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Abstract. For many algorithmic problems on graphs of treewidth t, a
standard dynamic programming approach gives an algorithm with time
and space complexity 2O(t) · nO(1). It turns out that when one consid-
ers the more restrictive parameter treedepth, it is often the case that a
variation of this technique can be used to reduce the space complexity
to polynomial, while retaining time complexity of the form 2O(d) ·nO(1),
where d is the treedepth. This transfer of methodology is, however, far
from automatic. For instance, for problems with connectivity constraints,
standard dynamic programming techniques give algorithms with time
and space complexity 2O(t log t) · nO(1) on graphs of treewidth t, but it is
not clear how to convert them into time-efficient polynomial space algo-
rithms for graphs of low treedepth.

Cygan et al. (FOCS’11) introduced the Cut&Count technique and
showed that a certain class of problems with connectivity constraints can
be solved in time and space complexity 2O(t) ·nO(1). Recently, Hegerfeld
and Kratsch (STACS’20) showed that, for some of those problems, the
Cut&Count technique can be also applied in the setting of treedepth, and
it gives algorithms with running time 2O(d) ·nO(1) and polynomial space
usage. However, a number of important problems eluded such a treat-
ment, with the most prominent examples being Hamiltonian Cycle
and Longest Path.

In this paper we clarify the situation by showing that Hamilto-
nian Cycle, Hamiltonian Path, Long Cycle, Long Path, and Min
Cycle Cover all admit 5d ·nO(1)-time and polynomial space algorithms
on graphs of treedepth d. The algorithms are randomized Monte Carlo
with only false negatives.
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1 Introduction

It is widely believed that no NP-hard problem admits a polynomial time algo-
rithm. However, actual instances of problems that we are interested in solving
often admit much more structure than a general instance. This observation gave
rise to the field of parameterized complexity, where the hardness of an instance
does not depend exclusively on the input size. In the parameterized regime,
we assume that each instance is equipped with an additional parameter k and
the goal is to give a fixed-parameter algorithm: an algorithm with running time
f(k)·nO(1), where f is a function independent of n. After settling that a problem
admits such an algorithm, it is natural to lookfor one with function f as low as
possible. We refer to [5,10,12] for an introduction to parameterized complexity.

One of the most widely used parameters is the treewidth t of the input graph.
Usually, problems that involve only constraints of local nature admit an algo-
rithm with running time of the form 2O(t) · nO(1) [5]. For a long time, such algo-
rithms remained out of reach for problems involving connectivity constraints, and
for those only 2O(t log t) · nO(1)-time algorithms were known. The breakthrough
came with the Cut&Count technique, introduced by Cygan et al. in [7], that
allows one to design randomized Monte-Carlo algorithms with running times of
the form 2O(t) · nO(1) for a wide range of connectivity problems, e.g., Hamil-

tonian Path, Connected Vertex Cover, Connected Dominating Set,
etc. The technique was subsequently derandomized [4,13].

One of the main issues with standard dynamic programming algorithms is
that they tend to have prohibitively large space usage. The natural goal is there-
fore to reduce the space complexity while not sacrificing much on the time com-
plexity. Unfortunately, Drucker et al. [11] and Pilipczuk and Wrochna [23] gave
some complexity-theoretical evidence that for dynamic programming on graphs
of bounded treewidth, such a reduction is probably impossible. For example,
they showed that under plausible assumptions, there is no algorithm that works
in time 2O(t) · nO(1) and uses 2o(t) · nO(1) space for the 3-Coloring or Inde-

pendent Set problem.

Treedepth. The aforementioned issues motivate the research on a different, more
restrictive parameterization, for which the reduction of space complexity would
be possible. In this paper we will consider the parameterization by treedepth,
defined as follows.

Definition 1. An elimination forest of a graph G is a rooted forest F on the
same vertex set as G such that for every edge uv of G, either u is an ancestor of
v in F or v is an ancestor of u in F . The treedepth of G is the minimum possible
depth of an elimination forest of G.

