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ABSTRACT  
We investigated retroactive transfer when users alternate be-
tween different interfaces. Retroactive transfer is the influence 
of a newly learned interface on users’ performance with a pre-
viously learned interface. In an interview study, participants 
described their experiences when alternating between different 
interfaces, e.g. different operating systems, devices or tech-
niques. Negative retroactive transfer related to text entry was 
the most frequently reported incident. We then reported a lab-
oratory experiment that investigated the impact of similarity 
between two abstract keyboard layouts, and the number of 
alternations between them, on retroactive interference. Results 
indicated that even small changes in the interference interface 
produced a significant performance drop for the entire previ-
ously learned interface. The amplitude of this performance 
drop decreases with the number of alternations. We suggest 
that retroactive transfer should receive more attention in HCI, 
as the ubiquitous nature of interactions across applications 
and systems requires users to increasingly alternate between 
similar interfaces. 
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INTRODUCTION  
Several studies investigated proactive transfer from a previ-
ously learned interface to a new interface [39, 64, 67], for 
instance, how quickly users can master the new AZERTY key-
board layout after mastering the previously learned QWERTY 
layout. However, proactive transfer neither captures the return 
to the original layout, i.e. the influence of the new AZERTY on 
the continuous learning of the QWERTY keyboard, nor the ef-
fect of regularly alternating between the two practiced layouts. 
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Retroactive transfer [26, 66] is the influence of a newly learned 
skill on the retention of a previously learned skill. In contrast 
with proactive transfer, retroactive transfer has received much 
less attention in HCI. Given the ubiquitous nature of interac-
tion though, users often need to alternate between devices, 
software or techniques to complete a single task. For instance, 
they can regularly alternate keyboard layouts, operating sys-
tems (e.g. Mac vs.Windows) or software applications (e.g. 
Keynote vs. PowerPoint). 

In this paper, we investigate the impact of retroactive transfer 
on performance of using different interfaces. We first report 
on an interview study to understand user experiences when 
alternating between interfaces (e.g., devices, applications, 
operating systems). Participants suggested that alternating 
between keyboard layouts is a common cause of retroactive 
interference; the severity of which is attributable to the degree 
of similarity between them. We then report on a controlled 
experiment to investigate retroactive interference when users 
alternate abstract keyboard layouts and how the similarity 
between them affects the magnitude of such interference. 
Our experimental design builds on standard motor learning 
experiments of retroactive transfer, but is extended to cover 
multiple alternations and to apply to a user interface context. 

BACKGROUND  
This section presents the stages of learning an interface as Ul-
timate Performance and Intramodal Improvement. Afterward, 
we explain the transfer of learning from previously learned 
interface to a new interface as proactive transfer. We then use 
these concepts to go one step further explaining the retroactive 
transfer concept. To explain retroactive transfer, we use the 
example of text input as it is one of the most common appli-
cations of such phenomena among interaction techniques [46, 
69, 80], empirical studies [20, 49], models of performance [39, 
41] as well as optimization methods [10, 11, 25]. The term 
method refers to the alternative user means such as interaction 
techniques and keyboard layouts to input text. Keyboard lay-
out refers to both the arrangement of the keys (i.e. position 
and size) as well as the mapping between keys and charac-
ters. Interaction techniques refer to the interaction sequence 
to select characters. Figure 1 illustrates the relationships that 
underlie the retroactive transfer phenomena. 
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Ultimate Performance 
Ultimate performance [21] refers to the stage where users 
reach an asymptote, a high level of expertise given a certain 
method (e.g. a keyboard layout) and task (e.g. text input) (Fig-
ure 1a1). Ultimate performance indicates the potential benefits 
of a method after enough practice. For instance, the DVORAK 
keyboard has shown highest ultimate performance to QWERTY 
by 4-5% [56, 75, 16]. However, ultimate performance does 
not inform how quickly users learn the method. 

Intramodal  Improvement  
Intramodal improvement [21] refers to the magnitude of per-
formance improvement through repetition and practice with a 
certain method and task (Figure 1a2). At the individual level, 
intramodal improvement can be divided into three phases 
(three-phase model): cognitive (understanding what to do), 
associative (learning how to do it) and autonomous (motor 
performance is mostly automatic and requires low cognitive 
processing) [28, 5, 66]. When data are aggregated across users, 
intramodal improvement is well characterized by the equation 
of the "power law of practice (PLP)" [55]: y = a ∗ Pb + c, 
where y is task completion time, P is the amount of practice, 
a,b and c are three parameters representing respectively the 
amount to be learned, the rate of learning and the asymptotic 
selection time (i.e. ultimate performance). The performance 
curve has been observed in many contexts such as text editing 
[17, 48, 81, 80, 46, 57, 69, 82]. For instance, Shi et al. com-
pared the method GestAKey [69] with two regular methods 
(hotkey and long press) and show that users reach ultimate 
performance faster with the GestAKey. 

The acquired skills through learning and practicing may be 
transferred to other skills, thus interfering or improving skills. 
We distinguish between two types of learning transfer: Proac-
tive and Retroactive transfer. 

Proactive  Transfer  
Transfer of skill occurs whenever the previous skills and 
knowledge affects the learning or performance of a new skill. 
Proactive transfer (or skill transfer) [66] refers to the gain 
or loss of performance with the New method N as a result 
of practice with the Previous method P on a given task (Fig-
ure 1b). If practicing P enhances the ability of users to use N, 
the transfer is considered as positive. Otherwise the transfer is 
considered negative (also called as anterograde interference 
for visuomotor learning [44, 43, 45, 77]). In this case we also 
say that practicing P interferes with the learning of N1. 

Proactive transfer [66] has received a lot of attention in HCI. 
Users want to build on previous knowledge when learning a 
new interface. When new software, OS, platform or brand is 
released, users have to adapt their habits. Similarly, designers 
often try to create more "natural" interaction by facilitating 
the transfer from physical to digital interaction [9]. 

