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Abstract

In the Feedback Vertex Set problem, one is given
an undirected graph G and an integer k, and one
needs to determine whether there exists a set of k
vertices that intersects all cycles of G (a so-called
feedback vertex set). Feedback Vertex Set is one of
the most central problems in parameterized complexity:
It served as an excellent test bed for many important
algorithmic techniques in the field such as Iterative
Compression [Guo et al. (JCSS’06)], Randomized
Branching [Becker et al. (J. Artif. Intell. Res’00)] and
Cut&Count [Cygan et al. (FOCS’11)]. In particular,
there has been a long race for the smallest dependence
f(k) in run times of the type O?(f(k)), where the
O? notation omits factors polynomial in n. This race
seemed to be run in 2011, when a randomized O?(3k)
time algorithm based on Cut&Count was introduced.

In this work, we show the contrary and give a
O?(2.7k) time randomized algorithm. Our algorithm
combines all mentioned techniques with substantial new
ideas: First, we show that, given a feedback vertex set
of size k of bounded average degree, a tree decomposi-
tion of width (1 − Ω(1))k can be found in polynomial
time. Second, we give a randomized branching strategy
inspired by the one from [Becker et al. (J. Artif. Intell.
Res’00)] to reduce to the aforementioned bounded av-
erage degree setting. Third, we obtain significant run
time improvements by employing fast matrix multipli-
cation.

1 Introduction

Feedback Vertex Set (FVS) is one of the most fun-
damental NP-complete problems; for example, it was
among Karp’s original 21 problems [Kar72]. In FVS we
are given an undirected graph G and integer k, and are
asked whether there exists a set F such that G[V \F ] is
a forest (i.e. F intersects all cycles of G). In the realm of
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parameterized complexity, where we aim for algorithms
with running times of the type O?(f(k))1 with f(k) as
small as possible (albeit exponential), FVS is clearly
one of the most central problems: To quote [Cao18], to
date the number of parameterized algorithms for FVS
published in the literature exceeds the number of pa-
rameterized algorithms for any other single problem.

There are several reasons why FVS is the one of
the most central problem in parameterized complexity:
First and foremost, the main point of parameterized
complexity, being that in many instance the parameter
k is small, is very applicable for FVS: In the instances
arising from e.g. resolving deadlocks in systems of pro-
cessors [BGNR98], or from Bayesian inference or con-
straint satisfaction, one is only interested in whether
small FVS’s exist [BBG00, Dec90, WLS85]. Second,
FVS is a very natural graph modification problems (re-
move/add few vertices/edges to make the graph satisfy a
certain property) that serves as excellent starting point
for many other graph modification problems such a pla-
narization or treewidth-deletion (see e.g. [GLL+18] for
a recent overview). Third, FVS and many of its variants
(see e.g. [KK18]) admit elegant duality theorems such
as the Erdös-Pósa property; understanding their use in
designing algorithms can be instrumental to solve many
problems different from FVS faster. The popularity of
FVS also led to work on a broad spectrum of its varia-
tions such as Subset, Group, Connected, Simultaneous,
or Independent FVS (see for example [AGSS16] and the
references therein).

In this paper we study the most basic setting
concerning the parameterized complexity of FVS, and
aim to design an algorithm with runtime O?(f(k)) with
f(k) as small as possible.

One motivation for this study is that we want to
get a better insight into the fine-grained complexity
of computational problems: How hard is FVS really
to solve in the worst-case setting? Can the current
algorithms still be improved significantly or are they
close to some computational barrier implied by some

1The O?() notation omits factors polynomial in n.
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hypothesis or conjecture such as, for example, the
Strong Exponential Time Hypothesis?

A second motivation is that, lowering the exponen-
tial factor f(k) of the running time is a logical first step
towards more practical algorithms. For example, the
vertex cover problem2 can be solved in O(1.28k + kn)
time [CKX10], and a similar running time for FVS
would be entirely consistent with our current knowledge.
Algorithms with such run times likely outperform other
algorithms for a wide variety of instances from prac-
tice. Note there already has been considerable interest
in practical algorithms for FVS as it was the subject of
the first Parameterized Algorithms and Computational
Experiments Challenge (PACE, see e.g. [DHJ+16]).

For a third motivation of such a study, experi-
ence shows an improvement of the running time al-
gorithms for well-studied benchmark problems as FVS
naturally goes hand in hand with important new algo-
rithmic tools: The ‘race’ for the fastest algorithm for
FVS and its variants gave rise to important techniques
in parameterized complexity such as Iterative Compres-
sion [DFL+07, GGH+06, RSV04], Randomized Branch-
ing [BBG00] and Cut&Count [CNP+11].

The race for the fastest FVS algorithm. The
aforementioned ‘race’ (see Figure 1) started in the early
days of parameterized complexity (see e.g [AEFM89])
with an O?((2k + 1)k) time deterministic algorithm by
Downey and Fellows [DF92]. We briefly discuss four rel-
evant results from this race. A substantial improvement
of the algorithm from [DF92] to an O?(4k) time random-
ized algorithm was obtained by Becker et al. [BBG00].
Their simple but powerful idea is to argue that, if some
simple reduction rules do not apply, a random ‘proba-
bilistic branching’ procedure works well. A few years
later, in [DFL+07, GGH+06] it was shown how to ob-
tain O?(10.6k) time in the deterministic regime using
Iterative Compression. This technique allows the algo-
rithm to assume a feedback vertex set of size k + 1 is
given, which turns out to be useful for detecting feed-
back vertex sets of size k. The race however stagnated
with the paper that introduced the Cut&Count tech-
nique [CNP+11] and gave a O?(3k) time randomized al-
gorithm. In particular, the Cut&Count technique gave
a O?(3tw) time algorithm for FVS if a tree decomposi-
tion (see Section 2 for definitions) of width tw is given,
and this assumption can be made due to the iterative
compression technique. After this result, no progress on
randomized algorithms for FVS was made as it seemed
that improvements over the O?(3tw) running time were
not within reach: In [CNP+11] it was also proven that

2Given a graph G and integer k, find k vertices of G that
intersect every edge of G.

any O?((3−ε)tw) time algorithm, for some ε > 0, would
violate the SETH. It was therefore natural to expect
the base 3 is also optimal for the parameterization by
the solution size k. Moreover, the very similar O?(2k)
time algorithm from [CNP+11] for the Connected Ver-
tex Cover problem was shown to be optimal under the
Set Cover Conjecture [CDL+16].

Our contributions. We show that, somewhat sur-
prisingly, the O?(3k) time Cut&Count algorithm for
FVS can be improved:

Theorem 1.1. There is a randomized algorithm that
solves FVS in time O?(2.69998k). If ω = 2, then the
algorithm takes time O?(2.6252k).

Here 2 ≤ ω ≤ 2.373 is the smallest number such
that two n by n matrices can be multiplied in O(nω)
time [Gal14]. Theorem 1.1 solves a natural open prob-
lem stated explicitly in previous literature [CFJ+14].

Using the method from [FGLS16] that transforms
O?(ck) time algorithms for FVS into O?((2 − 1/c)n)
we directly obtain the following improvement over the
previously fastest O?(1.67n) time algorithm:

Corollary 1.1. There is a randomized algorithm that
solves FVS on an n-vertex graph in time O?(1.6297n).

The above algorithms require space exponential in
k, but we also provide an algorithm using polynomial
space at the cost of the running time:

Theorem 1.2. There is a randomized algorithm that
solves FVS in time O?(2.8446k) and polynomial space.

