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Introduction

The current chapter guides the reader through the steps of the When-to-Worry-
and-How-to-Avoid-the-Misuse-of-Bayesian-Statistics checklist (the WAMBS
checklist), in order to provide background for the other chapters in this book. New
in comparison to the original WAMBS checklist is that we include prior and poster-
ior predictive model checking. We also compare the performance of two popular
Bayesian software packages: RStan (Carpenter et al., 2017) and rjags (Plummer,
Stukalov, & Denwood, 2018) ran via blavaan (Merkle & Rosseel, 2018). We
show why using the Hamiltonian Monte Carlo (HMC) procedure (Betancourt,
2017), available in RStan, is more efficient when sample size is small. Note that
for a full explanation of each step we refer to the paper in which the checklist was
published (Depaoli & Van de Schoot, 2017). For a more detailed introduction to



Bayesian modeling, we refer the novice reader to Chapter 1 (Miočević, Levy, &
Van de Schoot), among many other resources. The checklist is extended in Chapter
4 (Veen & Egberts) with some additional tools and debugging options. All data and
the annotated R code to reproduce the results are available on the Open Science
Framework (https://osf.io/am7pr/).

Example data

The data we use throughout the chapter is based on a study of PhD delays (Van
de Schoot, Yerkes, Mouw, & Sonneveld, 2013). Among many other questions,
the researchers asked the PhD recipients how long it had taken them to finish
their PhD thesis (n ¼ 333). It appeared that PhD recipients took an average of
59.8 months (five years and four months) to complete their PhD trajectory. The
variable of interest measures the difference between planned and actual project
time in months (delay ¼ 9:97, min=max ¼ �31=91, σ ¼ 14:43).
Let us assume we are interested in the question of whether age (age ¼ 31:68,

min=max ¼ 26=69) of the PhD recipients is related to delay in their project. Also,
assume we expect this relation to be non-linear. So, in our model the gap between
planned and actual project time is the dependent variable and age and age2 are the
predictors, resulting in a regression model with four parameters:

• the intercept denoted by βintercept
• two regression parameters:

◦ βage or β1 for the linear relation with age
◦ βage2 or β2 for the quadratic relation with age

• variance of the residuals denoted by σ2ε

WAMBS checklist

Do you understand the priors?

Since we know that at least some degree of information is necessary to properly
estimate small data (Smid, McNeish, Miočević, & Van de Schoot, 2019), the
next question is: How to assess and use such information? There are many ways
to specify subjective priors—for example, based on expert elicitation or previous
data (Van de Schoot et al., 2018)—and none are inherently right or wrong. For
more details on where to get the priors from, see Zondervan-Zwijnenburg,
Peeters, Depaoli, & Van de Schoot (2017).
In the current chapter we propose to use background information to specify

priors that cover a plausible parameter space. That is, we define a range of pos-
sible parameter values considered to be reasonable, thereby excluding impossible
values and assigning only a limited density mass to implausible values. Note that
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in the sensitivity analyses presented in Steps 7–9 of the checklist, we investigate
the extent of “wiggle room” for these values. Stated differently, whether differ-
ent specifications of the plausible parameter space lead to different conclusions.

Define parameter space

We developed a free online app that can help with specifying the plausible par-
ameter space for the PhD delay example (see the OSF for source code (https://
osf.io/am7pr/), and for the online version go to www.rensvandeschoot.com/pps
or https://utrecht-university.shinyapps.io/priors_phd/)1; for a screenshot, see
Figure 3.1. If useful background knowledge is available and you are therefore
unsure about your prior beliefs, trying to infer a plausible parameter space is to
be preferred over just relying on software defaults.
First, define what you believe to be a reasonable range for age (in years).

Think about what you believe to be the youngest age someone can acquire
a PhD (delay included) and what the oldest age might be. This yields an age
range of, for example, 18–70. Then, define the delay (in months) you believe to
be reasonable. A negative delay indicates that someone finished their PhD ahead
of schedule. Think about how many months someone can finish ahead of sched-
ule and what you believe to be the maximum time that someone can be
delayed; for example, -25–120 (Figure 3.1).
Second, think about what you consider plausible estimates for the intercept, the