Proactive transfer depends on several factors such as the 
amount of practice, the rest time [26], or the similarity be-
tween the methods P and N [66]. Especially for interaction 

1Zero transfer is also possible when the practice of P has no 
effect on the use of N [26] 

design, similarity appears to be particularly critical [66]. Pol-
son et al. [61] showed better skill transfer in text editors when 
there is a high level of similarity between the two tested inter-
faces. In contrast, switching from a QWERTY to an AZERTY 
keyboard layout can introduce some interference even with a 
few key differences between these two designs [42, 9]. Con-
sequently, several novel keyboard layouts manipulated the 
similarity (or familiarity) factor to optimize performance with 
the traditional QWERTY layout [80, 10, 25, 57, 11]. 

Several models of proactive transfer have been proposed [41, 
39, 53]. Jokinen et al. [39] recently presented a model aiming 
to explain the negative impact of keyboard layout change on 
typing performance. The key aspect, regarding skill transfer, 
is the use of a utility learning mechanism to decide between 
conflicting entries (the old and the new one) in the long-term 
memory. In particular, the α parameter indicates how quickly 
the model is able to adapt to changing layouts. 

RETROACTIVE  TRANSFER  
Proactive transfer is the influence of the previously learned 
skills on the acquisition of new skills. In contrast, retroactive 
transfer is the influence of the new skill on the acquisition 
of a previously learned skill [14, 62]. Negative retroactive 
transfer occurs when the skill learned later disrupts retrieval 
of the skill learned earlier. Negative retroactive transfer is 
also known as retroactive interference [66, 26], retroactive 
inhibition [13, 14, 38, 54], after-effects [50, 8], retrograde 
interference [43, 45, 77], catastrophic interference [65] or 
catastrophic forgetting [29, 31]. 

Retroactive transfer has been investigated in contexts including 
free recall [52, 13], visual perception [51], language acquisi-
tion [59], machine learning [22], motor learning of discrete 
[42] or continuous movements [12, 36], visuomotor learning 
[44], advertisement [15] and games [32]. This paper focuses 
on a visual motor learning task with an interactive system. 

We distinguish three concepts related to retroactive transfer. 
(1) Task switching is well studied in HCI [37, 23, 30, 74], but 
differs from retroactive interference in that it refers to a tempo-
rary (in seconds) distraction (e.g. a notification when writing a 
document) rather than a learned skill. Moreover, the tasks are 
categorically different, though the same interface is usually 
used for both. In retroactive transfer the tasks can be the same, 
or differ little, and the interface change is the source of the 
confusion. The next concept, (2) deskilling refers to manual 
skill degradation through the use of automation. So users can 
lose their psychomotor and cognitive skills (e.g. lose of man-
ual driving skills when operating advanced automated vehicles 
[72]) [18, 19]. Unlike deskilling, in retroactive interference 
both tasks are manually controlled. Finally, (3) Tetlag [32, 
33] has been inspired by the Tetris game community, Tetlag 
refers to the brief period of confusion when switching between 
different versions of the popular game. Some gamers regularly 
alternate Tetris versions, just as some users regularly alternate 
computer operating systems, e.g. Mac and Windows, resulting 
in a brief adjustment period. A key difference from retroactive 
interference is that the two interfaces in Tetlag are both very 
well-learned and their alternation is a common occurrence. 
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Figure 1. Conceptual model illustrating the alternation between a previous method (P) in blue and a new method (N) in orange color, as well as the 
corresponding phenomena: (a1) Ultimate performance, (a2) Intramodal improvement, (b) Proactive transfer, (c) Retroactive transfer (first alternation) 
and (d) Retroactive transfer (second alternation). Temporal performance drop (TPD) indicates the temporal difference between the end of one method 
and the beginning of another method. Rest time (RT) shows the interval time between learning of two methods. 

Theories of retroactive interference include unlearning and re-
sponse competition (or response-set suppression). Unlearning 
is the complete forgetting of a permanent memory (similar to 
deskilling). Response-set suppression is when users learn to 
suppress all of the previously-learned associations to correctly 
respond to the newly-learned associations. Retroactive inter-
ference is thus carryover effects from users suppressing the 
original interface [6]. Altmann et al. [3] proposed a theory 
that decay and interference are functionally-related. By their 
account, when an attribute is updated in memory, the old value 
decays to prevent interference with new values. Moreover, the 
decay rate adapts to the rate of updates made to memory. 

In HCI, retroactive transfer has received only little attention. In 
the comprehensive book Human Computer Interaction: Funda-
mentals [68] retroactive interference is only briefly mentioned 
as a false memory phenomenon [63]. One exception is the 
study of Walker & Olson (1988) who investigated proactive 
and retroactive transfer of command shortcuts in two text edi-
tors [73]. While they did not observe proactive transfer, they 
observed a retroactive transfer effect between the two sets of 
shortcuts (EMACS and EXPRESS). EXPRESS appeared more 
robust to interference than EMACS. However, in this study, 
participants did not perform a visual-motor learning task in-
volved with an interactive system as they did not execute the 
memorized shortcuts (they wrote them on paper). 

We identified factors that can affect retroactive transfer. 

Practice. One major factor influencing retroactive transfer 
is the amount of practice of the previous and new method 
[47, 2, 12]. Although increasing practice time of the new 
method seems to increase interference, increasing the practice 
of the previous method seems to be context sensitive. While 
some studies found that increasing the learning of the previous 
method reduces the interference [47, 60], others found the 
opposite [1]. Notably, the practice does not necessarily need 
to be physical (i.e. repeating a physical movement), but can 
be also mental. For instance, Wohldmann shows that mental 
practice can reduce the retroactive interference [78]. Moreover, 
the distribution of the amount of practice can also have an 
impact of retroactive transfer [36]. 

Rest Time. The time interval between the learning of two 
methods can also influence retroactive transfer [14, 66]. More 
precisely, when the retention test was immediate (short rest 

time), they attribute retroactive interference to recency effects, 
but when the retention test is delayed (long rest time), the orig-
inal response is more likely. When time is delayed overnight, 
it further fosters consolidation [27] and can also play a role in 
the magnitude of the transfer [36, 44]. 

Task. The nature of the task, recognition-based vs. recall-
based also influences the retroactive transfer [6]: In cognitive 
memory tests of proactive and retroactive interference, partic-
ipants experience several memory deficits in recall tests, but 
retroactive interference is almost completely eliminated with 
the recognition tests [6]. 