The treedepth of a graph is never smaller than its treewidth, but it is
also never larger than the treewidth times log n. In many concrete cases, the
two parameters have the same advantages. For example, planar graphs have
treewidth O(

√
n), but also treedepth O(

√
n).
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It has been recently realized that on graphs of treedepth d, many algorithmic
problems indeed can be solved in time 2O(d) · nO(1) and using only polynomial
space.1 For the most basic problems, such as 3-Coloring and Independent

Set, a simple branching algorithms achieves such complexity. However, in con-
trast to the treewidth parameterization, for many more complex problems it is
highly non-trivial, yet possible to establish similar bounds. One technique that
turns out to be useful here is the framework of algebraic transforms introduced
by Loksthanov and Nederlof [18], who demonstrated how to reduce the space
requirements of many dynamic programming algorithms to polynomial in the
input size by reorganizing the computation using a suitable transform. Fürer
and Yu [14] applied this framework to give 2O(d) · nO(1)-time and polynomial
space algorithms on graphs of treedepth d for the Dominating Set problem
and for the problem of counting the number of perfect matchings. Pilipczuk and
Wrochna [23] considered algorithms with even more restricted space require-
ments: they showed that 3-Coloring, Dominating Set, and Vertex Cover

admit algorithms that work in 2O(d) ·nO(1) time and use O(d+log n) space. For
Dominating Set they avoided the explicit use of algebraization and instead
provided a more combinatorial interpretation based on what one could call
inclusion-exclusion branching. Later, Pilipczuk and Siebertz [22] used color-
coding to give an 2O(d log d) · nO(1)-time and polynomial space algorithm for the
Subgraph Isomorphism problem. Recently, Belbasi and Fürer [1] presented
an algorithm for counting Hamiltonian cycles in time (4t)d · nO(1) and using
polynomial space, where t is the width of a given tree decomposition and d is its
(suitably defined) depth.

Treedepth and Cut&Count. Very recently, Hegerfeld and Kratsch [16] demon-
strated that the Cut&Count technique can be also applied in the setting of
the treedepth parameterization. Consequently, they gave randomized algorithms
with running times 2O(d) · nO(1) and polynomial space usage for a number of
problems with connectivity constraints such as Connected Vertex Cover,
Connected Dominating Set, Feedback Vertex Set, or Steiner Tree.
However, Hegerfeld and Kratsch found it problematic to apply the methodol-
ogy to several important problems originally considered by Cygan et al. [7] in
the context of Cut&Count. Specifically, these are problems based on selection
of edges rather than vertices, such as Hamiltonian Cycle or Long Cycle.
For this reason, Hegerfeld and Kratsch explicitly asked in [16] whether Hamil-

tonian Cycle, Hamiltonian Path, Long Cycle, and Min Cycle Cover

1 Throughout the introduction, when we speak about a graph of treedepth d, we mean
a graph supplied with an elimination forest of depth d. While in the case of treewidth,
a tree decomposition of approximately (up to a constant factor) optimum width
can be computed in time 8t · nO(1) [5,26], the existence of such an approximation
algorithm for treedepth is a notorious open problem.
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also admit 2O(d) · nO(1)-time and polynomial space algorithms2 on graphs of
treedepth d (see the full version of this paper [21] for problem definitions3).

Our Contribution. In this paper we introduce additional techniques that allow us
to extend the results of [16] and to answer the abovementioned open problem of
Hegerfeld and Kratsch in the affirmative. More precisely, we prove the following
theorem.

Theorem 1. There is a randomized algorithm that given a graph G together
with its elimination forest of depth d, and number k ∈ N, solves Hamiltonian

Cycle, Hamiltonian Path, k-Cycle, k-Path and Min Cycle Cover in
time 5d ·nO(1) and using polynomial space. The algorithm has a one-sided error:
it may give false negatives with probability at most 1

2 .

In fact, Theorem 1 is an easy corollary of the following result for a general-
ization of the considered problems. In the Partial Cycle Cover problem we
are given an undirected graph G and integers k and �, and we ask whether in
G there is a family of at most k vertex-disjoint cycles that jointly visit exactly
� vertices. We will prove the following theorem.

Theorem 2. There is a randomized algorithm that given a graph G together
with its elimination forest of depth d, and numbers k, � ∈ N, solves the Partial

Cycle Cover problem for G, k, � in time 5d ·nO(1) and using polynomial space.
The algorithm has a one-sided error: it may give false negatives with probability
at most 1

2 .