Our Techniques. We build upon the O?(3tw)
time algorithm from [CNP+11]. The starting standard
observation is that a feedback vertex set of size k (which
we can assume to be known to us by the iterative
compression technique) gives a tree decomposition of
treewidth k + 1 with very special properties. We show
how to leverage these properties using the additional
assumption that the average degree of all vertices in the
feedback vertex set is constant:

Lemma 1.1. Let G be a graph and F be a feedback
vertex set of G of size at most k, and define d :=
deg(F )/k =

∑
v∈F deg(v)/k. There is an algorithm

that, given G and F , computes a tree decomposition

of G of width at most (1 − 2−d + o(1))k, and runs in
polynomial time in expectation.

To the best of our knowledge, Lemma 1.1 is new
even for the special case where F is a vertex cover
of G. We expect this result to be useful for other
problems parameterized by the feedback vertex set or
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Reference Running Time Deterministic? Year

Downey and Fellows [DF92] O?((2k + 1)k) YES 1992
Bodlaender [Bod94] O?(17(k4)!) YES 1994
Becker et al. [BBG00] O?(4k) NO 2000
Raman et al. [RSS02] O?(12k + (4 log k)k) YES 2002
Kanj et al. [KPS04] O?((2 log k + 2 log log k + 18)k) YES 2004
Raman et al. [RSS06] O?((12 log k/ log log k + 6)k) YES 2006
Guo et al. [GGH+06] O?(37.7k) YES 2006
Dehne et al. [DFL+07] O?(10.6k) YES 2007
Chen et al. [CFL+08] O?(5k) YES 2008
Cao et al. [CCL15] O?(3.83k) YES 2010
Cygan et al. [CNP+11] O?(3k) NO 2011
Kociumaka and Pilipczuk [KP14] O?(3.62k) YES 2014
this paper O?(2.7k), or O?(2.6252k) if ω = 2 NO 2020

Figure 1: The ‘race’ for the fastest parameterized algorithm for Feedback Vertex Set.

vertex cover size (such parameterizations are studied
in for example [JJ17]). Lemma 1.1 is proven via an
application of the probabilistic method analyzed via
proper colorings in a dependency graph of low average
degree. It is presented in more detail in Section 3.

Lemma 1.1, combined with the O?(3tw) time algo-
rithm from [CNP+11], implies that we only need to en-
sure the feedback vertex set has constant average degree
in order to get a O?((3 − ε)k) time algorithm for some
ε > 0. To ensure this property, we extend the random-
ized O?(4k) time algorithm of Becker et al. [BBG00].
The algorithm from [BBG00] first applies a set of reduc-
tion rules exhaustively, and then selects a vertex with
probability proportional to its degree.3 They show that
this chosen vertex appears in an optimal feedback ver-
tex set with probability at least 1/4. To modify this
algorithm, we observe that after applying the reduction
rules in [BBG00], every vertex has degree at least 3, so
one idea is to select vertices with probability propor-
tional to deg(v)−3 instead.4 It turns out that if n� k,
then this biases us more towards selecting a vertex in
an optimal feedback vertex set F . Indeed, we will show
that if n ≥ 4k, then we succeed to select a vertex of F
with probability at least 1/2. This is much better than
even success probability 1/3, which is what we need to
beat to improve the O?(3k) running time.

Closer analysis of this process shows that even if
n < 4k, as long as the graph itself has large enough
average degree, then we also get success probability

3The sampling is usually described as choosing a random edge
and then a random vertex of this chosen edge, which has the same
sampling distribution.

4Let us assume that the graph is not 3-regular, since if it were,
then the feedback vertex set has constant average degree and we
could proceed as before.

� 1/3. It follows that if the deg(v) − 3 sampling does
not give success probability � 1/3, then the graph has
n ≤ 4k and constant average degree. Therefore, the
graph has only O(k) edges, and even if all of them
are incident to the feedback vertex set of size k, the
feedback vertex set still has constant average degree.
Therefore, we can apply Lemma 1.1, which gives us
a modest improvement of the O?(3k) running time to

O?(3(1−2
−56)k) time.

To obtain improvements to a O?(2.8446k) time and
polynomial space algorithm, we introduce the new case
n � 3k, where we simply add a random vertex to the
FVS F , which clearly succeeds with probability � 1/3.
We then refine our analysis and apply the Cut&Count
method from the O?(3tw) algorithm in a way similar
to [CNP+11, Theorem B.1].

To obtain Theorem 1.1 and further improve the
above running times, we extend the proof behind
Lemma 1.1 to decompose the graph using a “three-way
separation” (see Definition 3) and leverage such a de-
composition by combining the Cut&Count method with
fast matrix multiplication. This idea to improve the
running time is loosely inspired by previous approaches
for MAX-SAT [CS15] and connectivity problems param-
eterized by branch-width [PBvR16].

Paper Organization. This paper is organized as
follows: We first define notation and list preliminaries
in Section 2. We present the proof of Lemma 1.1 in
Section 3. In Section 4, we introduce a probabilistic
reduction rule and its analysis. Subsequently we focus
on improving the O?(3k) time algorithm for FVS in
Section 5. The algorithm presented there only obtains
a modest improvement, but illustrates our main ideas
and uses previous results as a black box.
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In the second half of the paper we show how to fur-
ther improve our algorithms and prove our main theo-
rems: Section 6 proves Theorem 1.2, and in Section 7 we
prove Theorem 1.1. Both these sections rely on rather
technical extensions of the Cut&Count method that we
postpone to Section 8 to improve readability.

2 Preliminaries

Let G be an undirected graph. For a vertex v in G,
deg(v) is the degree of v in G, and for a set S of vertices,
we define deg(S) :=

∑
v∈S deg(v). If S, T ⊆ V (G) we

denote E[S, T ] for all edges intersecting both S, T , and
denote E[S] = E[T, T ]. For a set

(
A
·,·,·
)

denotes all
partitions of A into three subsets. As we only briefly use
tree-decompositions we refer to [CFK+15, Chapter 7]
for its definitions and standard terminology.

Randomized Algorithms. All algorithms in this
paper will be randomized algorithms for search prob-
lems with one-sided error-probability. The (success)
probability of such an algorithm is the probability it will
output the asked solution, if it exists. In this paper we
define with high probability to be probability at least
1− 2−c|x| for some large c where x is the input, instead
of the usual 1− 1/|x|c. This is because FPT algorithms
take more than simply poly(|x|) = O?(1) time, so a
probability bound of 1−2−c|x| is more convenient when
using an union bound to bound the probability any ex-
ecution of the algorithm will fail.

Note that if the algorithm has constant success
probability, we can always boost it to high probability
using O?(1) independent trials. For convenience, we
record the folklore observation that this even works for
algorithms with expected running time:

Lemma 2.1. (Folklore) If a problem can be solved
with success probability 1/S and in expected time T , and
its solutions can be verified for correctness in polynomial
time, then it can be also solved in O?(S · T ) time with
high probability.

Proof. Consider cS|x| independent runs of the algo-
rithm for some large constant c, and if a run outputs
a solution, we then verify that solution and output YES
if this is successful. Given that a solution exists, it is not
found and verified in any of cS|x| rounds with probabil-
ity at most (1 − 1/S)c·S|x| ≤ exp(−cn). The expected
running time of the cS|x| independent runs is c|x|ST ,
and by Markov’s inequality these jointly run in at most
2c|x|ST time with probability at least 3/4. Therefore
we can terminate our algorithm after 2c|x|ST time and
by a union bound this gives and algorithm that solves
the problem with constant success probability. To boost
this success probability to high probability, simply use
|x| independent runs of the algorithm that reaches con-

stant success probability.

Using this lemma, we assume that all randomized
algorithms with constant positive success probability ac-
tually solve their respective problems with high proba-
bility.

Separations. The following notion will be instru-
mental in our algorithms.

Definition 1. (Separation) Given a graph G =

(V,E), a partition (A,B, S) ∈
(
V (G)
·,·,·
)

of V is a sepa-
ration if there are no edges between A and B.