Similarity. The similarity factor is more relevant to HCI as 
designers can more easily manipulate it. Several optimization 
methods have been proposed to maximize both the perfor-
mance of the new layout and its similarity with the previous 
layout [80, 10, 25, 57, 7, 11]. Similarity is defined as the 
number of identical elements shared in the two methods [26]. 

Only few studies focused on controlling the similarity factor 
for retroactive interference [36]. Osgood [58] showed that the 
amount of retroactive transfer is affected by similarity during 
a paired-associate task learning. Paired-associate learning in-
volves the pairing of two items: a stimulus and a response. 
According to the Osgood’s theory of learning transfer, retroac-
tive interference increases when the stimuli in both layouts are 
constant but their responses differ. 

RETROACTIVE  TRANSFER  IN  REAL-WORLD  
We run an interview-based study to understand the retroactive 
transfer phenomena when using interactive systems. 

Interview  1:  General  Experiences  of  Retroactive  Transfer  
Methodology  
In this interview, we adopted a semi-structured methodology, 
with several memory aids. We conducted the study in par-
ticipants’ working environment to aid the recall of relevant 
situations. We explained to participants the concept of retroac-
tive transfer by using the example of a person alternating 
between right-side and left-side driving when changing coun-
tries. We emphasized the fact that the "transfer" can be posi-
tive, negative or neutral to not bias participants. We showed 
them a printout of popular interface examples’ images, in-
cluding operating systems, graphical menus, mouse/touch-pad 
devices, keyboard devices, keyboard and gestures shortcuts, 
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programming languages, app release versions, the same app 
on different platforms (e.g. Office in MacOS and Windows). 
The interview was audio-recorded, lasted about 1 hour and 
then analyzed using annotations and timestamps on Camptasia. 
The time-stamped notes were further analyzed in spreadsheet 
software to help index episodes of interest. Participant Pro-
files. We interviewed 6 adults (< 40 years), 4 male, 2 female, 4 
French, one Australian and one Taiwanese. Two were profes-
sional programmers in different application areas: embedded 
systems and haptic devices. The other 4 were researchers 
in different domains: medical, bio-mechanics, information 
theory, and sociology. 

Data Collection & Analysis. Participants reported a total of 71 
incidents of alternation between previously (P) and new (N) 
interfaces (P − → P) which were either negative (33) or→ N − 
positive (18) retroactive transfer. Regarding the 20 remaining 
incidents, participants could not recall whether there was a 
change in their initial performance. We summarize our ob-
servations using the notation (xi, yp), when one observation 
appears in more than one incidents. x indicates the number of 
incidents and the y to the number of participants. For example, 
if 2 participants mentioned a total of 5 incidents when typing 
text, the notation is (5i, 2p). 
Findings  
Why do Users Alternate between Interfaces? Some alterna-
tions are due to external factors (30i, 6p), such as a program-
mer who has to code for clients who use different systems. 
Other alternations occur because of the need to use comple-
mentary functionalities between two interfaces (41i, 6p), such 
as the mobile version of a desktop application. In both cases, 
the alternation appeared as a necessity rather than a choice. 

Positive Retroactive Transfer. All participants reported inci-
dents of positive retroactive transfer (18i, 6p). A common 
pattern was when interface N highlights an unknown function-
ality of interface P (13i, 6p), e.g., learning the new language 
C helped to learn Python (familiar language) in more depth. 

Negative Retroactive Transfer. All participants reported in-
cidents involving retroactive interference (33i, 6p). Most of 
them involved using a keyboard (16i, 6p), for example, when 
alternating between QWERTY and AZERTY layouts. They re-
ported a drop in their typing speed on their primary keyboard 
after experiencing the new layout. They also recalled being 
frustrated with typing errors, especially when executing an 
incorrect keyboard shortcut, leading sometimes to a "disas-
ter", e.g., executing Ctrl+Q ("quit") instead of Ctrl+A ("select 
all"). Some participants also reported a retroactive interfer-
ence while searching for a functionality in a graphical menu 
(4i, 4p), for instance, when alternating between different ver-
sions of the same application. Others reported making more 
errors with their previously learned programming language 
after learning a new one (5i, 3p). An expert gamer reported 
a drop in his gaming performance while alternating his fast 
mouse at home with his regular mouse device at work. 

Connection to Expertise. An observation consistent across 
all these incidents is that perceiving a retroactive interference 
required a conscious prior effort to achieve expertise. For ex-
ample, participants experienced retroactive interference while 

trying to be fast typists, or effective programmers. In contrast, 
casual activities involving alternations (e.g. browsing websites 
on the internet) were not "demanding" enough to allow them 
perceive similar interference. 

Factors Identified by Participants. Several participants spon-
taneously elaborated on reasons that can increase/reduce the 
previously mentioned interference. The most pronounced com-
ment that all participants reported was the degree of similarity 
between interfaces as the main root of interference (6p). For 
example, to overcome retroactive interference, some often try 
to consciously emphasize the differentiating factors between 
the two interfaces (2p), e.g., trying to think only in French 
while using AZERTY, and in English while using QWERTY. 
One participant mentioned that he differentiates the way he 
interacts with each interface to avoid confusion; using mostly 
keyboard shortcuts with Windows at work and rather "point 
and click" style of interaction with his MacOS at home. Oth-
ers argued that the amount of practice with the new interface 
is the factor that will determine the amount of interference 
later on (4p). For example, one programmer reported to try 
intentionally reduce his exposure to the new interface: he is 
avoiding to write code on MacOS, doing only final compatibil-
ity check of his code, so as not to be confused when returning 
back to his primary system (Linux). In more extreme cases, 
participants reduced the amount of practice to zero, sacrificing 
functionalities for consistency. 

Conclusion. Several factors involving retroactive transfer were 
spontaneously mentioned by our participants such as similarity 
between two interfaces (6p), and amount of practice of P and 
N (3p). Therefore participants’ elaborated observations appear 
consistent with the literature described in the previous section. 
We also learn that using a keyboard was a main source of 
retroactive interference. We thus decided to conduct another 
round of interviews with two additional participants focusing 
on keyboard layouts. 

Interview  2:  Post-study  Focusing  on  Keyboard  Usage  
The second interview focuses on the keyboard usage. We 
interviewed two HCI researchers focusing on their episodic 
experiences from 3 weeks to 3 years in their life, when they 
experienced retroactive interference while using a keyboard. 