linear effect, and the quadratic effect. The data is not centered, which means that
the intercept represents the expected delay of a zero-year-old. The linear effect is
the expected increase in delay (in months) over time. For example, a linear effect of
3 means that for a one-year increase in age, the expected delay increases by three
months. The quadratic effect is the deviation from linearity. Let us assume we
expect a positive linear increase of 2.5 starting at a delay of -35 months (note this is
possible because it is the delay of a zero-year old PhD candidate) and a small nega-
tive quadratic effect of -.03, so that this effect would look like a negative parabola
(n-shaped) with the maximum delay occurring around the fifties (Figure 3.1).
Priors for regression coefficients (or any prior for that matter) are never just

a point estimate, but always follow a distribution. In this example, only normal
distributions are used, but most Bayesian software will allow many different
types of distributions. The variances of a normally distributed the prior, denoted
by σ20, resemble a measure of uncertainty; see also Chapter 1. It is important to
note that these variances are measured on the same scale as the regression coeffi-
cients. A variance that is small for the intercept might be relatively large for the
quadratic effect. This means that you always have to be careful with the default
prior of any Bayesian software package. For our model, a small change in the
variance of the quadratic effect has a large influence on the plausible parameter
space. This becomes clear in the app because any small adjustment of the vari-
ance (note that the scales of variance sliders are different) for the quadratic effect
leads to a large widening of the ribbon of the quadratic effect over time.
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The following hyperparameters cover the entire plausible parameter space,
with N μ0; σ20

� �
, and IG shape; scaleð Þ2:

• βintercept � N �35; 20ð Þ
• βage � N :8; 5ð Þ
• βage2 � N 0; 10ð Þ
• σ2ε � IG :5; : 5ð Þ

Load data and define the model

Now that the hyperparameter values of the priors are specified, the data can be
uploaded into R (or any other software for Bayesian estimation) and the statistical
model can be specified. We ran the model using RStan. For an introduction, see for
instance Carpenter et al. (2017). We also include some results obtained with rjags
via blavaan (Merkle et al., 2019; Plummer et al., 2018) to show why using RStan
might be preferred over rjags even though the syntax is more complicated. See the
online supplementary materials for all annotated code (https://osf.io/am7pr/).

Prior predictive checking

Now that the model has been specified, we can investigate the priors further by
computing prior predictive checks which allow for inspecting the implications
of all univariate priors together. To get the prior predictive results we ignore
the sample data. In the top panel of Figure 3.2, the 95% prior predictive inter-
vals are shown for generated observations based on the priors for each individ-
ual, denoted by yrep, and the observations from the sample, denoted by y. That
is, values of yrep are based on the prior specifications for each individual and rep-
resent possible values for PhD delay implied by the priors. In general, for all
cases the prior intervals imply delays possible from approximately -100 to +100
months (with some extreme values up to ± 250) and the entire plausible param-
eter space (and more) is covered.
We can also look at the possible data sets generated by the priors. In the top

panel of Figure 3.3, distributions of PhD delay are plotted based on the set of
priors. It appears that a wide variety of data sets is plausible, though still ruling
out delays larger or smaller than +300/-300. In general, we can at least be con-
fident that when using our priors we do not exclude potential scenarios, but at
the same time are able to rule out large parts of the parameters space, which is
what is needed when sample sizes are small.

Does the trace-plot exhibit convergence?

To obtain estimates for the parameters in our model we make use of Monte Carlo
simulations; see also Chapter 1. Traditionally a very successful and often-used algo-
rithm is the Gibbs Sampler, a method of Markov chain Monte Carlo simulation
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(MCMC). This is the algorithm used by rjags. RStan uses a different MCMC
algorithm, namely HMC and specifically the No-U-Turn-Sampler (Hoffman &
Gelman, 2014); see also Chapter 4. For a conceptual introduction to HMC see
Betancourt (2017) or the very accessible blog post by McElreath (2017). One of the
benefits of this algorithm, and of the specific way it is implemented in Stan, is that
these Monte Carlo samples suffer less from autocorrelation between the samples in
the chains of samples (see Chapter 1 for an explanation of these terms). Thus, fewer
Monte Carlo samples are needed to accurately describe the posterior distributions.
In other words, the effective number of samples relative to our total amount of sam-
ples increases; see Chapter 4 for an extensive discussion on this topic. As a result,
usually, convergence is obtained faster with the more efficient HMC.
To determine whether the sampling algorithm has converged, one should