To see that Theorem 2 implies Theorem 1, note that Hamiltonian Cycle,
Min Cycle Cover and Long Cycle are special cases of the Partial Cycle

Cover (for fixed parameters k and �).
To solve Long Path, we can simply iterate through all pairs of non-adjacent

vertices s, t and apply the Long Cycle algorithm to the graph G with edge st
added; this increases the treedepth by at most 1 and the provided elimination
forest can be easily adjusted. It is easy to see that then the original graph G
contains a simple path on � vertices if and only if for some choice of s and t, we
find a cycle of length � in G augmented with the edge st. Finally, Hamiltonian

Path is just Long Path applied for � = |V (G)|.
We remark that our algorithmic findings have concrete applications outside

of the realm of structural parameterizations. For instance, Lokshtanov et al. [17]
gave a 2O(

√
� log2 �) · nO(1)-time polynomial space algorithm for the Long Path

problem on H-minor-free graphs, for every fixed H. In the full version of this
paper [21] we present how using our results one can improve the running time
to 2O(

√
� log �) · nO(1) while keeping the polynomial space complexity.

2 Note, that graphs of treedepth at most k cannot contain a path of length 2k. This
leads to trivial FPT algorithms for these problems, however with doubly-exponential
running time dependency on k.

3 Note that when discussing the Long Path and the Long Cycle problems, we use
the letter � to denote the required length of a path, respectively of a cycle, instead
of the letter k that is perhaps more traditionally used in this context.
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Our Techniques. Similarly to Hegerfeld and Kratsch [16] we use the Cut&Count
framework, but we apply a different view on the Count part, suited for problems
based on edge selection. The main idea is that instead of counting cycle covers,
as a standard application of Cut&Count would do, we count perfect matchings
in an auxiliary graph, constructed by replacing every vertex with two adjacent
copies. The number of such perfect matchings can be related to the number of
cycle covers of the original graph. However, the considered perfect matchings
can be counted within the claimed complexity by either employing the previ-
ous “algebraized” dynamic programming algorithm, or the algorithm based on
inclusion-exclusion branching (our presentation chooses the latter).

Applying this approach naïvely would give us a polynomial space algorithm
with running time 8d · nO(1). We improve the running time to 5d · nO(1) by
employing several observations about the symmetries of recursive calls of our
algorithms, in a similar way as in the algorithm for #k-Multi-Set-Cover of
Nederlof [20].

Organization of the Paper. The remainder of the paper is devoted to the proof
of Theorem 2. In Sect. 2 we introduce the notation and present basic definitions.
In Sect. 3 we discuss the Cut&Count technique in a self-contained manner and
explain the Cut part. In Sect. 4 we reduce the Count part to counting perfect
matchings in an auxiliary graph. In Sect. 5 we give an intuition behind counting
such matchings. We conclude with several open questions in Sect. 6. Due to space
restrictions, proofs of statements marked with ♦ are deferred to the full version
of this paper [21]. The full version [21] also contains applications of our results
to the Long Path problem in H-minor free graphs.

2 Preliminaries

Notation. For a graph G, by cc(G) we denote number of connected components
of G. Let F be a subset of edges of G. By cc(F ) we denote the number of
connected components of the graph consisting of all the edges of F and vertices
incident to them. For a vertex u, by degF (u) we mean the number of edges of F
incident to u. Then F is a matching if degF (u) ∈ {0, 1} for every vertex u, is a
perfect matching if degF (u) = 1 for every vertex u, and is a partial cycle cover if
degF (u) ∈ {0, 2} for every vertex u. Note that thus we treat partial cycle covers
as sets of edges.

A cut of a set U is just an ordered partition of U into two sets, that is, a pair
(L,R) such that L ∩ R = ∅ and L ∪ R = U . A cut (L,R) of the vertex set of a
graph is consistent with a subset of edges F if there is no edge in F with one
endpoint in L and second in R.

For a function f and elements x, y, where x is not in the domain of f , by
f [x �→ y] we denote the function obtained from f by extending its domain by x
and setting f(x) = y.

We use the O�(·) notation to hide factors polynomial in the input size. For
convenience, throughout the paper we assume the RAM model: every integer
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takes a unit of space and arithmetic operations on integers have unit cost. How-
ever, it can be easily seen that all the numbers appearing during the computation
have bit length bounded polynomially in the input size. Since we never specify
the polynomial factors in the time or space complexity of our algorithms, with-
out any influence on the claimed asymptotic bounds we may assume that the
representation of any number takes polynomial space and arithmetic operations
on the numbers take polynomial time.

Treedepth. A rooted forest is a directed acyclic graph T where every vertex
has outdegree at most 1. The vertices of outdegree 0 in T are called the roots.
Whenever a vertex u is reachable from a vertex v by a directed path in T , we
say that u is an ancestor of v, and v is a descendant of u. Note that every vertex
is its own ancestor as well as descendant. The depth of a rooted forest is the
maximum number of vertices that can appear on a directed path in it.