Text Input. The first participant was regularly alternating be-
tween his AZERTY laptop (personal and professional usage) 
and a QWERTY keyboard dedicated to a professional platform 
for about two years. During this episode, he was looking at 
the keyboard using several fingers. He reported doing frequent 
errors especially when he knew that the consequences of an 
error were not important. After some time, he was able to 
anticipate potential sequences of characters that could lead 
to typing errors and voluntary slow down his typing speed 
to avoid them. The second participant was using an AZERTY 
laptop at home, but an external QWERTY keyboard connected 
to this laptop at work during 3 weeks. He was able to enter 
text without looking at the keyboard. He reported doing errors 
and additional visual search for non frequent special charac-
ters. However, he reported that switching keyboards was like 
switching modes: “I was doing one error but not two. I need 
to recall which mode I was using”. The second participant 
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was also using the SWIFT keyboard on his smartphone, but for 
some unidentified reason the system sometimes display the 
default IOS keyboard. The two layouts are very similar, except 
that ’.’ is closer to the return key on the IOS keyboard. He 
reported doing much more errors than the previous experience 
and did not have the impression of "switching mode". When 
he was asked why, he attributed this difference to the "degree 
of similarity" between the two interfaces. 

Keyboard Shortcuts. The first participant regularly uses 
Inkscape on MacOS which is the only software using Ctrl 
instead of Cmd as main modifier. He reported doing “one, 
max two errors” and then being comfortable using these key-
board shortcuts. This echoes the impression of "switching 
mode" of the first participant when alternating keyboard lay-
outs. He also reported that the context is so different that 
coming back to "normal" software is fast. 

DISCUSSION  AND  DESIGN  RATIONALE  
Our review of the psychology literature highlighted several 
factors that contribute to retroactive transfer, from which sim-
ilarity and practice were the more commonly reported in 
our interview study. The impact of similarity on retroactive 
interference was reported as task- and context-dependent, es-
pecially in the second part of the interviews. Similarity (or 
familiarity) has also been considered as an important criterion 
in the optimization of user interfaces [34, 40]. Participants 
also reported performing repeated alternations between user 
interfaces. Such alternations are not typically studied in ex-
perimental psychology but relevant in HCI because of the 
ubiquitous nature of interaction. Though we exposed partici-
pants to several UI scenarios (mouses, menus, browsers, etc.), 
the reported incidents mainly focused on text entry interfaces. 

In the following section, we build on these findings to design a 
controlled experiment. We aim to understand whether retroac-
tive transfer occurs when interacting with user interfaces. In 
particular, we investigate the impact of similarity and number 
of alternations on user performance. We initially contemplated 
to use a regular text entry task to study retroactive transfer phe-
nomena. However, mastering a single keyboard layout requires 
a lot of time, i.e. several days, and studying retroactive transfer 
with two keyboard layouts and alternations would require at 
least 3 times that amount, which was not a feasible option for 
a lab experiment (~1h30). We thus present an abstract task 
(Figure 2) that operationalizes the key aspects of alternating 
between two keyboard layouts, alleviating possible bias related 
to their previous experience and accelerating users’ expertise. 

EXPERIMENT  
The primary goal of this experiment was to understand the 
retroactive interference phenomena and how learning a New 
layout (N) interferes with the retention of a Previously learned 
layout (P), as described in the sequence below: 

First, we investigated the impact of the layout on retroactive 
transfer. Specifically, we manipulated the degree of similarity 
between N and P by modifying the location of certain elements 
in the layout. We controlled both the number of changes 
between the two layouts as well as the spatial proximity of 
these changes (i.e. how far an element has been moved). 

Second, we investigated the impact of alternation on retroac-
tive transfer. So we tested two alternations rather than the 
typical one alternation in a the learning sequence: 

Where participants alternate two times between the layouts P 
and N before measuring the performance with the layout P. 

All experimental materials are available on OSF. 

Hypotheses  
We propose three hypotheses based on concepts presented in 
the literature review and the insights from the interview study: 

• H1 Learning a new layout N results in retroactive interfer-
ence with the previously learned layout P. 

• H2 The similarity between the layouts P and N influences 
the magnitude of retroactive interference, where similarity 
is defined in term of number of changes and the nature 
(proximity) of these changes. 

• H3 Increasing the number of alternations between the lay-
outs P and N decreases retroactive interference. 

Participants  
58 university engineers and students aged 18-40 participated to 
the experiment and were divided into three groups, one group 
per condition (see below). 4 participants were removed due to 
under-performance during the training phase to fairly ensure 
similar initial performance across conditions. It results that 
each condition was tested with 18 participants. The exclusion 
rule was decided before running the statistical analysis to 
prevent p-hacking [35, 76]. Participants received 15 euros for 
their participation. A bonus of 10 euros was awarded to the 
3 fastest participants of each condition to motivate them to 
quickly reach a high level of performance. 

Apparatus  
Interface. Figure 2 illustrates the interface, a virtual grid lay-
out of 6 × 3 common symbols (e.g. hat, rabbit, etc.) designed 
according to the following criteria: First, the interface captures 
the key phenomena of text input. The grid in Figure 2 repre-
sents an abstraction of a (virtual) keyboard layout. Selecting 
an element in the grid involves visual search, pointing, chunk-
ing, learning and motor control. The two-sided layout further 
allows for multi-finger and two-handed interaction. Conse-
quently, the abstracted grid acts as an informative proxy for a 
wider class of interfaces such as numpads or grid menus. 

Second, the interface fosters rapid skill acquisition within 
the time constraints of the experiment. While the number of 
rows (3) was similar to keyboard layouts, we used 6 instead 
of 10 columns to enable participants to reach a performance 
plateau. The advantage of the simplified grid over a real 
keyboard is that it can reduce visual search time and simplify 
finger-key assignation, both contributing to touch typing skills. 

Third, we wanted to prevent confounding factors from prior 
user experience. Therefore, we replaced letters with symbols 
to ensure that the chosen interface would not remind users of 
existing keyboard layouts to avoid unintended skill transfer. 