check the stability of the generated parameter values. A visual check of the

FIGURE 3.2 The 95% prior predictive intervals (top panel) and posterior predictive
intervals (bottom panel) for each observation in the sample (n ¼ 333)
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FIGURE 3.3 Generated data sets based on the prior (top panel) and posterior predictives
(bottom panel)
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stability of the generated parameter values implies estimating multiple chains and
then plotting the results in so-called trace plots. Figure 3.4 shows the trace plots for
all parameters obtained by RStan and rjags, based on four chains of 1,000 sam-
ples per chain for both samplers and 1,000 iterations burn-in. When comparing the
results for RStan and rjags, it becomes clear that RStan is more efficient than
rjags: we see in the plots that the chains of the MCMC sampler rjags move
more slowly from one step to the next than in the HMC sampler RStan. This is
caused by autocorrelation between the samples, as we show in Step 5 of the
WAMBS checklist.
Next to inspecting trace plots there are several diagnostic tools to determine

convergence. We discuss two completely different diagnostic tools.
First, the Gelman–Rubin statistic compares the amount of variance within the

individual chains to the amount of variance between the chains up to the last
iteration in the chains (Gelman & Rubin, 1992). If this ratio is close to 1—for
example, if the value is smaller than 1.1 for all parameters (Gelman & Shirley,
2011)—we can be more confident that the chains describe the same distribution
and that we have reached convergence. Figure 3.5 shows the development of
the statistic as the number of samples increases using Gelman–Rubin diagnostic
plots for both rjags and RStan.
Another convergence diagnostic is the Geweke diagnostic (Geweke, 1992),

which is based on testing equality of means between the first 10% and last 50%
parts of each chain. The test statistic is a standard Z-score: the difference
between the two sample means divided by its estimated standard error. In
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FIGURE 3.5 Gelman–Rubin statistics for RStan and rjags
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Figure 3.6, it could be checked how often values exceed the boundary lines of
the Z-scores. Scores above 1.96 or below -1.96 indicate that the two portions
of the chain differ significantly, and full chain convergence is not reached.
All results in Figures 3.4–3.6 point to convergence in the case of RStan,

but not in the case of rjags. We continue using only RStan, with the
exception of Step 5 in the checklist, where we compare the levels of auto-
correlation between both packages to demonstrate the added value of RStan
once more.

Does convergence remain after doubling the number of
iterations?

As is recommended in the WAMBS checklist, we double the amount of iter-
ations to check for local convergence. According to the checklist:

Local convergence can be thought of as the case where convergence
appears to be visually obtained – often with a smaller number of iter-
ations – but when the chain is left to run longer, then the chain shifts and
converges to another location.

(Depaoli & Van de Schoot, 2017)

We re-ran the model with 2,000 samples per chain.
Next to inspecting the trace plots (see Figure 3.4) and the convergence diag-

nostics (available on the OSF) we can also compute the relative bias, in order to
inspect if doubling the number of iterations influences the posterior parameter
estimates. One can use the following equation by filling in a posterior estimate:

relative bias¼ 100 � jposterior estimate initial modelj � jposterior estimate new modelj
jposterior estimate initial modelj

If the relative bias is 4 5j j%3, then it is advised to rerun the initial model with
four times the number of iterations, and again up till the relative bias is small
enough; see also Chapter 4. As can be seen in the first column of Table 3.1, all

TABLE 3.1 Results of relative bias (in %) for different models

Step 3: Double
iterations

Step 7: Different
variance priors

Step 8: Non-informative
priors

βintercept -1.029 1.052 -6.349
βage -0.811 0.880 -5.312
βage2 -0.778 0.967 -5.578
σ2ε -0.149 -0.345 0.248
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values of relative bias are < 1.03%, which means doubling the number of iter-
ations hardly changes the posterior estimates.

Does the histogram contain enough information?

The parameter estimates of all chains (after burn-in) can be plotted in
a histogram. The amount of information, or smoothness, of the histogram
should be checked to ensure that the posterior is represented using a large
enough number of samples. There should be no gaps or other abnormalities in
the histogram. The histograms in Figure 3.7 all look smooth, thus suggesting
that adding more iterations is not necessary.

Do the chains exhibit a strong degree of autocorrelation?

