outperforming

both the Mean Shape model and the Supervised Descent

Model (Table II). As expected, considering the qualitative

head pose is unknown and the quantitative pose is only

based in the yaw angle, the variations in the normalization

distance with the pitch angle introduced variation in the

final mean error. Overall, extreme angles, combined with

a lack of representation of these angles in the dataset, are

influential in the incorrectly located landmarks. Additionally,

TABLE I

POSE ESTIMATION EVALUATION ON THE TEST SET CONTAINING 357

IMAGES OF HORSE FACES. THE PERFORMANCE IS PRESENTED

SEPARATELY FOR EACH POSE BIN AND THE WEIGHTED AVERAGE OF

EACH PERFORMANCE MEASURE IS GIVEN WITH WEIGHTS ACCORDING

TO THE POSE DISTRIBUTIONS IN THE TEST SET.

Precision Recall F1-Score
Profile (-) 0.96 0.88 0.92
Tilted (-) 0.82 0.95 0.88
Frontal 0.94 0.84 0.89

Tilted (+) 0.88 0.92 0.90
Profile (+) 0.89 0.82 0.85

Weighted Average 0.90 0.89 0.89

not all outline landmarks are associated with strong changes

in appearance, which leads to deviations on their prediction,

visible in Figure 5.

Analyzing the individual results for each region of interest

(ROI) (Table III) in combination with the examples presented

in Figure 5, additional sources of error are observed. Ear

position will vary greatly from horse to horse and with

the pain level, so, although they commonly look straight

and facing forwards, there are several examples were this

ROI is rotated, in a low position near the head. These

variations will make the precise location of all the landmarks

in the ears more challenging. Consequently, a higher error

in comparison with the other ROIs was expected for ears,

in particular in the profile pose. Regarding the nostrils, the

subtle outer contour, when compared to the nostrils’ dark

interior, leads to landmark deviations, visible in the second

column of Figure 5. Similar to what was described in the

nostrils, eye landmark detection is affected by the clear

contrast between the outer eye and the pupil when compared

with the outer eye landmarks. Lastly, the lack of a clear

definition in the mouth landmarks results in deviations in

the landmark location, similar to the outline landmarks.

Due to the difference between the normalization factor

used and the ones applied in previous work, it’s not possible

to do a direct comparison with the literature. To evaluate the

performance of our model in comparison to previous work,

the errors were normalized by the bounding box edge length,

similar to what was done in [14]. The average normalized

error achieved for the ERT model was 0.05, comparable to

the ones presented in related work.

TABLE II

WEIGHTED AVERAGE RESULTS FOR THE TEST SET, WITH THREE

POSE-INFORMED LANDMARK LOCATION MODELS, BASED ON THE POSE

ANNOTATION OF EACH IMAGE. THE SUCCESS RATE INDICATES THE

RATIO OF LANDMARKS WITH A LOCATION ERROR LESS THAN 0.06 OF

EYE-NOSTRIL DISTANCE.

ERT SDM Mean Shape
Mean Error 0.09 0.12 0.15

Success Rate 0.51 0.32 0.20
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TABLE III

EVALUATION OF THE MEAN LOCATION ERROR PER AREA OF INTEREST

IN THE TEST SET. THE HIGHEST ERROR FOR EACH REGION OF INTEREST

IS HIGHLIGHTED.

Frontal Tilted Profile
Ear(s) 0.06 0.10 0.12

Nostrils 0.09 0.11 0.08
Left eye 0.06 0.07 0.09

Right eye 0.06 - -
Mouth - 0.08 0.08

Fig. 5. Examples of the landmarks located in the test set by the ERT
model compared to the baseline mean shape model. The three pose bins are
represented from left to right: frontal, tilted and profile, respectively. The
last column represents a image with a big location error for the landmarks
due to an extreme pitch angle. The white lines connect the predicted point
with the ground truth landmark location.

C. Classification Experiments

Table IV shows the classification rates for the 3-class

problem in terms of micro F1 scores, and across features.

Standard implementations were used per SIFT, HOG and

LBP.