Finally, we wanted to isolate mapping-related errors from 
retroactive interference. Thus we increased slightly the size of 
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Figure 2. Interface displayed on the tablet. Four target symbols are
displayed on the top. The green check marks confirm correct selections.
Participants select the symbols from the grid at the bottom. Digits were
not present in the interface. They serve to identify a symbol in this paper.

the buttons from 0.6 to 0.9 inches to reduce irrelevant pointing
errors due to the fat finger problem [70].

In summary, we developed an abstracted layout to study
retroactive transfer within an interactive system. If we were
to use real keyboards, we would probably face differences in
skill level with the chosen keyboards among participants. The
nature of the keyboard layouts and the frequency of the letters
would also introduce additional factors difficult to disentangle.
It is likely that the targeted phenomenon will be more difficult
to observe and/or to explain. This interface maintained the key
aspect of text input while remaining flexible enough to control
the design factors described below.

Device and setting. We used a Galaxy Note multi-touch tablet
on Android 5.1. The display was 10.1 inches with a resolution
of 2560x1600 pixels. The tablet was lying on a table with the
landscape orientation. Participants sat on a chair and were free
to move the tablet on the table to have a high level of comfort.

Experimental Design
Task and Stimulus
A sequence of four target symbols was displayed at the top
of the interface (Figure 2 ). Participants selected the corre-
sponding symbols by touching the grid at the bottom. When
the target symbol was correctly selected, a green check mark
confirmed the selection and participants proceeded to the next
target in the sequence. When an error was made, a beep in-
formed participants to re-select the symbol. Once the sequence
was successfully completed, a novel sequence was displayed.

Procedure and Phases
Participants filled out a consent form and turned off all per-
sonal devices. The experimenter explained the task and asked
participants to complete it as quickly as possible. The exper-
imenter encouraged the participants to use both hands and
several fingers to maximize their performance.

Table 1a shows the 5 phases ( 1 2 3 4 5 ) of the experiment.
Each phase lasted about 10 min. Between phases there was
minimum 1 minute break. During the phases 1 , 3 and 5 , all
participants selected symbols using the layout P (the selection
task was detailed in the section Task). During the phases 2
and 4 , the participants of the condition control took a break
(10+1 min), while the participants of the two other conditions
selected symbols using the layout N. The configuration of

a Phase 1 → 2 → 3 → 4 → 5

b Alternation Sequence P → N → P → N → P

c Condition control P → ∅ → P → ∅ → P

d Condition 4-change p → N4 → p → N4 → p

e Condition 8-change p → N8 → p → N8 → p

f Practice Time (min) 10→ 10 → 10 → 10 → 10

Table 1. Summary of phases, alternations, conditions and practice time
for each condition. Blue colors indicate the layout P and orange colors
the layout N. (a) Phase: an index of exposure to the layouts. (b) Alter-
nation Sequence: the order of appearance of the layouts. (c, d, e) the
conditions determined the number of changes between layouts P and N.
(f) Practice time for each phase.

the layout P is illustrated in Figure 2. The layout N differs
depending on the condition (condition 4-change or condition
8-change). We next describe the design of the layout N.

Layout N and Similarity
The layout N was used in the phases 2 and 4 . To study
the impact of similarity on retroactive transfer, the layout N
differed from the layout P in two components of similarity:

Number of changes. Our primary measure of similarity and
dissimilarity was the number of paired symbols swapped be-
tween the layouts. More precisely, the layouts N and P were
identical in geometry (3× 6 cells) and in list of symbols. The
dissimilarity between N and P was determined by the mini-
mum number of (swap) operations needed to transform the
layout N into the layout P. Thus the layouts N and P differed
only on the location of swapped symbols.

Proximity. The number of changes alone does not capture the
nature of the changes. We thus introduced a second similarity
measure termed proximity. Proximity indicated the number of
cells that existed between the previous and the new location
of a symbol. Consider a keyboard layout; swapping either two
adjacent keys or two keys far from each other might affect user
strategies and the risk of errors. We considered two proximity
conditions:

• Close. The two locations are adjacent.
• Far. There are at least 5 cells between the two locations.

Consequently, the previous and the new location of the
symbol are in different sides of the grid.

Configuring the layout N. In accordance with our similarity
measures, we designed two layouts N: N4 and N8. In condi-
tion 4-change, participants used the layout N4 as interference
layout, and in condition 8-change, the layout N8.

Specifically, the layout N4 was identical to P except 2 pairs
of symbols which were swapped. Swapping means 4 sym-
bols changed location and 14 symbols remained at the same
location in the grid. Among the two swaps, one was close
and one was far to control the proximity. The layout N8 was
identical to N4 except 2 (extra) pairs of symbols which were
swapped. Among the 2 swaps, one was close and one was far.
Comparing N8 to P, 4 pairs of symbols were swapped (i.e. 8
symbols changed location) containing 2 close and 2 far swaps.

In summary, the N4 was more similar to P than the N8, because
the N4 had fewer number of changes (4 vs. 8 symbols). Thus
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Location 
Previous New 

Prox. No. Icon control 4-change 8-change 
1 (1,3) (1,3) (1,3) 
2 (3,5) (3,5) (3,5) 
3 (2,1) (2,1) (2,1)St

at
ic

Fix 

4 (1,6) (1,6) (1,6) 

1 (1,4) (1,5) (1,5)
Close 

2 (3,2) (3,2) (2,2) 
3 (2,6) (3,1) (3,1)

D
yn

am
ic

Far 
4 (1,1) (1,1) (2,5) 

Table 2. Target symbols’ locations (as shown in Figure 2) for the three 
layouts. These targets are divided into two types: static and dynamic. 

comparing the performance of the 4-change condition (using 
N4) and 8-change condition (using N4), we tested the impact 
of similarity on retroactive interference. 

Target Symbols: Static and Dynamic 
From the 18 (6×3) symbols of each layout, participants had 
to select 8 of them. Table 2 shows these 8 target symbols. 

We distinguish between static and dynamic targets. Static 
targets had identical locations in all layouts (P, N4 and N8). 
Dynamic targets had changed locations between the layout P 
and the layouts N4 and/or N8. The reason for asking partici-
pants to also select static targets was to understand whether 
changing the location of the learned symbols (dynamic) can 
influence the performance of the unchanged symbols (static). 

