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DEPARTMENT OF PSYCHOLOGY, MCGILL UNIVERSITY, MONTREAL, CANADA

Roy Levy
T. DENNY SANFORD SCHOOL OF SOCIAL AND FAMILY DYNAMICS, ARIZONA STATE UNIVERSITY, ARIZONA,
UNITED STATES OF AMERICA

Rens van de Schoot
DEPARTMENT OF METHODOLOGY AND STATISTICS, UTRECHT UNIVERSITY, UTRECHT, THE NETHERLANDS &

OPTENTIA RESEARCH PROGRAM, FACULTY OF HUMANITIES, NORTH-WEST UNIVERSITY, VANDERBIJLPARK,
SOUTH AFRICA

Introduction

Bayesian statistics are becoming more popular in many fields of science. See, for
example, the systematic reviews published in various fields from educational science
(König & Van de Schoot, 2017), epidemiology (Rietbergen, Debray, Klugkist, Jans-
sen, & Moons, 2017), health technology (Spiegelhalter, Myles, Jones, & Abrams,
2000), medicine (Ashby, 2006), and psychology (Van de Schoot, Winter, Ryan, Zon-
dervan-Zwijnenburg, & Depaoli, 2017) to psychotraumatology (Van de Schoot,
Schalken, & Olff, 2017). Bayesian methods appeal to researchers who only have access
to a relatively small number of participants because Bayesian statistics are not based on
large samples (i.e., the central limit theorem) and hence may produce reasonable results
even with small to moderate sample sizes. This is especially the case when background
knowledge is available. In general, the more information a researcher can specify
before seeing the data, the smaller the sample size required to obtain the same certainty
compared to an analysis without specifying any prior knowledge.
In this chapter, we describe Bayes’ theorem, which is the foundation of Bayesian

statistics. We proceed to discuss Bayesian estimation and Bayes Factors (BFs). The
chapter concludes with a brief summary of take-home messages that will allow readers
who are new to Bayesian statistics to follow subsequent chapters in this book that
make use of Bayesian methods. The applications of Bayesian statistics described in this
volume cover the following topics: the role of exchangeability between prior and
data (Chapter 2, Miočević et al.), applying the WAMBS checklist (Chapter 3, Van de



Schoot et al.) using informative priors when fitting complex statistical models to small
samples (Chapter 4, Veen & Egberts), regression analysis with small sample sizes rela-
tive to the number of predictors (Chapter 5, Van Erp), data analysis with few observa-
tions from a single participant (Chapter 8, Lek & Arts), updating results participant by
participant (Chapter 9, Klaassen), clinical trials with small sample sizes and informative
priors based on findings from other trials (Chapter 10, Kavelaars), tests for evaluating
whether a finding was replicated (Chapter 12, Zondervan-Zwijnenburg & Rij-
shouwer), and a comparison between frequentist two-step modeling and Bayesian
methods with informative priors (Chapter 17, Smid & Rosseel). Due to space consid-
erations, this chapter does not offer an exhaustive discussion of Bayesian statistics and
the differences between Bayesian and classical (frequentist) statistics; for approachable
texts on Bayesian statistics in the social sciences, we refer readers to books by Kaplan
(2014) and Kruschke (2014), and the chapter by Gigerenzer (1993).

Bayes’ theorem

Bayesian statistics are a branch of statistics that implements Bayes’ theorem to
update prior beliefs with new data:

p θjdatað Þ ¼ p datajθð Þp θð Þ
p datað Þ / p datajθð Þp θð Þ ð1:1Þ

where θ denotes a set of parameters (e.g., regression coefficients), pðθjdataÞ is
the posterior distribution of the parameters, which was obtained by updating the
prior distribution of the parameters, p θð Þ, with the observed data represented by
the likelihood function, pðdatajθÞ. The term p datað Þ is the marginal probability
of the data that can be considered a normalizing constant that ensures that the
posterior distribution integrates to 1. As the right-hand side of Equation 1.1
shows, excluding this term yields a result that is proportional to the posterior
distribution.
In the Bayesian framework, the updated (posterior) beliefs about the param-