Reduction Rules. In the context of parame-
terized complexity, a reduction rule (for FVS) is a
polynomial-time transformation of an input instance
(G, k) into a different instance (G′, k′) such that G has
a FVS of size k iff G′ has a FVS of size k′. We state be-
low the standard reduction rules for FVS, as described
in [CFK+15], Section 3.3. For simplicity, we group all
four of their reduction rules FVS.1 to FVS.4 into a sin-
gle one.

Reduction 1. ([CFK+15], folklore) Apply the
following rules exhaustively, until the remaining graph
has no loops, only edges of multiplicity at most 2, and
minimum vertex degree at least 3:

1. If there is a loop at a vertex v, delete v from the
graph and decrease k by 1; add v to the output FVS.

2. If there is an edge of multiplicity larger than 2,
reduce its multiplicity to 2.

3. If there is a vertex v of degree at most 1, delete v.

4. If there is a vertex v of degree 2, delete v and
connect its two neighbors by a new edge.

3 Treewidth and Separators

In this section, we show how to convert an FVS with
small average degree into a good tree decomposition.
In particular, suppose graph G has a FVS F of size k
with deg(F ) ≤ dk, where d = O(1). We show how to
construct a tree decomposition of width (1 − Ω(1))k.
Note that a tree decomposition of width k+ 1 is trivial:
since G−F is a forest, we can take a tree decomposition
of G−F of width 1 and add F to each bag. To achieve
treewidth (1−Ω(1))k, we will crucially use the fact that
d = O(1).

We make the assumption that the algorithm already
knows the small average degree FVS F . This reasoning
may seem circular at first glance: after all, the whole
task is finding the FVS in the first place. Nevertheless,
we later show how to remove this assumption using the
standard technique of Iterative Compression.
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We now present a high level outline of our approach.
Our goal is to compute a small set S of vertices—one
of size at most (1 − Ω(1))k—whose deletion leaves a
graph of small enough treewidth. Then, taking the
tree decomposition of G− S and adding S to each bag
gives the desired tree decomposition. Of course, settling
for |S| = (1 + o(1))k and treewidth 1 is easy: simply
set S = F so that the remaining graph is a forest,
which has treewidth 1. Therefore, it is important that
|S| = (1− Ω(1))k.

We now proceed with our method of constructing S.
First, temporarily remove the FVS F from the graph,
leaving a forest T . We first select a set Sε of β vertices
to remove from the forest, for some β = o(k), to break it
into connected components such that the edges between
F and T are evenly split among the components. More
precisely, we want every connected component of T −Sε
to share at most a 1/β fraction of all edges between F
and T ; we show in Lemma 3.1 below that this is always
possible. The β vertices in Sε will eventually go into
every bag in the decomposition; this only increases the
treewidth by o(k), which is negligible. Hence, we can
safely ignore the set Sε.

Next, we perform a random coloring procedure as
follows: randomly color every connected component of
T −Sε red or blue, uniformly and independently. Let A
be the union of all components colored red, and B be the
union of all components colored blue. For simplicity of
exposition, we will assume here (with loss of generality)
that F is an independent set: that is, there are no edges
between vertices in the FVS. Then, if a vertex v ∈ F has
all its neighbors in T −Sε belonging to red components,
then v only has neighbors in A, so let us add v to A.
Similarly, if all neighbors belong to blue components,
then v only has neighbors in B, so let us add v to B.
Observe that the new graphs G[A] and G[B] still have
no edges between them, so every vertex addition so far
has been “safe”.

What is the probability that a vertex in F joins
A or B? Recall that d(F ) = dk, and since F is an
independent set, |E[F, T − Sε]| ≤ |E[F, T ]| = d(F ) =
dk. If a vertex in F has exactly d edges to T − Sε,

then it has probability at least 2−d of joining A, with
equality when all of these edges go to different connected
components in T − Sε. Of course, we only have that
vertices in F have at most d neighbors on average,
but a convexity argument shows that in expectation,

at least a (2−d − o(1))k fraction of vertices in F join

A. That is, E[|A ∩ F |] ≥ (2−d − o(1))k. We can
make a symmetric argument for vertices joining B. Of
course, we need both events—enough vertices joining
each of A and B—to hold simultaneously, which we
handle with a concentration argument. From here, it

is straightforward to finish the treewidth construction.
We now present the formal proofs.

We begin with the following standard fact on bal-
anced separators of forests:

Lemma 3.1. Given a forest T on n vertices with vertex
weights w(v), for any β > 0, we can delete a set S of
β vertices so that every connected component of T − S
has total weight at most w(V )/β.

Proof. Root every component of the forest T at an ar-
bitrary vertex. Iteratively select a vertex v of maxi-
mal depth whose subtree has total weight more than
w(V )/β, and then remove v and its subtree. The sub-
trees rooted at the children of v have total weight at
most w(V )/β, since otherwise, v would not satisfy the
maximal depth condition. Moreover, by removing the
subtree rooted at v, we remove at least w(V )/β total
weight, and this can only happen β times.

Lemma 3.2. (Small Separator) Given an instance
(G, k) and a FVS F of G of size at most k, define
d := deg(F )/k, and suppose that d = O(1). There is
a randomized algorithm running in expected polynomial
time that computes a separation (A,B, S) of G such
that:

1. |A ∩ F |, |B ∩ F | ≥ (2−d − o(1))k

2. |S| ≤ (1 + o(1))k − |A ∩ F | − |B ∩ F |

Proof. Fix a parameter ε := k−0.01 throughout the
proof. Apply Lemma 3.1 to the forest G − F with
parameter εk, with vertex v weighted by |E[v, F ]|, and
let Sε be the output. Observe that

|Sε| ≤ εk = o(k),

and every connected component C of G−F−Sε satisfies

|E[C,F ]| ≤ |E[F , F ]|
εk

≤ deg(F )

εk
=
dk

εk
= d/ε.

Now form a bipartite graph H on vertex bipartition
F ]R, where F is the FVS, and there are two types of
vertices inR, the component vertices and the subdivision
vertices. For every connected component C in G −
F − Sε, there is a component vertex vC in R that
represents that component, and it is connected to all
vertices in F adjacent to at least one vertex in C. For
every edge e = (u, v) in E[F ], there is a vertex ve in
R with u and v as its neighbors. Observe that (1)
|R| ≤ |E[F , F ]| + 2|E[F ]| = deg(F ), (2) every vertex
in R has degree at most d/ε, and (3) the degree of a
vertex v ∈ F in H is at most deg(v).
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The algorithm that finds a separator works as fol-
lows. For each vertex in R, color it red or blue uniformly
and independently at random. Every component C in
G−F −Sε whose vertex vC is colored red is added to A
in the separation (A,B, S), and every component whose
vertex vC is colored blue is added to B. Every vertex
in F whose neighbors are all colored red joins A, and
every vertex in F whose neighbors are all colored blue
joins B. The remaining vertices in F , along with the
vertices in Sε, comprise S.

Subclaim 1. (A,B, S) is a separation.

Proof. Suppose for contradiction that there is an edge
connecting A and B. The edge cannot connect two
distinct components of G − F − Sε, so it must have
an endpoint in F . The edge cannot connect a vertex
in F to a vertex in G − F − Sε, since a vertex in F
only joins A or B if all of its neighbors in R are colored
the corresponding color. Therefore, the edge e must
connect two vertices in F . But then, ve connects to
both endpoints and is colored either red or blue, so it
is impossible for one endpoint of e to have all neighbors
colored red, and the other endpoint to have all neighbors
colored blue, contradiction.

We now show that with good probability both
Conditions (1) and (2) hold. The algorithm can then
repeat the process until both conditions hold.