We use the following notation from previous works [16,23]. For a vertex u of
a rooted forest T , we denote:

subtree[u] := {v : u is ancestor of v}, subtree(u) := subtree[u] \ {u},

tail[u] := {v : v is ancestor of u}, tail(u) := tail[u] \ {u},

broom[u] := tail[u] ∪ subtree[u].

Additionally, children(u) denotes the set of children of u, whereas parent(u) is the
parent of u, that is, the only outneighbor of u. If u is a root, we set parent(u) = ⊥.

For a graph G, an elimination forest of G is a rooted forest T on the same
vertex set as G that satisfies the following property: whenever uv is an edge in
G, then in T either u is an ancestor of v, or v is an ancestor of u. The treedepth
of a graph is the minimum possible depth of an elimination forest of G.

Isolation Lemma. The only source of randomness in our algorithm is the Isolation
Lemma of Mulmuley et al. [19]. Suppose U is a finite set and ω : U → Z is a
weight function on U . We say that ω isolates a non-empty family of subsets
F ⊆ 2U if there is a unique S ∈ F such that

ω(S) = min
X∈F

ω(X),

where ω(X) :=
∑

x∈X ω(x). Then the Isolation Lemma can be stated as follows.

Lemma 1 (Isolation Lemma [19]). Let U be a finite set and F ⊆ 2U be a
non-empty family of subsets of U . Suppose for every u ∈ U we choose its weight
ω(u) uniformly and independently at random from the set {1, . . . , N}, where
N ∈ N. Then ω isolates F with probability at least 1 − |U |

N .

3 The Cut Part

We now proceed to the proof of Theorem 2. Throughout the proof we fix the input
graph G = (V,E), its elimination forest T of depth d, and numbers k, � ∈ N. We
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may assume that G is connected, as otherwise we may apply the algorithm to
each connected component separately. Thus T has to be a tree, so we will call
it an elimination tree to avoid confusion. Also, we denote n := |V |.

As mentioned before, we shall apply the Cut&Count technique of Cygan
et al. [7]. This technique consists of two parts: the Cut part and the Count part.
The idea is that in the first part, we relax the connectivity requirements and show
that it is enough to count the number of relaxed solutions together with cuts
consistent with them, as this number is congruent to the number of non-relaxed
solutions modulo a power of 2. The Isolation Lemma is used here to ensure
that with high probability, the number of solutions does not accidentally cancel
out modulo this power of 2. More precisely, having drawn a weight function at
random, for each possible total weight w we count the number of solutions of
total weight w. Then the Isolation Lemma asserts that, with high probability,
for some w there will be a unique solution of total weight w. Then comes the
Count part, where the goal is to efficiently count the number of relaxed solutions
together with cuts consistent with them.

We refer the reader to [7] for a more elaborate discussion of the Cut&Count
technique, while now we apply it to the particular case of Partial Cycle

Cover. A relaxed solution is just a partial cycle cover consisting of � edges.
Then a solution is a relaxed solution that spans at most k cycles. Formally, the
sets of solutions (S) and relaxed solutions (R) are defined as follows:

R := {F ⊆ E : |F | = � and degF (u) ∈ {0, 2} for every u ∈ V };
S := {F ∈ R : cc(F ) � k }.

Suppose now that the input graph G is supplied with a weight function on edges
ω : E → Z. Then we can stratify the families above using the total weight. That
is, for every w ∈ Z we define:

Rw := {F ∈ R : ω(F ) = w} and Sw := {F ∈ S : ω(F ) = w }.

Now, let

Cw := { (F, (L,R)) : F ∈ Rw and (L,R) is a cut of V consistent with F }.

The following observation is the key idea in the Cut&Count technique.

Lemma 2 (♦). For every w ∈ Z, we have

|Cw| ≡
∑

F∈Sw

2n−�+cc(F ) mod 2n−�+k+1.

In the next sections we will present the Count part of the technique, which
boils down to proving the following lemma.

Lemma 3. Given w ∈ Z and a weight function ω : E → {1, . . . , N}, where
N = O�(1), the number |Cw| can be computed in time O�(5d) and space O�(1).