eters in a statistical model are used for inference. The posterior distribution can
be summarized to report the probability that a parameter lies within a given
range. Bayes’ theorem stems from the laws of conditional probabilities, which
are not controversial. The controversial elements surrounding Bayesian statistics
are whether to engage in Bayesian analysis and accept the requirement of specify-
ing a prior distribution, and once the researcher chooses to use Bayesian infer-
ence, how to specify the prior distribution, p θð Þ. Applied researchers are often
advised to base their prior distributions on previous findings, meta-analyses, and/
or expert opinion; for considerations related to the choice of source of prior
information, see Chapter 2. The exact influence of the prior is often not well
understood, and priors will have a larger impact on the results when sample size
is small (see Chapter 3). Bayesian analyses of small data sets using priors chosen
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by the researcher can sometimes lead to worse estimates than those obtained
using uninformative priors or classical methods (Smid, McNeish, Miočević, &
Van de Schoot, 2019). Thus, priors should be chosen carefully.
To illustrate a Bayesian statistical analysis, consider a normally distributed vari-

able y (for example, IQ, used to illustrate Bayesian inference in the shiny appli-
cation example from www.rensvandeschoot.com/fbi/; see also the Center for
Open Science (OSF): https://osf.io/vg6bw/) with unknown mean μ and
a known variance σ2. In the frequentist framework, one would collect a sample
of data (IQ scores), y1; . . . yn, compute the sample mean �y, and use it as the esti-
mate of the population mean of IQ. The standard error is a measure of the
uncertainty surrounding the estimate.
In the Bayesian framework, the researcher would start the analysis by specify-

ing a prior distribution for μ (population mean of IQ). When specifying a prior
distribution, researchers have to select a distributional form (e.g., normal distri-
bution, t-distribution, beta distribution), and specify the parameters of the prior
distribution, known as hyperparameters. A common choice of prior distribution
for the population mean μ is the normal distribution, which is described by the
prior mean (μ0) and prior variance (σ20) or prior standard deviation (σ0) or prior
precision (τ20) hyperparameters. The mean hyperparameter (μ0) may be seen as
encoding the researcher’s best guess about the population mean being estimated,
and the variance hyperparameter (σ20) encodes the informativeness (or uncer-
tainty) of the prior distribution. The smaller the variance hyperparameter, the
more informative the prior distribution, and the more weight it carries in the
analysis. Visually, this analysis is presented in Figure 1.1, where we observe
three different situations: panel A depicts an analysis with a sample size of 20
participants from a population where the mean is 100, and the standard devi-
ation is 15; panel B represents the analysis with a sample of 50 participants from
that same population; and panel C represents the analysis with a sample of 200
participants from the same population. The prior distribution is the same in all
three analyses. Notice how the density of the posterior distribution “moves”
closer to the likelihood function as sample size increases from 20–200.
This example has an analytical solution; that is, under the specifications just

described, the posterior pðμjyÞ has a known form. It can be shown (Gelman et al.,
2013) that the posterior pðμjyÞ is a normal distribution with posterior mean:

μp ¼
1
σ20
μ0 þ n

σ2 �y
1
σ20
þ n

σ2
ð1:2Þ

and posterior variance

σ2p ¼
1
σ20

þ n
σ2

� ��1

ð1:3Þ
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FIGURE 1.1 Plots of the Bayesian computation of a mean parameter with a known
variance obtained using the shiny application available at www.rensvandeschoot.com/
tutorials/fbi/ (see also the OSF: https://osf.io/vg6bw/)

FIGURE 1.2 Plots of the Bayesian computation of a mean parameter with an unknown
variance obtained using the shiny application available at www.rensvandeschoot.com/
tutorials/fbi/ (see also the OSF: https://osf.io/vg6bw/)
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where μ0 denotes the mean of the normal prior distribution, �y denotes the
observed mean in the sample, n is the sample size, σ20 is the variance hyperpara-
meter in the prior, and σ2 is the variance in the observed sample. Both the prior
and posterior are normal distributions; this is the case because the normal prior
distribution is a conjugate prior for the mean parameter. All conjugate prior dis-
tributions, when multiplied by the likelihood function, yield posterior distribu-
tions from the same distributional family. We can use Equations 1.2 and 1.3 to
obtain the analytical solution for the mean and variance of the posterior for the
mean of IQ. If we select the prior mean of IQ to be μ0 ¼ 90 and the prior
variance equal to σ20 ¼ 10, and we observe a sample of 20 participants for which
the sample mean of IQ is �y ¼ 100 and the sample variance is σ2 ¼ 225, we end

up with a posterior distribution centered around μp ¼
1
1090þ 20

225100
1
10þ 20

225
¼ 94:71 with

a posterior variance equal to σ2p ¼ 1
10 þ 20

225

� ��1 ¼ 5:29: Notice how the posterior

mean, μp, is a “compromise” between the prior mean μ0, and the mean of the
variable in the observed data set, �y. Notice also how decreasing the prior vari-
ance (σ20Þ gives the prior mean more weight, and how increasing the sample size
n gives the observed data more weight in determining the posterior mean.