Subclaim 2. With probability at least 1 − 1/poly(k),
Condition (1) holds for (A,B, S).

Proof. There are at most ε|F | vertices in F with degree
at least d/ε. Since they cannot affect condition (1) by an
additive ε|F | ≤ εk = o(k) factor, we can simply ignore
them; let F ′ be the vertices with degree at most d/ε.
Consider the intersection graph I on the vertices of F ′,
formed by connecting two vertices in F ′ iff they share a
common neighbor (in R). Since every vertex in F ′ and
C has degree at most d/ε, the maximum degree of I is
(d/ε)2. Using the standard greedy algorithm, we color
F ′ with (d/ε)2 + 1 colors so that every color class forms
an independent set in I. In particular, within each color
class, the outcome of each vertex—namely, whether it
joins A or B or S—is independent across vertices.

Let F ′i be the vertices colored i. If |F ′i | < k0.9,
then ignore it; since d ≤ O(1) and ε = k−0.01, the
sum of all such |F ′i | is at most ((d/ε)2 + 1)k0.9 = o(k),
so they only affect condition (1) by an additive o(k)
factor. Henceforth, assume that |F ′i | ≥ k0.9. Each
vertex v ∈ F ′i has at most deg(v) neighbors in H, so it
has independent probability at least 2− deg(v) of joining
A. Let Xi := |F ′i ∩ A| be the number of vertices in F ′i

that join A; by Hoeffding’s inequality5,

Pr[Xi ≤ E[X]− k0.8] ≤ 2 exp(−2 · (k0.8)2/|F ′i |)
≤ 2 exp(−2 · k0.6) ≤ 1/poly(k)

for large enough k.
By a union bound over all ≤ k0.1 color classes

F ′i with |F ′i | ≥ k0.9, the probability that |F ′i ∩ A| ≥
E[|F ′i ∩ A|] − k0.8 for each F ′i is 1 − 1/poly(k). In this
case,

|F ∩A| ≥
∑

i:|F ′i |≥k0.9

(
E[|F ′i ∩A|]− k0.8

)
≥

∑
i:|F ′i |≥k0.9

∑
v∈F ′i

2− deg(v) − k0.1 · k0.8

=
∑
v∈F ′

2− deg(v) − o(k)

≥ |F ′| · 2− deg(F ′)/|F ′| − o(k),

where the last inequality follows from convexity of the
function 2−x. Recall that |F ′| ≥ (1−o(1))k, and observe
that deg(F ′)/|F ′| ≤ deg(F )/|F | = d since the vertices
in F\F ′ are precisely those with degree exceeding some
threshold. It

|F ∩A| ≥ (1− o(1))k · 2−d,

proving condition (1) for |A ∩ F |. Of course, the
argument for |B ∩ F | is symmetric.

Subclaim 3. With probability at least 1 − 1/poly(k),
Condition (2) holds for (A,B, S).

Proof. At most εk = o(k) vertices in S can come
from Sε, and the other vertices in S must be precisely
F\((A∩F )∪(B∩F )), which has size k−|A∩F |−|B∩F |.

Hence, with at least constant probability, both Condi-
tions (1) and (2) hold. Furthermore, whether or not
they hold can be checked in polynomial time, so the
algorithm can repeatedly run the algorithm until the
separation satisfies both conditions.

Lemma 1.1. Let G be a graph and F be a feedback
vertex set of G of size at most k, and define d :=
deg(F )/k =

∑
v∈F deg(v)/k. There is an algorithm

that, given G and F , computes a tree decomposition

of G of width at most (1 − 2−d + o(1))k, and runs in
polynomial time in expectation.

5If a1, . . . , an are independent and Bernoulli and X = a1 +
a2 + . . . + an, then Pr[|X − E[x]| ≥ t] ≤ 2 exp(−2t2/n).
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Proof. Compute a separation (A,B, S) following
Lemma 3.2. Since (A ∩ F ) ∪ S is a FVS of A ∪ S of

size (1− 2−d + o(1))k, we can compute a tree decompo-

sition of G[(A ∩ F ) ∪ S] of width (1 − 2−d + o(1))k as
follows: start with a tree decomposition of width 1 of
the forest G[(A ∩ F ) ∪ S] − (F ∪ S), and then add all
vertices in (A ∩ F ) ∪ S to each bag. Similarly, compute
a tree decomposition of G[(B∩F )∪S] in the same way.
Finally, merge the two tree decompositions by adding
an edge between an arbitrary node from each decom-
position; since there is no edge connecting A to B, the
result is a valid tree decomposition.

4 Probabilistic Reduction

Whenever a reduction fails with a certain probability,
we call it a probabilistic reduction. Our probabilistic
reduction is inspired by the randomized O?(4k) FVS
algorithm of [BBG00]. Whenever we introduce a prob-
abilistic reduction, we include (P) in the header, such
as in the reduction below.

Reduction 2. (P) Assume that Reduction 1 does not
apply and G has a vertex of degree at least 4. Sample
a vertex v ∈ V proportional to w(v) := (deg(v) − 3).
That is, select each vertex v with probability w(v)/w(V ).
Delete v, decrease k by 1.

We say a probabilistic reduction succeeds if it selects a
vertex in an optimal feedback vertex set.

Observation 1. Let G be a graph F a FVS of G.
Denoting F := V \ F we have that

deg(F ) ≤ deg(F ) + 2(|F | − 1).(4.1)

Proof. Since G − F is a forest, there can be at most
|F | − 1 edges in G − F , each of which contributes 2
to the summation deg(F ) =

∑
v∈F deg(v). The only

other edges contributing to deg(F ) are in E[F, F ], which
contribute 1 to both deg(F ) and deg(F ). Therefore, we
have the upper bound deg(F ) ≤

2(|F | − 1) + |E[F, F ]| ≤ 2(|F | − 1) + deg(F ).

Lemma 4.1. If n ≥ 4k and the instance is feasible, then
Reduction 2 succeeds with probability at least 1/2.

Proof. Let F ⊆ V be a FVS of size k.6 We show that
the probability of selecting a vertex in F is at least
1/2. Define F := V \F , so that our goal is equivalent to
showing that w(F ) ≥ w(F ).

6From any FVS of size less than k, we can arbitrarily add
vertices until it has size k.

The value of w(F ) can be rewritten as

w(F ) =
∑
v∈F

(deg(v)− 3) = deg(F )− 3|F |.(4.2)

By Observation 1,

(4.3)

w(F ) =
∑
v∈F

(deg(v)− 3)

= deg(F )− 3|F |
≤ deg(F ) + 2(|F | − 1)− 3|F |
≤ deg(F )− |F |,

where the penultimate inequality is by 4.1. Therefore,
w(F ) ≥ w(F ) is implied by

(4.4)

deg(F )− 3|F | ≥ deg(F )− |F |
⇐⇒ |F | ≥ 3|F |
⇐⇒ n ≥ 4k,

and the claim follows.

Therefore, as long as n ≥ 4k, we can repeatedly apply
Reductions 1 and 2 until either k = 0, which means
we have succeeded with probability at least 1/2k, or we
have an instance (G, k) with n ≤ 4k.

Later on, we will need the following bound based
on the number of edges m. Informally, it says that as
long as the average degree is large enough, Reduction 2
will still succeed with probability close to 1/2 (even if
n < 4k).

Lemma 4.2. Assume that 2m > 3n. If the instance is
feasible, then Reduction 2 succeeds with probability at
least min{ 12 ,

m−n−2k
2m−3n }.