In the full version of this paper [21] we show how to combine Lemma 2 with
Lemma 3 to prove Theorem 2. Therefore, it remains to prove Lemma3.
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4 From Cycle Covers to Matchings

For the proof of Lemma3, instead of counting the number of suitable partial cycle
covers, we find it more convenient to count the number of perfect matchings in
an auxiliary graph. Note, that this concept is natural when using inclusion-
exclusion branching technique. A similar auxiliary graph arises in the algorithm
for #k-Multi-Set-Cover [20].

We define a graph G′ as follows. The vertex set V ′ of G′ is V ′ := {u0, u1 : u ∈
V }. That is, we put two copies of each vertex of G into the vertex set of G′. The
edge set E′ of G′ is the union of the following two sets:

E′
0 := {u0u1 : u ∈ V }, E′

1 := {u0v0, u0v1, u1v0, u1v1 : uv ∈ E }.

In other words, for every vertex u ∈ V we put an edge in E′
0 connecting the two

copies of u in V ′, while for every edge uv ∈ E we put four different edges in E′
1,

each connecting a copy of u with a copy of v in V ′.
Let π : E′

1 → E be the natural projection from E′
1 to E: for each uv ∈ E

and s, t ∈ {0, 1}, we set π(usvt) = uv. We extend the mapping π to all subsets
F ⊆ E′ by setting π(F ) := π(F ∩ E′

1). We also extend the weight function ω to
the edges of E′ by putting ω(e) = 0 for each e ∈ E′

0 and ω(e) = ω(π(e)) for each
e ∈ E′

1.
A set of edges F in G′ shall be called simple if for every e ∈ E, we have

|F ∩ π−1(e)| � 1.

For now, we mainly focus on simple perfect matchings in G′. We observe that
they are in correspondence with partial cycle covers in G, as explained next.

Lemma 4 (♦). For every simple perfect matching M in G′, the set π(M) is
a partial cycle cover in G of size |M ∩ E′

1|. Moreover, for every partial cycle
cover F in G, there are exactly 2|F | simple perfect matchings M in G′ for which
F = π(M).

Lemma 4 motivates introducing the following analogues of the sets Cw. For
w ∈ Z, we define

Mw := { (M, (L,R)) : M is a simple perfect matching in G′,
(L,R) is a cut of V consistent with π(M),
|M ∩ E′

1| = � and ω(M) = w }.

Since for every simple perfect matching M in G′ we have ω(M) = ω(π(M)),
from Lemma 4 we immediately obtain the following.

Corollary 1. For every w ∈ Z, we have |Mw| = 2� · |Cw|.
Therefore, to prove Lemma 3 it suffices to apply the algorithm provided by

the following lemma and divide the outcome by 2�.

Lemma 5 (♦). Given w ∈ Z and a weight function ω : E → {1, . . . , N}, where
N = O�(1), the number |Mw| can be computed in time O�(5d) and space O�(1).
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5 The Count Part

Due to space restrictions we defer the formal proof of Lemma 5 to the full ver-
sion of this paper [21]. In this section we discuss only the intuition behind the
approach.

The basic idea is that we will compute the number |Mw| using bottom-up
dynamic programming over the given elimination tree T . In order to achieve poly-
nomial space complexity, this dynamic programming will be cast as a standard
recursion, but for this to work, we need that the recurrence equations governing
the dynamic programming have a specific form. In essence, whenever we com-
pute an entry of the dynamic programming table at some vertex u, the value
should be obtained as a simple aggregation of single entries from the tables of the
children of u. The most straightforward approach to computing |Mw| would be
to count partial perfect matchings and to remember, in the states corresponding
to u, subsets of tail[u] consisting of vertices matched to subtree(u). This would
yield a dynamic programming algorithm that is not of the form required for
the space complexity reduction. However, we show that by counting different
objects than partial perfect matchings, and using the inclusion-exclusion prin-
ciple at every computation step, we can reorganize the computation so that the
space reduction is possible.

We remark that even though at the end of the day our algorithm relies only on
basic ideas such as branching and inclusion-exclusion, there is a deeper intuition
behind the definitions of the computed values. In fact, from the right angle our
algorithm can be seen as an application of the technique of saving space by
algebraization, introduced by Lokshtanov and Nederlof [18], which boils down to
applying the Fourier transform on the lattice of subsets in order to turn subset
convolutions into pointwise products. We refer the reader to [1,14,16,23] for
other applications of this technique in the context of treedepth-based algorithms.