Overall, the classifier shows high micro F1-scores. LBP

and SIFT features show overall low results. Since the SIFT

keypoints are automatically extracted over the entire face

(using the SIFT descriptor), the features are probably not able

to distinguish the small changes of the Grimace scale. This

could be solved by extracting SIFT features using the ground

truth landmarks as keypoints. Another issue is that the ROIs

were not resized separately before any SIFT or LBP features

were extracted. Even though the full faces are scaled to the

same size (depending on the pose) after alignment, this could

have affected the ability of the feature extraction to define

scale independent distinguishable features. Finally, lowering

the overall resolution of the ROIs before LBP extraction may

improve the results as well. This is a trick used in robust

landmarking to fit more discriminating features into a small

feature window [29].

Combining all the head poses into a single model leads to

a model that is not able to learn to distinguish between pain

and no pain in horses (results not shown). The appearance

differences are too great in this case, and the increased

complexity can only be countered by greatly increasing the

training set size.

D. Fusion Experiments

Fusion of the model’s predictions increases the F1-scores

slightly (Table V). The improvements are mainly seen in the

tilted and frontal head poses. The largest increase is seen

in the prediction of the sclera in the tilted head pose. More

elaborate fusion schemes should be explored in future work.

E. What about Donkeys?

The present dataset has around three times more horse

faces than donkey faces, which makes the idea of apply-

ing a horse-based model in donkeys very appealing, espe-

cially considering the similarities between their Action Units

and the common grimace scale (EQUIFAP), described for

equines. To evaluate the potential of extrapolating a horse-

based model to donkey images, some preliminary tests were

made by applying the trained models on the donkey dataset.

The steep drop in results for both pose detection

(Table VI) and landmarking (Table III), reveals clear

differences in the face proportions, caused by the distinct

ear sizes and nose length. To improve the performance of

the model for donkeys, it is possible to “donkify” the horse

faces by defining a Thin Plate Spline-based deformation

field from horse to donkey, based on the facial landmarks.

Alternatively, experiments can be made with mixed training.

TABLE IV

EVALUATION OF THE MICRO F1 SCORE OF THE PREDICTION OF THE

PAIN SCORE IN HORSES. THE HIGHEST F1 SCORE PER PAIN FEATURE IS

HIGHLIGHTED.

Pain feature SIFT HOG LBP CNN

Frontal
pose

Ears 0.65 0.79 0.63 0.82
Eyelid 0.56 0.62 0.62 0.56
Mouth - - - -
Nostrils 0.56 0.63 0.56 0.60
Orbital 0.83 0.84 0.80 0.84
Sclera 0.62 0.72 0.63 0.81

Tilted
pose

Ears 0.53 0.88 0.77 0.74
Eyelid 0.44 0.46 0.51 0.50
Mouth 0.65 0.68 0.76 0.72
Nostrils 0.57 0.66 0.68 0.64
Orbital 0.77 0.85 0.79 0.85
Sclera 0.51 0.66 0.62 0.66

Profile
pose

Ear 0.46 0.81 0.56 0.83
Eyelid 0.45 0.55 0.49 0.54
Mouth 0.77 0.83 0.81 0.77
Nostril 0.50 0.62 0.55 0.69
Orbital 0.51 0.70 0.55 0.74
Sclera 0.75 0.68 0.63 0.73
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TABLE V

EVALUATION OF THE FUSION OF THE MODELS TRAINED ON ALL TYPES

OF EXTRACTED FEATURES. THE F1 SCORES THAT ARE IMPROVED BY

FUSION COMPARED TO THE BEST PERFORMING MODEL TRAINED WITH

JUST A SINGLE EXTRACTION METHOD ARE HIGHLIGHTED.

Fusion Ears Eyelid Mouth Nostrils Orbital Sclera

Frontal
pose

Simple Min 0.67 0.47 - 0.37 0.89 0.85
Simple Mean 0.66 0.47 - 0.57 0.89 0.85

Weighted 0.83 0.64 - 0.64 0.84 0.77

Tilted
pose

Simple Min 0.88 0.43 0.23 0.22 0.87 0.74
Simple Mean 0.88 0.53 0.77 0.68 0.87 0.74

Weighted 0.76 0.49 0.69 0.65 0.85 0.67

Profile
pose

Simple Min 0.56 0.49 0.17 0.46 0.75 0.74
Simple Mean 0.26 0.47 0.81 0.46 0.75 0.74

Weighted 0.81 0.55 0.77 0.64 0.76 0.69

Pain prediction in donkeys shows a overall decrease in

performance compared to horses (Table IX). Aligning the

horse and donkey faces with PA improves the comparability

between the species, especially for the tilted head pose.