Proof. There are at most |F |−1 edges not contributing
to deg(F ), so

(4.5) m ≤ (|F | − 1) + deg(F ) ≤ (n− k) + deg(F )

If w(F )/w(F ) ≥ 1, then the success probability is at
least 1/2, so assume otherwise that w(F ) < w(F ).
Following the proof of Lemma 4.1, the contrapositive
of (4.4) gives

w(F ) < w(F ) =⇒ |F | < 3|F |,(4.6)

so we have

w(F )

w(F )

(4.2)
=

deg(F )− 3|F |
w(F )

(4.3)

≥ deg(F )− 3|F |
deg(F )− |F |

≥ (m− n+ k)− 3|F |
(m− n+ k)− |F |

=
m− n− 2k

m− 2n+ 2k
,

where the penultimate inequality follows from (4.5, 4.6).
Finally, as the Lemma statement is vacuous when 2k >
m− n, the Lemma follows.
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5 O?((3− ε)k) Time Algorithm

In this section we present our simplest algorithm that
achieves a running time of O?((3− ε)k), for some ε > 0.
The improvement ε is very small, but we found this to
be the simplest exposition that achieves the bound for
any ε > 0. We build on the following result:

Lemma 5.1. (Cygan et al. [CNP+11]) There is an
algorithm treewidthDP that, given a tree decomposition
of the input graph of width tw, and parameter k outputs
a FVS of size at most k with high probability if it exists.
Moreover, the algorithm runs in O?(3tw) time.

First, we combine the tree decomposition from the
previous section with the standard technique of Iterative
Compression to build an algorithm that runs in time
O?((3 − ε)k) time, assuming that m = O(k) (recall m
denotes the number of edges of the input graph). Then,
we argue that by applying Reduction 2 whenever m�
k, we can essentially “reduce” to the case m = O(k).
Combining these two ideas gives us the O?((3 − ε)k)
algorithm.

The algorithm is introduced below in pseudocode.
The iterative compression framework proceeds as fol-
lows. We start with the empty graph, and add the ver-
tices of G one by one, while always maintaining a FVS
of size at most k in the current graph. Maintaining a
FVS of the current graph allows us to use the small tree
decomposition procedure of Section 3. Then, we add
the next vertex in the ordering to each bag in the tree
decomposition, and then solve for a new FVS in O?(3tw)
time using Lemma 5.1. Of course, if there is no FVS of
size k in the new graph, then there is no such FVS in G
either, so the algorithm can terminate early.

Lemma 5.2. On input instance (G, k) with m = O(k),

IC1(G, k) runs in time O?(3(1−2
−2m/k+o(1))k). More-

over, if there exists a FVS F of size at most k, then
IC1 will return a FVS of size at most k with high prob-
ability.

Proof. Suppose that there exists a FVS F ∗ of size at
most k. Let (v1, . . . , vn) be the ordering from Line 1,
and define Vi := {v1, . . . , vi}. Observe that F ∗ ∩ Vi is a
FVS of G[Vi], so the FVS problem on Line 6 is feasible.
By Lemma 5.1, Line 6 correctly computes a FVS with
high probability on any given iteration. Therefore, after
using O∗(1) independent trials, with high probability a
FVS is returned successfully.

We now bound the running time. On Line 4, the
current set F is a FVS of G[Vi−1]. To bound the value of
d used in Lemma 1.1, we use the (rather crude) bound

deg(F ) ≤ deg(V ) = 2m =⇒ d =
deg(F )

k
≤ 2m

k
,

and moreover, d = O(1) since m = O(k) by assumption.
Therefore, Lemma 1.1 guarantees a tree decomposition
of width at most (1−2−2m/k + o(1))k, and adding vi to
each bag on Line 5 increases the width by at most 1. By

Lemma 5.1, Line 6 runs in time O?(3(1−2
−2m/k+o(1))k)

time, as desired.

We now claim below that if m ≥ Ω(k) for a sufficiently
large k, then Reduction 2 succeeds with good probabil-
ity (in particular, with probability greater than 1/3).

Lemma 5.3. If G has a FVS of size k and m ≥ 28k,
then Reduction 2 succeeds with probability at least 4/11.

Proof. We consider two cases. If n ≥ 4k, then the
success probability is at least 1/2 by Lemma 4.1.
Otherwise, if n ≤ 4k, then m ≥ 28k ≥ 7n, and
Lemma 4.2 and the trivial bound k ≤ n give a success
probability of at least

m− n− 2k

2m− 3n
≥ m− 3n

2m− 3n
≥ 7n− 3n

14n− 3n
=

4

11
.

Hence, regardless of whether or not n ≥ 4k, Reduction 2
succeeds with probability at least 4/11.

Below is the full randomized algorithm in pseu-
docode, which combines Reductions 1 and 2 with the
iterative compression routine IC1. After a trivial check
and reduction rule, Line 3 flips a coin that needs to be
flipped Heads in order to proceed to the iterative com-
pression step.

The motivation for this is that we want each iter-
ation of FVS1 to run quickly in expectation—in par-
ticular, in O?(3o(k)) time—for simplicity of analysis.
This way, if the algorithm has success probability c−k

for some constant c, then we can repeat it O?(ck)
times, succeeding with high probability and taking
O?(c(1+o(1))k) time in expectation. Since IC1 takes

O?(3(1−2
−56+o(1))k) time by Lemma 5.2, we should call

IC1 with probability at most 3−(1−2
−56)k, which is ex-

actly the probability of the coin flipping Heads.

Lemma 5.4. FVS1(G, k) runs in expected O?(3o(k))

time and has Ω(3−(1−2
−56)k) success probability.

Proof. For the running time, the computation outside of
Line 5 clearly takes poly(n) time. For each k′ ∈ (k0, k],

Line 5 is executed with probability 3−(1−2
−56)k′ and

takes O?(3(1−2
−56+o(1))k′) time, so in expectation, the

total computation cost of Line 5 is O?(2o(k)) per value
of k′, and also O?(2o(k)) overall.

It remains to lower bound the success probability.
Define c := 31−2

−56

. We will prove by induction on
k that FVS1(G, k) succeeds with probability at least
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Algorithm 1 IC1(G, k)

Input: Graph G = (V,E) and parameter k, with m = O(k).
Output: FVS F of size at most k, or Infeasible if none exists.

1: Order the vertices V arbitrarily as (v1, . . . , vn)
2: F ← ∅
3: for i = 1, . . . , n do . Invariant: F is a FVS of G[{v1, . . . , vi−1}]
4: Compute a tree decomposition of G[{v1, . . . , vi−1}] by applying Lemma 1.1 on input F
5: Add vi to each bag in the tree decomposition
6: F ← a FVS of G[{v1, . . . , vi}] with parameter k, computed using treewidthDP from Lemma 5.1
7: if F is Infeasible then
8: return Infeasible

9: return F

Algorithm 2 FVS1(G, k)

Input: Graph G = (V,E) and parameter k ≤ n.

Output: A FVS of size k with probability 3−(1−2−56) if one exists; Infeasible otherwise.

1: if k = 0 then return ∅ if G is acyclic, and return Infeasible otherwise
2: Exhaustively apply Reduction 1 to (G, k) to get vertex set F and instance (G′, k′) with m′ edges

3: Flip a coin with Heads probability 3−(1−2−56)k′

4: if m′ ≤ 28k′ and coin flipped Heads then
5: F ′ ← IC1(G′, k′)
6: else
7: Apply Reduction 2 to (G′, k′) to get vertex v ∈ V and instance (G′′, k′ − 1)
8: F ′ ← FVS1(G′′, k′ − 1) ∪ {v} . Infeasible ∪ S = Infeasible for any set S

9: return F ∪ F ′

c−k/2. This statement is trivial for k = 0, since
no probabilistic reductions are used and FVS1(G, k)
succeeds with probability 1. For the inductive step,
consider an instance FVS1(G, k+1). First, suppose that
m ≤ 28k. In this case, if IC1 in Line 5 is executed, then

it will run in time O?(3(1−2
−2m/k+o(1))k) by Lemma 5.2,

and correctly output a FVS F of size at most k, with
high probability. This happens with probability at least

3−(1−2
−56)k ·

(
1− 1

poly(n)

)
≥ c−k · 1

2
,

as desired. If IC1 is not executed, then FVS1 can
still succeed, but this only increases our overall success
probability, so we disregard it.