To be able to compare the performance of static and dynamic 
targets, the locations of the static symbols vertically mirrored 
the locations of dynamic symbols (i.e., mirrored in Fig-
ure 2). To measure the effect of proximity, half of the dynamic 
targets were involved in a close change and half in a far change. 

Design 
The experiment had a mixed design. We compared learning 
in three conditions. The participants of condition control (Ta-
ble 1c) learned only the layout P performing phases (1, 3, 5). 
The participants of condition 4-change (Table 1d) learned both 
layouts P and N4 performing all phases (1,2,3,4,5). The partic-
ipants of condition 8-change (Table 1e) learned both layouts 
P and N8 performing also all phases. Each phase contained 9 
blocks. Each block contained 16 trials. In each trial, partic-
ipants selected 4 target symbols (a total of 64 selections per 
block). The 8 target symbols appeared randomly within the 
block following a uniform distribution similar to [4]. 

In summary, the design was: 3 conditions × 18 participants × 
5 phases (only 3 phases for the condition 1)× 9 blocks × 16 
trials × 4 targets = 134 784 selections. 

Data  Analysis  
We considered five independent variables. The between factor 
was: 

• CONDITION (control, 4-change and 8-change) indicating 
the number of changes. 

The within factors were: 

• TYPE (static and dynamic) 
• PROXIMITY (close and far) 
• ALTERNATION (1, 2) Alternation-1 occurred in phase 3 

and alternation-2 in phase 5 . 
• BLOCK (1-9) 

Our analysis focused on four phenomena, each of which had 
its own dependent variables: 

Intramodal Improvement (Figure 1a): To investigate the effect 
of practice on learning process of P in phase 1 , we measured 
the average selection time per block. 

Proactive transfer (Figure 1b): To investigate the effect of 
learning a previously learned layout P on the performance of 
the layout N, we measured the temporal performance drop 
between phase 1 and phase 2 . It is defined as the difference 
of average selection time between the end of phase 1 (last 
block 2) and the beginning of phase 2 (first block) [71, 66]. 

Retroactive transfer, Alternation-1 (Figure 1c): To investigate 
the effect of learning a new layout (first exposure to layout N) 
on the performance of the layout P, we measured the temporal 
performance drop between phases 1 and 3 [79]. 

Retroactive transfer, Alternation-2 (Figure 1d): To investi-
gate the effect of alternation (second exposure to layout N) 
on the performance of layout P, we compared the temporal 
performance drop between phases 1 and 3 with the temporal 
performance drop between phases 3 and 5 . 

We also measured error per block, i.e. the number of incorrect 
attempts to select a target for these phenomena. 

Statistics. To be consistent with previous retroactive transfer 
studies, we analyzed our data using TWO-WAY MIXED ANOVA 
[36]. To better communicate our findings [24], we conducted 
a second analysis of the same data using 95% confidence 
intervals (CI), which we report visually in Figure 3. The 
results with both methods were consistent. 

RESULTS  
Figure 3 compares the learning curves for the conditions con-
trol, 4-change and 8-change. Blue colors indicate the analysis 
of the layout P and orange colors the analysis of the layout 
N. We report both analyses (TWO-WAY MIXED ANOVA and 
CI) on intramodal improvement (a), proactive transfer (b), and 
retroactive transfer for alternation-1 (c) and alternation-2 (d). 
We only report selection time and mean temporal performance 
drop among participants (TPD) along with CI, as we did not 
find effects of the different factors on ERROR. 

Intramodal  Improvement  
To measure intramodal improvement, we analyzed all blocks 
of phase 1 for all conditions. A CONDITION (control, 4-
change, 8-change)×BLOCK (1-9) ANOVA was performed on 
TIME with a repeated measures analysis of the last factor. It 
yielded a significant effect of BLOCK, F8,408 = 83.68, p < 

2We also considered the best block (instead of the last block) for 
proactive and retroactive transfer. We considered the best block as 
some participants could experience fatigue at the end of each block. 
However, the results were consistent for both analysis (last block vs. 
best block). We thus decided to only report data for the last block. 
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Figure 3. (a) Intramodal improvement (time) of layout P for all phases per BLOCK × CONDITION for all targets. (b) Proactive Transfer. (c) Retroactive 
Transfer in alternation-1. (d) Retroactive Transfer in alternation-2. (mean TPD per CONDITION (number of changes) × TYPE OF TARGETS (static vs. 
non-static) was calculated for b,c,d). Error bars indicate 95% CI. 

0.0001. Post-hoc comparisons with Tukey HSD test indicated 
that participants saved 300ms (25% improvement) from block 
1 to block 4 and no significant differences from block 4 to 9. 
It indicates that participants reached a plateau of performance 
with the layout P. We did not observe an effect of CONDITION. 
As all participants used the same layout P, it confirms similar 
initial performance across conditions. The CI analysis, illus-
trated in Figure 3a, also shows no observable difference in per-
formance among the participants of the different conditions. 

Proactive  Transfer  
We first compared the two conditions 4-change and 8-change 
considering all targets. ANOVA revealed a significant effect of 
CONDITION on TPD, F1,34 = 4.48, p < 0.05. A post-hoc Tukey 
HSD test shows that TPD with N4 (+86 ± 59ms) is significantly 
smaller than the one with N8 (+170 ± 59ms), suggesting that 
the TPD increases with the number of changes. The CI analysis, 
illustrated in Figure 3b (All targets), confirms a difference be-
tween the two conditions and that both conditions are affected 
by a performance drop (0 is not included in the CI). 

We then refined our analysis by distinguishing static vs. dy-
namic targets (see the list of static and dynamic targets in both 
layouts N4 and N8 in Table 2). We conducted a CONDITION 
(4-change, 8-change)×TYPE (static, dynamic) ANOVA with 
a repeated measures analysis of the last factor. It yielded a 
significant effect of TYPE on TPD (F1,34 = 7.86, p < 0.01). 
A post-hoc Tukey HSD test shows the TPD caused by static 
targets (+70 ± 53ms) is significantly smaller than the one 
caused by dynamic targets (+240 ± 76ms). However, we 
did not have an effect of CONDITION on TPD (p = 0.3) or 
CONDITION×TYPE interaction effect (p = 0.2). It suggests 
that the larger performance drop of N8 is due to the extra num-
ber of changes. However this extra number of changes does 
not affect the TPD of the other static and dynamic targets. 