The dependence between the samples of a Monte Carlo simulation can be
summarized by autocorrelation. If samples are less correlated, we need fewer
Monte Carlo samples to get an accurate description of our posterior distribu-
tion. High autocorrelation can be a sign that there was a problem with the
functioning of the MCMC sampling algorithm or in the initial setup of the
model. Also, if convergence is not obtained with an extreme number of iter-
ations, then these issues can be indicative of a model specification problem,
multicollinearity, or the sampling algorithm. In our case, the sampling algo-
rithm itself solves the high amount of autocorrelation in the model. Compare
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FIGURE 3.7 Plots with histograms
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the plots in Figure 3.8 showing high degrees of correlation across iterations
obtained in rjags (orange) with those obtained in RStan (green). The
results obtained in RStan show less dependency between iterations when
compared to rjags.

Do the posterior distributions make substantive sense?

Plotting a smoothed line through the histogram can be used as an approximation
of the posterior distribution. In Figure 3.7 we plotted these to check if they are
unimodal (i.e., have one peak), are clearly centered around one value, give
a realistic estimate, and make substantive sense compared to our prior beliefs. As
can be seen in Figure 3.7, there are no such issues with the posterior distribu-
tions obtained for our parameters. The posterior distributions of our regression
coefficients fall within the range we specified above, and the peak of our poster-
ior distributions is within reasonable distance from the means of our prior speci-
fications. Substantive interpretations of these posteriors will follow in Step 10 of
the checklist.

Do different specifications of the priors for variance parameters
influence the results?

To understand the influence of the priors as specified in Step 1, it is recom-
mended to conduct a sensitivity analysis (Van Erp, Mulder, & Oberski,
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2018). It is essential that researchers report results of a sensitivity analysis,
even if there is no substantive impact on results. Do not despair if there are
differences between posterior results! Such findings are actually very interest-
ing (and even fun). In such situations, we recommend dedicating consider-
able space in the discussion section to the description of the discrepancy
between results obtained using informative versus non-informative priors and
the implications of this discrepancy. The discussion could then illustrate the
mismatch between theory (i.e., priors should reflect the current state of
affairs) and data, and it is up to the researcher to come up with an explan-
ation for such a mismatch.
Although a sensitivity analysis needs you to play around with some of the

prior settings, it is important to note that this can only be an exercise to improve
the understanding of the priors. It is not a method for changing the original
prior. That is, if a researcher actually changes the prior after seeing the results of
Steps 7–9, then this is considered as manipulating the results, related to question-
able research practices or even fraud.
To understand how the prior for the residual variance impacts the posterior,

we compared the current results with a model that uses different hyperpara-
meters for the Inverse Gamma prior for the residual variance. So far we used
σ2ε � IG :5; :5ð Þ, but we can also use σ2ε � IG :01; :01ð Þ and see if doing so makes
a difference (many other variations are possible). To quantify the impact of the
prior, we again calculated the relative bias (computed the same way as in
Step 3); see the second column of Table 3.1. The results are robust, because
there is only a minimum amount of relative bias for the residual variance.

Is there a notable effect of the prior when compared to
non-informative priors?

In order to understand the impact of our informative priors on the posterior
results, we also compare our subjective priors with non-informative priors:

• βintercept � N 0; 106ð Þ
• βage � N 0; 1000ð Þ
• βage2 � N 0; 1000ð Þ
• σ2ε � IG 1; : 5ð Þ

We computed the relative bias, and as can be seen in the third column of
Table 3.1, there is some bias between the two models. To understand the impact
of our informative priors, we plotted the priors and posteriors for both models
and for all parameters in Figure 3.9. In the last column the two posteriors are
plotted in the same graph, and, as can be seen, the informative priors do impact
the posterior results when compared to the non-informative priors.
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Are the results stable with a sensitivity analysis?

In addition to the previous steps, we not only checked the sensitivity of the
results to different prior specifications (our informative priors, a factor 10 times
more informative, and non-informative), but we also checked the stability of
the posterior estimates across participants by sequential updating. That is, with
Bayesian statistics the priors can be updated with a sample size of
n ¼ 1; …; n ¼ N . Thus, in each step the original prior is updated with more
and more data so that the posterior becomes more dominated by the data and
less by the prior. The stability of the results is indicative of how small the
sample size could have been with different prior settings.
As we assume our data to be exchangeable (see Chapter 2, Miočević, Levy,

and Savord), it should not matter in which order the data points were observed
if our posterior distributions are to pass this second sensitivity analysis. There-
fore, we created five permutations of the data in which only the order of the
participants was randomly changed. For each of these five data sets, we ran the
model with the three different prior specifications, resulting in 15 different
models. After the first update with the first participant, the posteriors were
updated again with adding the second participant to the data, and so on.
As can be seen in Figure 3.10, updating the model 333 times results in similar