Otherwise, suppose that m > 28k. Then, by
Lemma 5.3, applying Reduction 2 succeeds with proba-
bility at least 4/11. By induction, the recursive call on
Line 8 succeeds with probability at least c−(k−1)/2, so
the overall probability of success is at least

4

11
· c
−(k−1)

2
≥ c−1 · c

−(k−1)

2
=
c−k

2
,

as desired.

The claimed O?((3 − ε)k) time algorithm follows
from Lemma 5.4 by boosting the success probability of
Algorithm FVS1 according to Lemma 2.1.

6 Algorithms with Improved Space or Time

In this section, we present the O?(2.8446k) time algo-
rithm promised by Theorem 1.2. At a high level, our
goal is to obtain a tighter bound on d = deg(F )/k,
which we only bounded loosely by 2m/k in Section 5.

Recall that the treewidth bound of (1 − 2−d + o(1))k
from Lemma 1.1 has exponentially dependence on d, so
every constant factor savings in d is crucial.

First, we introduce another simple reduction step,
which works well when n� 3k.

Reduction 3. (P) Sample a uniformly random vertex
v. Delete v and decrease k by 1.

For the entire section, we will fix a constant ε > 0
and obtain a running time that depends on ε. At
the very end, we will optimize for ε and achieve the
running time O?(2.8446k). For formality, we define the
following assumption (A1) and state the corresponding
direct claim.

n ≤ (3− ε)k(A1)

Claim 1. If (A1) is true, then Reduction 3 succeeds
with probability at least 1/(3− ε).

Now suppose that (A1) is false. Observe that
Reduction 2 succeeds with probability at least 1/(3− ε)
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precisely when

w(F )

w(F )

(4.2)
=

deg(F )− 3|F |
deg(F )− 3|F |

≥ 1

2− ε
.

By Observation 1, we have

deg(F )− 3|F |
deg(F )− 3|F |

(4.1)

≥ deg(F )− 3|F |
(deg(F ) + 2|F |)− 3|F |

=
deg(F )− 3k

deg(F )− (n− k)
,

and since (A1) is false,

deg(F )− 3k

deg(F )− (n− k)
≥ deg(F )− 3k

deg(F )− ((3− ε)k − k)

=
deg(F )− 3k

deg(F )− (2− ε)k
.

We are interested in whether or not

deg(F )− 3k

deg(F )− (2− ε)k
?
≥ 1

2− ε

⇐⇒ (2− ε)(deg(F )− 3k)
?
≥ deg(F )− (2− ε)k

⇐⇒ deg(F )
?
≥ 4− 2ε

1− ε
k,

which, if true, would imply that Reduction 2 succeeds
with probability at least 1/(3 − ε). Again, we present
the assumption and corresponding claim:

deg(F ) ≥ 4− 2ε

1− ε
k for some FVS F of size k(A2)

Claim 2. If (A1) is false and (A2) is true, then Reduc-
tion 2 succeeds with probability at least 1/(3− ε).

An immediate issue in this assumption is that the
algorithm does not know deg(F ), so it cannot determine
whether (A2) is true or not. This can be accomplished
by designing an algorithm to find Feedback Vertex Sets
with additional properties defined as follows:

Definition 2. (Bounded Total Degree FVS)
In the bounded total degree FVS (BFVS) problem,
the input is an unweighted, undirected graph G on n
vertices, and parameters k ≤ n and d ≤ O(1). The goal
is to either output a FVS F of size at most k satisfying
deg(F ) ≤ dk, or correctly conclude none exists.

See Algorithm IC2 for an algorithm to solve BFVS.
We remark that Lines 5 and 6 replace the tree de-
composition and treewidthDP of IC1. Indeed. we
need to solve the BFVS problem instead of FVS, and
treewidthDP could be easily extended to solve this

problem as well. However, it treewidthDP crucially re-
lies on exponential working space. In the new algorithm
we circumvent this by exploiting special properties of
the separation directly. The function of the new algo-
rithm is described by the following lemma:

Lemma 6.1. There is an Algorithm BFVS1 that, given
G, a FVS F of G of size k, parameter d, and a
separation (A,B, S) as given by Lemma 3.2, outputs a
FVS of size at most k− 1 satisfying deg(F ) ≤ d(k− 1),
or Infeasible if none exists. The algorithm uses

O?(3(1−2
−d+o(1))k) time and polynomial space.

Because of its technical nature, we postpone the proof
of this Lemma to Subsection 8.1.

Lemma 6.2. Algorithm IC2 solves the BFVS problem

in O?(3(1−2
−d+o(1))k) time and polynomial space.

Proof. Suppose that there exists a FVS F ∗ of size at
most k satisfying deg(F ∗) ≤ dk. Let (v1, . . . , vn) be
the ordering from Line 1, and define Vi := {v1, . . . , vi}.
Observe that F ∗ ∩ Vi is a FVS of G[Vi] satisfying
deg(F ∗ ∩ Vi) ≤ dk, so the FVS problem on Line 6 is
feasible. By Lemma 6.1, Line 6 correctly computes
a FVS with high probability on any given iteration.
Therefore, with high probability, a FVS is returned
successfully by a union bound.

We now bound the running time. On Line 4, the
current set F is a FVS of G[Vi−1] satisfying deg(F ) ≤
dk, so Lemma 1.1 guarantees a tree decomposition of

width at most (1− 2−d + o(1))k, and adding vi to each
bag on Line 5 increases the width by at most 1. By

Lemma 6.1, Line 6 runs in time O?(3(1−2
−d+o(1))k) time,

as desired. Lastly, the space bound follows clearly from
the descriptions of IC2 and Lemma 6.1.

Lemma 6.3. Fix the parameter ε ∈ (0, 1), and let cε :=

max{3− ε, 31−2−(4−2ε)/(1−ε)}. If cε ≥ 2, then FVS2(G, k)
succeeds with probability at least c−kε /k. Moreover,
Algorithm FVS2(G, k) has O?(3o(k)) expected running
time.

Proof. For the running time, the computation outside of
Line 6 clearly takes poly(n) time. For each k′ ∈ (k0, k],

Line 6 is executed with probability 3−(1−2
−d)k′ , and

takes O?(3(1−2
−d+o(1))k′) time by Lemma 6.2. There-

fore, in expectation, the total computation cost of Line 6
is polynomial per value of k′, and also polynomial over-
all.

We continue with proving by induction on k that
FVS2(G, k) succeeds with probability at least c−k/k (we
denote c := cε). This statement is trivial for k = 0, since
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Algorithm 3 IC2(G, k, d)

Input: Graph G = (V,E) and parameters k ≤ n and d = O(1).
Output: A FVS F of size at most k satisfying deg(F ) ≤ dk, or Infeasible if none exists.

1: Order the vertices V arbitrarily as (v1, . . . , vn)
2: F ← ∅
3: for i = 1, . . . , n do . Invariant: deg(F ) ≤ dk
4: Compute a separation (A,B, S′) of G[{v1, . . . , vi−1}] by Lemma 3.2 on input F
5: S ← S′ ∪ {vi}, so that (A,B, S) is a separation of G[{v1, . . . , vi}]
6: F ← BFVS1(G[{v1, . . . , vi}], k + 1, A,B, S)
7: if F is Infeasible then
8: return Infeasible

9: return F

Algorithm 4 FVS2(G, k)

Input: Graph G = (V,E) and parameter k ≤ n.
Output: Either output a FVS F of size k, or (possibly incorrectly) conclude that one does not exist (Infeasible).