Finally, we refined again our analysis to study the impact of 
PROXIMITY on the TPD of dynamic targets. We conducted a 
CONDITION (4-change, 8-change)×PROXIMITY (close, far) 
ANOVA with a repeated measures analysis of the last factor. 
ANOVA revealed no effect of CONDITION (p = 0.1), PROXIM-
ITY (p = 0.7) or their interaction (p = 0.7) on TPD. 

Retroactive  Transfer:  Alternation-1  
We first compared the three conditions (control, 4-change and 
8-change) and considered all targets . ANOVA yielded a sig-
nificant effect of CONDITION on TPD, F2,51 = 6.8, p < 0.005. 
Post-hoc comparisons using Tukey HSD test indicated that 
condition control (-37 ± 48ms) has a significant smaller TPD 
than condition 4-change (+52 ± 51ms) and condition 8-change 
(+95 ± 61ms). But there was no significant difference between 
the conditions 4-change and 8-change. The CI analysis, illus-
trated in Figure 3c (All targets), confirms a difference between 
the conditions and that conditions 4-change and 8-change are 
affected by a performance drop (0 is not included in the CI). 

We next refined our analysis by investigating static and dy-
namic targets. As condition control does not have dynamic 
targets, we first performed an analysis focusing only on static 
targets for all conditions. We then excluded the condition 
control and compared static vs. dynamic targets by consider-
ing only conditions 4-change and 8-change. (similar to the 
analysis of proactive transfer). 

Static targets. We run a CONDITION (control, 4-change, 8-
change) ANOVA which showed no significant effect of CON-
DITION on TPD (p = 0.3). The average TPD for static target 
is -37 ± 48ms in condition control, +45 ± 60ms in condition 
4-change and +72 ± 126ms in condition 8-change. 

Static vs. Dynamic. We conducted a CONDITION (4-change, 
8-change)×TYPE (static, dynamic) ANOVA with a repeated 
measures analysis of the last factor. It showed a significant 
effect of TYPE on TPD (F1,34 = 5.2, p < 0.05). A post-hoc 
Tukey HSD test shows the TPD caused by static targets (+59 
± 69ms) is significantly smaller than the one caused by dy-
namic targets (+174 ± 81ms). However, we did not have an 
effect of CONDITION on TPD (p = 0.2) or CONDITION×TYPE 
interaction effect (p = 0.6). It suggests that the larger per-
formance drop of N8 is due to the extra number of changes. 
However this extra number of changes does not affect the TPD 
of the other static and dynamic targets. Finally, we studied 
the impact of PROXIMITY on TPD of dynamic targets. We 
run a CONDITION (4-change, 8-change)×PROXIMITY (close, 
far) ANOVA. It showed no effect of CONDITION (p = 0.1), 
PROXIMITY (p = 0.2) or their interaction (p = 0.5) on TPD. 
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Figure 4. Intramodal improvement (selection time) for each phase for each condition. 

Second  Retroactive  Transfer:  Alternation-2  
We considered all targets and performed a CONDITION (con-
trol, 4-change, 8-change)×ALTERNATION (1,2) ANOVA on 
TPD with a repeated measures analysis of the last factor. It 
yielded a significant effect of CONDITION, F2,51 = 11.56, p < 
0.0001 and ALTERNATION, F1,51 = 6.35, p < 0.05 on TPD. 
Post-hoc comparisons using Tukey HSD test revealed that con-
dition 8-change (+91 ± 51ms) has a significant larger TPD than 
conditions control (-41 ± 34ms) and 4-change (+12 ± 43ms), 
confirmed by the CI analysis in Figure 3d (All targets). More-
over, Post-hoc comparisons using Tukey HSD test shows that 
TPD during the alternation-1 (+52 ± 36ms) was significantly 
higher than the one during alternation-2 (-11 ± 34ms). 

Similar to the previous subsection, we refined our analysis 
comparing static targets for all conditions and comparing static 
vs. dynamic targets for conditions 4-change and 8-change. 

Static targets. We conducted a CONDITION (control, 4-change, 
8-change)×ALTERNATION (1,2) ANOVA which showed no 
significant effect of CONDITION (p = 0.09) or ALTERNATION 
(p = 0.1) on TPD. The average TPD for static target is -41 ± 
33ms in condition control, 0 ± 58ms in condition 4-change 
and +40 ± 74ms for condition 8-change. 

Static vs. Dynamic. We conducted a CONDITION (4-change, 
8-change)×TYPE (static, dynamic)×ALTERNATION (1,2) 
ANOVA with a repeated measures analysis of the last factor. 
It revealed a significant effect of TYPE (F1,34 = 10.16, p < 
0.005), as well as a significant effect of ALTERNATION on 
TPD (F1,34 = 4.97, p < 0.05) on TPD. A post-hoc Tukey HSD 
test shows the TPD caused by static targets (+20 ± 47ms) is 
significantly smaller than the one caused by dynamic targets 
(+126 ± 55ms). It also shows TPD for alternation-1 (+108 ± 
52ms) is significantly higher than alternation-2 (+22 ± 49ms). 

In another ANOVA we investigated the effect of PROXIMITY 
on the TPD of dynamic targets. There was no significant effect 
of CONDITION (p = 0.3), PROXIMITY (p = 0.07), ALTERNA-
TION (p = 0.1), or of their interactions, on TPD. 

Another  Perspective  on  Data  
Figure 3 illustrates the comparison of conditions but Figure 4 
illustrates the comparison of phases offering another perspec-
tive on the same dataset. Figure 4 compares the performance 

improvement for each phase given a condition. It illustrates 
that at the end of each phase, the selection time is similar 
regardless the phase indicating that users reached a plateau of 
performance. It also shows the initial selection time (block 0) 
decreases with the number of alternations but increases with 
the number of changes. 

Self  Estimation  of  Temporal  Performance  Drop  
At the end of the experiment, participants of conditions 4-
change and 8-change rated the evolution of their performance 
for proactive and retroactive transfer (7-Likert scale). Par-
ticipants reported a TPD for both proactive and retroactive 
transfer, which increased with the number of changes in the 
new layouts (Figure 5). Therefore, participants subjective 
performance appeared consistent with the objective metrics. 
However, especially for 4-change, we note that about 33.34% 
participants reported the impression to improve their perfor-
mance when returned to the layout P. 