Bayesian estimation

In the example where it is of interest to estimate the mean of a population with
a known variance, it is possible to obtain the posterior distribution analytically.
However, most statistical models in the social sciences are more complex, and
the posterior distribution cannot be obtained analytically. In these situations,
results are obtained by progressively approximating the posterior distribution
using Markov Chain Monte Carlo (MCMC; Brooks, Gelman, Jones, & Meng,
2011). MCMC is an iterative procedure, like maximum likelihood (ML). How-
ever, unlike ML, which seeks to maximize the likelihood function, MCMC
seems to approximate the entire posterior distribution. Figure 1.2 illustrates an
approximation of the posterior for the same analysis as in panel A of Figure 1.1
obtained using MCMC instead of using the analytical solution; note that the dis-
tribution is no longer smooth because it is an approximation of the posterior. In
the following paragraphs, we briefly survey some of the practical aspects
involved in utilizing MCMC for Bayesian analyses.
In a Bayesian analysis, MCMC proceeds by simulating values from distributions

such that, in the limit, the values may be seen as draws from the posterior distribu-
tion (for visual representations of multiple chains, see Figure 3.4 in Chapter 3).
A properly constructed chain will eventually converge to the point where the sub-
sequent simulated values may be seen as samples from the posterior; however, there
is no guarantee as to when that will happen. Though there is no way of definitively
knowing that a chain has converged to the posterior distribution, there are several
techniques one can use to find evidence of convergence (Cowles & Carlin, 1996).
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In the social sciences literature, the most commonly encountered convergence diag-
nostics are those offered by the majority of software packages, which include the
Potential Scale Reduction factor (Gelman & Rubin, 1992), Geweke’s diagnostic
(1992), and trace plots of draws plotted against the iteration number for each param-
eter (Brooks, 1998; see Chapter 3 for information about how to obtain and inter-
pret trace plots). Several convergence diagnostics rely on running multiple chains
from dispersed starting values for different chains in order to assist with the monitor-
ing of convergence (Gelman & Shirley, 2011). The generated values from the chain
prior to convergence are referred to as burn-in iterations and are discarded; values
from the chain after convergence are taken to be draws from the posterior and can
be summarized to represent the posterior. In theory, the more draws are taken from
the posterior, the better it is approximated.
A complicating factor for MCMC is the within-chain correlation of the

draws (see Figure 3.8 in Chapter 3); for a more detailed discussion on autocor-
relation and possible solutions see Chapter 3. It is often recommended to use
thinning1 to reduce the autocorrelation between the retained draws (Gelman &
Shirley, 2011). However, some researchers argue that thinning can be problem-
atic for obtaining precise summaries of the posterior (Link & Eaton, 2012) and
that it is better to run longer chains than to thin. Stopping time refers to ending
the sampling and depends on time constraints, how long the chain(s) ran before
convergence, the researcher’s confidence that convergence was reached, and the
autocorrelation between draws (see Chapter 3). The number of draws to retain
after convergence (i.e., post burn-in) should be determined in part by the
precision with which the researcher wants to estimate the posterior, or its
features. Estimating broad summaries, such as the posterior mean, tends to
require fewer draws than features out in the tails, such as extreme percentiles
(Kruschke, 2014).
To summarize the posterior, all non-discarded draws (i.e., all draws after

burn-in) from all chains should be mixed together (Gelman & Shirley, 2011).
Features of these draws (e.g., mean, standard deviation, intervals) are seen as
estimates of the corresponding features of the posterior distribution. Common
point summaries of the posterior are the mean, median, and mode. Common
interval summaries are 1� αð Þ% equal-tail credibility intervals, which are
constructed from the α=2ð Þth and 1� α=2ð Þth percentiles of the posterior dis-
tribution, and highest posterior density credibility intervals which have the
property that no values outside the interval are more probable than any
values inside the interval.