1: if k = 0 then return ∅ if G is acyclic, and return Infeasible otherwise
2: Exhaustively apply Reduction 1 to (G, k) to get vertex set F and instance (G′, k′)
3: d← (4− 2ε)/(1− ε)
4: Flip a coin with Heads probability 3−(1−2−d)k′

5: if coin flipped Heads then
6: F ′ ← IC2(G′, k′, d)
7: else
8: if n′ ≤ (3− ε)k′ then . (A1) is true
9: Apply Reduction 3 to (G′, k′) to get vertex v ∈ V and instance (G′′, k′ − 1)

10: else . (A1) is false
11: Apply Reduction 2 to (G′, k′) to get vertex v ∈ V and instance (G′′, k′ − 1)

12: F ′ ← FVS2(G′′, k′ − 1) ∪ {v} . Denoting Infeasible ∪ S = Infeasible for any set S

13: return F ∪ F ′

no probabilistic reductions are used and FVS2(G, k)
succeeds with probability 1. For the inductive step,
consider an instance FVS2(G, k+ 1). Let (G′, k′) be the
reduced instance after Line 2. First, suppose that (A2)
is false on instance (G′, k′). That is, every FVS F of
size at most k satisfies deg(F ) ≤ 4−2ε

1−ε k
′; here, we will

only need the existence of one such F . In this case, if
IC2 in Line 6 is executed, then it will correctly output
a FVS F of size at most k, with high probability by
Lemma 6.2. This happens with probability at least

3−(1−2
−d)k′ ·

(
1− 1

poly(n)

)
≥ c−k

′
· 1

k
≥ c−k

k
,

as desired.
Otherwise, suppose that (A2) is true on instance

(G′, k′). Then, by Claims 1 and 2, regardless of
whether (A1) is true, the reduction applied succeeds
with probability at least 1/(3− ε). This is assuming, of
course, that Line 6 is not executed, which happens with
probability 1 − c−k′ ≥ 1 − 2−k

′ ≥ 1 − 1/k′ since c ≥ 2.
By induction, the recursive call on Line 12 succeeds
with probability at least c−(k

′−1)/(k′−1), so the overall

probability of success is at least(
1− 1

k′

)
· 1

3− ε
· c
−(k′−1)

k′ − 1
≥
(

1− 1

k′

)
· 1

c
· c
−(k′−1)

k′ − 1

=
c−k

′

k′
≥ c−k

k
,

as desired.

To optimize for cε, we set ε ≈ 0.155433, giving
cε ≤ 2.8446. Theorem 1.2 now follows by combining
Lemma 6.3 with Lemma 2.1.

7 Improvement Using Matrix Multiplication

In this section, we further speed up the algorithm
IC2 that solves the BFVS problem. First, we open
the Cut&Count black box, which essentially transforms
the FVS (or BFVS) problem to counting the number
of partitions of the graph that satisfy a particular
constraint, modulo some integer. The transformation
are similar to the presentation in [CNP+11], so we defer
the details to Section 8. In [CNP+11], this counting
problem is solved using dynamic programming on tree
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decompositions in O?(3tw) time, which can be turned
in an O?(3k) time algorithm for BFVS.

As with most problems efficiently solvable on tree
decompositions, the Cut&Count problem performs well
when given small vertex separators. Indeed, we show in
Subsection 8.1 that instead of calling the O?(3tw) algo-
rithm on the tree decomposition from Lemma 1.1, we
can solve the problem by applying dynamic program-
ming on the (A,B, S) separation from Lemma 3.2 di-
rectly in the same running time, and also in polynomial
space. The resulting algorithm is the algorithm BFVS1

promised by Lemma 6.1.
How do we obtain an even faster running time,

then? The main insight in this section is that the
counting problem has a special arithmetic nature that
also makes it amenable to matrix multiplication as well.
Combining these two observations, we construct a three-
way vertex separation of the graph G, defined as follows:

Definition 3. (Three-Way Separation)
Given a graph G = (V,E), a partition
(S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) of V is a separa-
tion if there are no edges between any two sets SI , SJ
whose sets I and J are disjoint.

The construction of a good three-way separation is
very similar to the “two-way separation” in Lemma 1.1:
it also features a randomized coloring procedure and is
proven using concentration arguments. We then apply
a combination of dynamic programming and matrix
multiplication on the three-way separator, which is
presented as Algorithm BFVS2 in Subsection 8.2.

7.1 Three-Way Separator

Lemma 7.1. (Three-Way Separator) Given an in-
stance (G, k) and a FVS F of size at most k, define
d := deg(F )/k, and suppose that d = O(1). There is
a polynomial time algorithm that computes a three-way
separation (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) of G such
that there exists values f1, f2 satisfying:

1a. f1 ≥ 3−d

1b. (f1− o(1))k ≤ |Si ∩F | ≤ (f1 + o(1))k for all i ∈ [3]

2a. f2 ≥ (2/3)d − 2f1

2b. (f2 − o(1))k ≤ |Si,j ∩ F | ≤ (f2 + o(1))k for all
1 ≤ i < j ≤ 3

Proof. Our proof follows the outline of the proof of
Lemma 3.2. Initially, we start out the same: fix ε :=
k−0.01, apply Lemma 3.1 on the same input (that is,
G − F ), and construct the bipartite graph H on the
bipartition F ]R in the same manner as in Lemma 3.2.

We recall that (1) |R| ≤ |E[F , F ]| + 2|E[F ]| = deg(F ),
(2) every vertex in R has degree at most d/ε, and (3)
the degree of a vertex v ∈ F in H is at most deg(v).

Now, instead of randomly two-coloring the vertex
set R, the algorithm three-colors it. That is, for each
vertex in R, color it with a color in {1, 2, 3} chosen
uniformly and independently at random. For each
subset I ⊆ 2[3]\{∅}, create a vertex set SI consisting
of all vertices v ∈ F whose neighborhood in H sees the
color set I precisely. More formally, let c(v) and N(v)
be the color of v ∈ R and the neighbors of v in H, and
define SI = {v ∈ R :

⋃
u∈N(v) c(u) = I}. Furthermore,

if I is a singleton set {i}, then add (to SI) all vertices in
the connected components C whose component vertex
in R is colored i. From now on, we abuse notation,
sometimes referring to sets S{1}, S{1,2}, etc. as S1, S1,2,
etc.

The proof of the following easy Subclaim is essen-
tially the same as the proof of Subclaim 1 (but with
more cases), and therefore omitted.

Subclaim 4. (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) is a
three-way separation.

We start by proving Conditions (1a) and (1b) with
the following strategy. First, we first present a value
f1 such that Condition (1b) holds with probability
1− 1/poly(k). Then, we argue that actually, this value
of f1 satisfies Condition (1a) (with probability 1).

Subclaim 5. For f1 := (
∑
d pd · |F ′d|) /|F ′|, Condition

(1b) holds with probability 1− 1/poly(k).

Proof. The proof uses similar concentration arguments
as the proof of Subclaim 2. Again, fix a parameter ε :=
k−0.01 throughout the proof. Let F ′ be the vertices with
degree at most d/ε, so that again, |F ′| ≥ (1− o(1))|F |.
Form the intersection graph I on the vertex set F ′ as
in Subclaim 2, and color it with (d/ε)2 + 1 colors with
a standard greedy algorithm.

Let F ′d be the vertices in F ′ with degree d ≤ d/ε
in H, and let F ′i,d be the vertices colored i with degree

d in H. If |F ′i,d| < k0.9, then ignore it; since d ≤ O(1)

and ε = k−0.01, the sum of all such F ′i,d is at most

((d/ε)2 + 1) · (d/ε) · k0.9 = o(k), so they only affect
condition (1b) by an additive o(k) factor. Henceforth,
assume that |F ′i | ≥ k0.9.