posterior results for all the five different data sets, which makes sense since the
data is exchangeable and the order in which the data is analyzed should not
matter. But when inspecting, for example, the results for the intercept with the
priors as specified in Step 1, it can be seen that only after roughly 100 partici-
pants are the results stable. Stated differently, if we had included only 50 PhD
recipients in our data, the uncertainty in the posterior would have been much
larger, even allowing zero plausibility (grey line; the blue line resembles the
prior mean). This effect is much lager for the non-informative priors and
a much larger data set is needed to obtain stable results. It is not surprising,
however, that with precise priors (small prior variance) our data does not
change the estimates much: after a few samples our posterior estimates from the
permuted data sets are highly similar.
In conclusion, the data, with n ¼ 333, could have been a bit smaller with our

informative priors, but not much. Only with highly informative priors, the
sample size could have been smaller.

TABLE 3.2 Results for the model using our informative priors

Mean SD 2.5% 50% 97.5%

βintercept -44.425 10.579 -64.325 -44.668 -23.387
βage 2.532 .503 1.522 2.544 3.477
βage2 -.025 .005 -.034 -.025 -.014
σ2ε 196.923 15.266 168.758 196.255 228.166
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Is the Bayesian way of interpreting and reporting model results used?

The posterior parameter estimates can be summarized using, for example, the
median of the posterior distributions, and can be found in Table 3.2. Based on
these point summaries, it appears the delay peaks at around the age of 50
(2:532=� 2 � :025ð Þ). Considering that 0 is not included in the 95% interval
of the linear effect and the quadratic effect, we can conclude that there is
a small positive linear effect and a small negative quadratic effect4.
It is also informative to inspect the posterior predictive results which are similar

to the prior predictive results, except that because we now inspect the posteriors we
can use our updated beliefs from after observing the data. If we inspect the posterior
predictive plots in Figure 3.2 (bottom panel), we can see that we are not able to
perfectly predict the delay in PhD completion using the candidate’s age, which also
becomes evident by the R2 of 6%. Moreover, it is not surprising to see that predic-
tions based on our model tend to be more off the mark for cases with longer and
shorter delays than with normal delays, whilst our uncertain estimates capture all
standard cases. Furthermore, if we compare our prior and posterior predictive distri-
butions (see Figure 3.3), we are less uncertain and more consistent in what we
expect after observing the data. So, accurate predictions of delay for individual cases
may not be possible, but we can predict general trends at group level.

Conclusion

The chapter shows how to properly implement a Bayesian analysis following the
steps of the WAMBS checklist. Following this checklist is important for the
transparency of research, which is important no matter which estimation para-
digm is being implemented. However, it is even more important within the
Bayesian framework, because there are so many places where bad research prac-
tices can be “hidden” within this estimation perspective, especially concerning
the prior specification and its impact on the posterior results. Clear reporting
and sufficient amounts of detail for reproducing results are important first steps
in ensuring that Bayesian results can be trusted and properly interpreted. We
therefore recommend including results of the WAMBS checklist as an appendix
or as a supplementary file to any Bayesian paper; for an example, see Zweers
(2018).
In the end, properly conducting and reporting results is important, but the

key is understanding the impact of the prior, especially when sample size is
small, since this will ultimately be the element that potentially shifts theories and
practices within a field.
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Notes

1 Note that the only priors you can tweak in the app are the priors for the intercept and
regression coefficients. In Step 7 of the checklist we will return to the specification of
the prior for the residuals, σ2ε .

2 Historically, Inverse Gamma priors have been used for (residual) variance parameters,
due to their conjugate properties that allow for using the Gibbs sampling algorithm.
Some alternatives are being discussed in, for example, McNeish (2016). The hyper-
parameters are, in this example, mildly informative based on the discussion in Van de
Schoot, Broere, Perryck, Zondervan-Zwijnenburg, and Van Loey (2015).

3 The relative bias should be interpreted with caution and only in combination with sub-
stantive knowledge about the metric of the parameter of interest. For example, with
a regression coefficient of .001, a 5% relative deviation level might not be substantively
relevant. However, with an intercept parameter of 50, a 1% relative deviation level might
already be quite meaningful.

4 Note that testing such results by means of the Bayes Factor is being discussed in Chapters
9 (Klaassen) and 12 (Zondervan-Zwijnenburg & Rijshouwer).
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