Bayes Factors

Null hypothesis significance testing (NHST) has been the dominant approach to
statistical inference in the social sciences since the 1940s (Gigerenzer, 1993).
NHST belongs to the family of frequentist statistics, which define probability as
the frequency of an event. Two quantities that stem from this school of statistics
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and rely on the above definition of probability are p-values and confidence
intervals. The p-value quantifies the probability of finding the observed or
a more extreme result given that the null hypothesis is true, and the 1� αð Þ%
confidence intervals tell us that upon repeated sampling, 1� αð Þ% of the confi-
dence intervals will contain the true value of the parameter (Jackman, 2009).
The reliance on NHST and p-values has been criticized for decades (Bakan,
1966; Ioannidis, 2005; Rozeboom, 1960). Some researchers advocate for the
replacement of p-values with alternatives such as effect size measures and confi-
dence intervals (Cumming, 2014). Others have argued for abandoning the fre-
quentist paradigm altogether because the p-value does not quantify the
probability of the hypothesis given the data (Wagenmakers, Wetzels, Borsboom,
& Van der Maas, 2011), nor does it provide any measure of whether the finding
is replicable (Cohen, 1994), and confidence intervals do not have the properties
they are ascribed to have and are easily misunderstood (Morey, Hoekstra,
Rouder, Lee, & Wagenmakers, 2016).
In the Bayesian framework, it is possible to calculate the probability of

a hypothesis given the data, and to compute the posterior odds in favor of one
hypothesis (or model) relative to another hypothesis (or model; Kass & Raftery,
1995). The ratio of posterior probabilities is equal to the ratio of prior probabil-
ities multiplied by the ratio of marginal likelihoods under each hypothesis:

pðH2jdataÞ
pðH1jdataÞ ¼

p H2ð Þ
p H1ð Þ �

R
θ 2ð Þ pðdata θ 2ð ÞÞpðθ 2ð Þ

�� ��dataÞdθ 2ð ÞR
θ 1ð Þ pðdata θ 1ð ÞÞpðθ 1ð Þ

�� ��dataÞdθ 1ð Þ
ð1:4Þ

The last term on the right-hand side, the ratio of marginal likelihoods, is also
called the Bayes Factor (Kass & Raftery, 1995; Raftery, 1993). BFs are a way of
comparing two competing hypotheses (H1 and H2) and are calculated by divid-
ing the integrated likelihoods of the two models (Jeffreys, 1998). Chapters 9 and
12 make use of BF; the readers will notice that there are notational differences
between chapters, and this is the case in the literature as well. However, the
meaning and interpretations of BF are the same as described in this chapter,
unless the authors indicate otherwise. If the prior probabilities of the two
models are both set to 0.5, then the posterior odds equal the BF. If the prior
probabilities are not .5, then the BF is not equal to the posterior odds. How-
ever, the BF still captures the weight of evidence from the data in favor of one
hypothesis. A BF of 1 indicates that the data do not support one hypothesis
more than the other, a BF below 1 indicates that the data provide support for
H1 over H2, and a BF above 1 indicates that the data support H2 over H1. The
computation of the BF does not require nesting of the models being compared.
Unlike classical hypothesis tests, BFs can support a null hypothesis. In the words
of Dienes (2014, p. 1), BFs “allow accepting and rejecting the null hypothesis to
be put on an equal footing”, but as indicated by Konijn, Van de Schoot,
Winter, & Ferguson (2015), we should avoid BF-hacking (cf., “God would love
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a Bayes Factor of 3.01 nearly as much as a BF of 2.99”). Especially when BF
values are small, replication studies and Bayesian updating are still necessary to
draw conclusions (see Chapter 12 for more on this topic).

Conclusion

In this brief introductory chapter, we sought to inform readers about the fundamental
concepts in Bayesian statistics. The most important take-home messages to remember
are that in Bayesian statistics, the analysis starts with an explicit formulation of prior
beliefs that are updated with the observed data to obtain a posterior distribution. The
posterior distribution is then used to make inferences about probable values of a given
parameter (or set of parameters). Furthermore, BFs allow for comparison of non-
nested models, and it is possible to compute the amount of support for the null
hypothesis, which cannot be done in the frequentist framework. Subsequent chapters
in this volume make use of Bayesian methods for obtaining posteriors of parameters
of interest, as well as BFs.

Note

1 Thinning is the practice of retaining only every kth draw, where the thinning param-
eter k is chosen so that the retained draws are approximately independent. However,
thinning represents a loss of information and is not necessary, and “as long as
a sequence has converged and the number of iterations retained is substantial, it makes
no practical difference if we keep all or every 25th or every 50th iteration” (Scheines,
Hoijtink, & Boomsma, 1999, p. 42).
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