6 Conclusion and Further Research

In this paper we answered the open question of Hegerfeld and Kratsch [16] by
presenting an O�(5d)-time and polynomial space algorithm for Hamiltonian

Path, Hamiltonian Cycle, Longest Path, Longest Cycle Min Cycle

Cover, where d is the depth of a provided elimination forest of the input graph.
However, there are still multiple open problems around time- and space-efficient
algorithms on graphs of bounded treedepth. We list here a selection.

Approximation of Treedepth. Recall that the treewidth of a graph can be approx-
imated up to a constant factor in fixed-parameter time. For instance, the classic
algorithm of Robertson and Seymour [26] (see also [5]) takes on input a graph
G and integer t, works in time 2O(t) · nO(1) and in polynomial space, and either
concludes that the treewidth of G is larger than t, or finds a tree decomposition
of G of width at most 4t + 4. This means that for the purpose of designing
2O(t) · nO(1)-time algorithms on graphs of treewidth t, we may assume that
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a tree decomposition of approximately optimum width is given, as it can be
always computed from the input graph within the required complexity bounds.
Unfortunately, no such approximation algorithm is known for the treedepth.
Namely, it is known that the treedepth can be computed exactly in time and
space 2O(d2) · n [25] and approximated up to factor O(t log3/2 t) in polynomial
time [8], where d and t are the values of the treedepth and the treewidth of the
input graph, respectively. A piece of the theory that seems particularly miss-
ing is a constant-factor approximation algorithm for treedepth running in time
2O(d) · nO(1); polynomial space usage would be also desired.

Faster Algorithms. The bases of the exponent of the running times of the algo-
rithms given by Hegerfeld and Kratsch [16] for the treedepth parameterization
match the ones obtained by Cygan et al. [7] for the treewidth parameteriza-
tion. In the case of our results, the situation is different: while Hamiltonian

Cycle can be solved in time 4t · nO(1) in graphs of treewidth t [7] and in time
(2 +

√
2)p · nO(1) in graphs of pathwidth p [6], we needed to increase the base

of the exponent to 5 in order to achieve polynomial space complexity for the
treedepth parameterization. As the treedepth of a graph is never smaller than
its pathwidth, it is natural to ask whether there is an (2 +

√
2)d · nO(1)-time

polynomial-space algorithm for Hamiltonian Cycle on graphs of treedepth d.
In fact, reducing the base 5 to any c < 5 would be interesting.

Derandomization. Shortly after its introduction, the Cut&Count technique for
the treewidth parameterization has been derandomized. Bodlaender et al. [4] pre-
sented two approaches for doing so. The first one, called the rank-based approach,
boils down to maintaining a small set of representative partial solutions along
the dynamic programming computation, and pruning irrelevant partial solutions
on the fly using Gaussian elimination. Fomin et al. [13] later reinterpreted this
technique in the language of matroids and extended it. The second approach,
called determinant-based, uses the ideas behind Kirchoff’s matrix-tree theorem
to deliver a formula for counting suitable spanning trees of a graph, which can
be efficiently evaluated by a dynamic programming over a tree decomposition.

It seems to us that none of these approaches applies in the context of the
treedepth parameterization, where we additionally require polynomial space
complexity. For the rank-based and matroid-based approaches, they are based
on keeping track of a set of representative solutions, which in the worst case
may have exponential size. In the determinant-based approach, when comput-
ing the formula for the number of spanning trees over a tree decomposition,
the aggregation of dynamic programming tables is done using operations that
are algebraically more involved, and which in particular are non-commutative.
See the work of Włodarczyk [27] for a discussion. It is unclear whether this
computation can be reorganized so that in the aggregation we use only point-
wise product—which, in essence, is our current methodology from the algebraic
perspective.
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Hence, it is highly interesting whether our algorithm, or the algorithms of
Hegerfeld and Kratsch [16], can be derandomized while keeping running time
2O(d) · nO(1) and polynomial space usage.

Other Graph Parameters. Actually, Hegerfeld and Kratsch [16] were not the
first to employ Cut&Count on structural graph parameters beyond treewidth.
Pino et al. [24] used Cut&Count and rank-based approach to get single-
exponential time algorithms for connectivity problems parametrized by branch-
width. Recently, Cut&Count was also applied in the context of cliquewidth [2],
and of Q-rankwidth, rankwidth, and MIM-width [3]. All these algorithms have
exponential space complexity, as they follow the standard dynamic programming
approach. One may expect that maybe for the depth-bounded counterparts of
cliquewidth and rankwidth—shrubdepth [15] and rankdepth [9]—time-efficient
polynomial-space algorithms can be designed, similarly as for treedepth.
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