The ear-based pain prediction goes noticeably down, which

is expected, since the shapes of the donkey ears are very

different from the shapes of the horse ears. The profile

head has the biggest decrease in performance. These results

show the difference in face morphology between horses and

donkeys.

TABLE VI

POSE ESTIMATION ON THE DONKEY FACE DATASET CONTAINING 534

IMAGES, USING A HOG-SVM MODEL TRAINED WITH THE HORSE FACE

DATASET. THE PERFORMANCE IS SEPARATELY PRESENTED FOR EACH

POSE BIN AND THE WEIGHTED AVERAGE OF EACH PERFORMANCE

METRIC, ACCORDING TO THE POSE DISTRIBUTION IN THE TEST SET.

Precision Recall F1-Score
Profile (-) 0.54 0.39 0.45
Tilted (-) 0.50 0.29 0.36
Frontal 0.07 0.67 0.12

Tilted (+) 0.49 0.39 0.43
Profile (+) 0.54 0.39 0.45

Weighted Average 0.48 0.37 0.41

TABLE VII

LANDMARKING RESULTS FOR THE DONKEY FACE DATASET CONTAINING

531 IMAGES, USING AN ERT MODEL TRAINED ON THE HORSE FACE

DATASET. THE SUCCESS RATE INDICATES THE RATIO OF LANDMARKS

WITH A LOCATION ERROR BELOW 0.10 OF THE EYE-NOSTRIL DISTANCE.

DONKEY FACES ARE SMALLER, SO THE THRESHOLD OF ERROR CAN BE

INCREASED.

Mean Error Success Rate
Frontal 0.27 0.07
Tilted 0.32 0.07
Profile 0.37 0.08

Weighted Average 0.33 0.08

VI. CONCLUSIONS

We extended several methods for automatic facial land-

marking and pain estimation in horse and donkey faces.

Our experiments showed that multiple models should be

trained in parallel for different poses of the animal’s head. We

TABLE VIII

EVALUATION OF THE MEAN LOCATION ERROR PER AREA OF INTEREST

IN THE DONKEY FACE DATASET CONTAINING 531 IMAGES, USING ERT

MODELS TRAINED ON THE HORSE FACE DATASET. THE HIGHEST ERROR

FOR EACH REGION OF INTEREST IS HIGHLIGHTED.

Frontal Tilted Profile
Ear(s) 0.30 0.35 0.44

Nostrils 0.23 0.30 0.33
Left eye 0.32 0.38 0.38

Right eye 0.29 - -
Mouth - 0.24 0.26

TABLE IX

THE MICRO F1 SCORES OF THE MODEL TRAINED ON THE HORSE

DATASET AND OPTIMIZED TO PREDICT THE PAIN SCORE OF DONKEYS.

THE HIGHEST F1 SCORES ARE HIGHLIGHTED.

Pain feature SIFT HOG LBP CNN

Tilted
pose

Ears 0.33 0.75 0.65 0.67
Eyelid 0.29 0.59 0.47 0.47
Mouth 0.47 0.78 0.84 0.81
Nostrils 0.43 0.61 0.63 0.61
Orbital 0.43 0.57 0.61 0.56
Sclera 0.48 0.62 0.63 0.71

Profile
pose

Ear 0.40 0.32 0.40 0.36
Eyelid 0.53 0.33 0.53 0.40
Mouth 0.67 0.63 0.76 0.71
Nostril 0.48 0.56 0.54 0.66
Orbital 0.55 0.45 0.51 0.55
Sclera 0.53 0.63 0.73 0.67

achieved 0.89 F1 score on pose estimation, and 0.51-0.88 F1

score on pain estimation on tilted poses (with different face

regions), and 0.53-0.87 after decision fusion of classifiers

based on different features. The lack of balance between

the train and test sets affected the eventual F1-score of the

pain prediction. We have tested a single model instead of

three pose-specific models, but the appearance variations

are great, and the single model approach did not work. We

have shown the difficulties of transferring models to donkey

faces. Neither automatic landmarking, nor pain estimation is

directly transferable.
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