80 40 0 40 [%]

Much more slower Much more faster

Performance of N8 after P

Performance of N4 after P

Performance of P after N8

Performance of P after N4

Figure 5. Participants’ self estimation of their temporal performance 
drop (TPD) per TRANSFER (proactive - Top and retroactive - Bottom) and 
CONDITION (4-change vs. 8-change). 

DISCUSSION  
We now summarize our findings, present directions for future 
work and discuss implications for design. 

Findings  
H1: Learning a new layout N results in retroactive interfer-
ence with the previously learned layout P 
The primary objective of this paper was to investigate the 
effect of learning a new layout N on the performance of pre-
viously learned layout P. The results show that retroactive 
interference occurs when participants are temporally exposed 
to a partially changed layout (i.e. N4 or N8) and confirm H1. 
The performance drop is +52ms for condition 4-change and 
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+95ms for condition 8-change which represents 16% and 37%, 
respectively. We were expecting some interference, but these 
results remain surprising, especially for N4. Indeed, given our 
experimental design, 6 out of 8 targets (75%) are at the same 
location in P and N4. So, for 75% of the targets, users should 
benefit practicing N4 as it should be equivalent to continue 
practicing P. However, having just the two targets with dif-
ferent positions in N4 were sufficient to produce a significant 
performance drop for the entire interface. In other words, 
even a few changes in the interference interface results in 
retroactive interference which significantly impairs the overall 
performance with the previously learned interface. 

H2: The similarity between the layouts P and N influences 
the magnitude of retroactive interference 
The ANOVA did not indicate a difference in temporal 
performance drop (TPD) between conditions 4-change and 
8-change at either the layout level (condition) or the target 
level (static vs. dynamic). A key feature of our experimental 
design was to control two aspects of similarity: number of 
changes and proximity. However, neither revealed an effect on 
TPD. Our results thus failed to confirm a significant effect for 
H2. Indeed, CI-based analysis (Figure 3c) at both the layout 
(-all targets) and target (-static, -dynamic) levels suggest that 
TPD increases linearly with the dissimilarity between P and N 
(i.e. N8 is less similar than N4 to P). One possible explanation 
is that the effect exists but somehow was not captured by our 
experimental design or analysis. Further investigation should 
consider larger sample sizes, conditions with a larger number 
of changes and potentially more training with both P and the 
interference layout. 

H3: Increasing the number of alternations decreases retroac-
tive interference 
Our study aimed to evaluate users’ behaviour when alternating 
between interfaces. Our results confirm H3 and show that 
the TPD significantly decreases (31%) with the number of 
alternations. Figure 3a illustrates this clearly with a contin-
ual decrease in the the initial selection time for each phase. 
It suggests that retroactive interference can be reduced with 
alternations and practice. 

Error. Contrary to expectations, we did not find a signifi-
cant effect on ERROR for the different factors. One possible 
explanation is that our task was cognitively demanding. In 
more realistic scenarios, users might focus on higher level 
tasks (e.g. writing an email) decreasing their attention to the 
keyboard. We foresee that the TPD would then translate into 
more errors in more ecological settings, but more investigation 
is necessary. 

Proactive vs. retroactive interference. Most results about 
retroactive interference are in line with proactive interference 
such as the effect of TYPE (static vs. dynamic) on TPD, the lack 
of effect of proximity and also experiencing a TPD with both 
conditions 4-change and 8-change by users. It confirms that 
switching from one interface to another one (P → N or N → P) 
produces interference. However, for proactive interference, 
the condition 4-change appeared significantly less affected 
by the TPD than the condition 8-change, probably because its 
larger effect size. 

Future  work  
Our experiment focused on similarity as it is a critical fac-
tor for interaction design [10]. However, there were several 
factors we left aside that would require further investigation. 
For instance, manipulating the amount of practice and rest 
time might indicate whether expert users (i.e. skilled touch 
typists) would experience these phenomena to the same de-
gree. Also, one might investigate how the distribution of target 
frequency influences proactive and retroactive transfer. In our 
experimental design, we used a uniform distribution (i.e. each 
target had the same probably of appearing within a block). 
So, it was unlikely that users learned sequences of charac-
ters [42]. However, in real scenarios, the frequency of each 
character and bigrams depend on the language. According 
to results in sequential learning [42], the magnitude of the 
interference could be larger for frequent bigrams. In addi-
tion, one should investigate the impact of different modalities, 
e.g. gestures, on retroactive interference. Which modalities 
minimize retroactive interference? Finally, future research 
is necessary to generalize our results to real-world problems, 
e.g., real keyboard layouts. 

Implications  
We encourage designers to pay more attention to the impact 
of introducing novel interfaces on previously learned skills 
because of the ubiquitous nature of interaction across applica-
tions. Our interviews revealed that there are many situations 
in users’ daily routine where they alternate between devices, 
interfaces, software, or operating systems for the same type of 
tasks (e.g., pointing, entering text, executing commands, etc.). 

Designers and researchers should evaluate more systemati-
cally their interfaces for retroactive transfer. When designing 
or testing new interfaces, it is common to consider intramodal 
improvement and proactive transfer. However, considering 
retroactive transfer seems essential for ecologically valid in-
vestigation of interface design. 

Similarly, future models of performance should integrate phe-
nomena related to proactive and retroactive transfer. Recently, 
Jokinen et al. [39] presented a model to explain the negative 
impact of switching to a partially changed keyboard layout 
on typing performance. Our work provides two main direc-
tions to extend this model. First, our results show that the 
dynamic targets influence performance time of other targets 
when switching to the new layout (proactive transfer). Such 
models should thus introduce mechanisms to explain how 
changed keys influence the performance of other keys. Sec-
ond, the model could be extended to integrate phenomena 
related to retroactive transfer. 

Intelligent systems with the capacity to capture alternations 
can then use these models of performance to avoid/reduce 
retroactive interference. For instance, they can provide some 
recommendations such as increasing rest time at a given alter-
nation or increasing training to reduce the risk of interference. 
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