We only focus our attention on S1; the claim for
S2 and S3 are identical. The probability that a vertex
v ∈ F ′i,d joins S1 is a fixed number pd that only depends
on d. Let X := |F ′i,d ∩ A| be the number of vertices
in F ′i,d that join S1; we have E[X] = pd · |F ′i,d|, and by
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Hoeffding’s inequality,

Pr[|X − E[X]| ≥ k0.8] ≤ 2 exp(−2 · (k0.8)2/|F ′i,d|)
≤ 2 exp(−2 · k0.6) ≤ 1/poly(k)

for large enough k. Taking a union bound over all
colors i and degrees d, we conclude that with probability
1− 1/poly(k),

||F ′ ∩ S1| − E [|F ′ ∩ S1|]| ≤

((
d

ε

)2

+ 1

)
dk0.8

ε
+ o(k),

which is o(k). Moreover,

E[|F ′ ∩ S1|] =
∑
d

pd · |F ′d|,

and we see that

||S1 ∩ F | − f1k| = ||S1 ∩ F ′| − f1 · |F ′||+ o(k) = o(k),

which fulfills condition (1b).

Subclaim 6. For f1 := (
∑
d pd · |F ′d|) /|F ′|, Condition

(1a) holds with probability 1− 1/poly(k).

Proof. The number pd equals 3−d, so f1 = (
∑
d |F ′d| ·

3−d)/|F ′|. Observe that deg(F ′)/|F ′| ≤ deg(F )/|F | =
d, since the vertices in F\F ′ are precisely those with
degree exceeding some threshold. Therefore,

f1 =
1

|F ′|
∑
d

|F ′d| · 3−d

=
1

|F ′|
∑
v∈F ′

3− deg(v)

≥ 3− deg(F ′)/|F ′|,

where the last inequality follows from convexity of the
function 3−x.

Subclaim 7. For f2 := (
∑
d pd · |F ′d|) /k, Condition

(2b) holds with probability 1− 1/poly(k).

Proof. The proof is identical to that of Subclaim 5,
except that pd is now the probability that a vertex
v ∈ F ′i,d joins S2.

Subclaim 8. The f1 := (
∑
d pd · |F ′d|) /|F ′| and f2 :=

(
∑
d pd · |F ′d|) /k, condition (2a) holds.

Proof. Here, our strategy is slightly different. Let qd
be the probability that a vertex v of degree d in H
joins one of S1, S2, and S1,2. Since this is also the
probability that no neighbor of v is colored 3, we have
qd = (2/3)d. Let p1,d and p2,d be the value of pd in the

proofs of Subclaim 5 and Subclaim 7, respectively, so
that qd = 2p1,d + p2,d. Therefore,

2f1 + f2 = 2 · 1

|F ′|
∑
d

p1,d · |F ′d|+
1

|F ′|
∑
d

p2,d · |F ′d|

=
1

|F ′|
∑
d

qd · |F ′d|

=
1

|F ′|
∑
d

|F ′d| ·
(

2

3

)d
=

1

|F ′|
∑
v∈F ′

(
2

3

)deg(v)

≥
(

2

3

)deg(F ′)/|F ′|

,

where the last inequality follows from convexity of
the function (2/3)x. Again, we have deg(F ′)/|F ′| ≤
deg(F )/|F | = d, so

f2 ≥
(

2

3

)deg(F ′)/|F ′|

− 2f1 ≥
(

2

3

)d
− 2f1,

which fulfills condition (2a).

7.2 Matrix Multiplication Algorithm In this sec-
tion, we present the improved iterative compression al-
gorithm IC3. It is mostly unchanged from IC2, except
that the algorithm now computes a three-way separator
and calls the faster BFVS algorithm BFVS2 on it. Be-
cause of its technical nature, the algorithm BFVS2 and
its analysis are deferred to Subsection 8.2. Instead, we
simply state its running time guarantee in Lemma 7.2
below.

Lemma 7.2. There is an Algorithm BFVS2 that, given
G, a FVS F of G of size k, parameter d,
and a separation (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) as
given by Lemma 7.1, outputs a FVS of size at
most k − 1 satisfying deg(F ) ≤ d(k − 1), or
Infeasible if none exists. The algorithm runs in time

O?(3(1−min{(2/3)d,(3−ω)(2/3)d+(2ω−3)3−d}+o(1))k).

Assuming Lemma 7.2, we prove our main result,
Theorem 1.1, restated below.

Theorem 7.1. There is a randomized algorithm that
solves FVS in time O?(2.69998k). If ω = 2, then the
algorithm takes time O?(2.6252k).

Proof. We run FVS2, replacing every occurrence of
IC2 with IC3. Following FVS2, we define d :=
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Algorithm 5 IC3(G, k, d)

Input: Graph G = (V,E) and parameters k ≤ n and d = O(1).
Output: A FVS F of size at most k satisfying deg(F ) ≤ dk, or Infeasible if none exists.

1: Order the vertices V arbitrarily as (v1, . . . , vn)
2: F ← ∅
3: for i = 1, . . . , n do . Invariant: deg(F ) ≤ dk
4: Compute a separation (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) of G[{v1, . . . , vi−1}] by Lemma 7.1 on input F
5: S1,2,3 ← S1,2,3 ∪ {vi}, so that (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) is a three-way separation of G[{v1, . . . , vi}]
6: F ← BFVS2(G[{v1, . . . , vi}], k + 1, S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3)
7: if F is Infeasible then
8: return Infeasible

9: return F

(4 − 2ε)/(1 − ε) for some ε > 0 to be deter-
mined later; note that d ≥ 4 for any ε > 0.
Since ω < 2.3728639 [Gal14], by Lemma 8.5, IC3

runs in time O?(3(1−((3−ω)(2/3)
d+(2ω−3)·3−d)+o(1))k), so

FVS2 runs in time O?(ckε ) for cε := max{3 − ε,

31−((3−ω)(2/3)
(4−2ε)/(1−ε)+(2ω−3)·3−(4−2ε)/(1−ε))+o(1)}. To

optimize for cε, we set ε ≈ 0.3000237, giving cε ≤
2.699977.

If ω = 2, then by Lemma 8.5, IC3 runs in time

O?(3(1−(2/3)
d+o(1))k), so FVS2 runs in time O?(ckε ) for

cε := max{3 − ε, 31−(2/3)(4−2ε)/(1−ε)+o(1)}. To optimize
for cε, we set ε ≈ 0.3748068, giving cε ≤ 2.6252.

8 Cut and Count

In this section we open the black box formed by the
Cut&Count approach [CNP+11]. It should be noted
that most of this section, except Subsection 8.2, is very
similar to the methods from [CNP+11]. We need the
following definition:

Definition 8.1. ([CNP+11]) Let G be a graph with
weight function ω : V (G)→ N. Let s,m′,W be integers.

Define Cω,s,m
′

W to be the set{
(F,L,R) ∈

(
V (G)

·, ·, ·

) ∣∣∣ ω(F ) = W ∧ E[L,R] = ∅

∧ |F | = s ∧ |E[L ∪R]| = m′
}
.

In the above,
(
V (G)
·,·,·
)

denotes the set of all partitions

of V (G) into three sets (denoted by F for ‘Feedback
Vertex Set’, L for ‘left side of the cut’, and R for ‘right
side of the cut’). In words, a partition (F,L,R) of the

vertex set is an element of Cω,s,m
′

W if the total weight of
all vertices in F equals W , there are no edges between
L and R, exactly m′ edges with both endpoints either
in L or in R, and |F | = s. The use of Definition 8.1
becomes clear in the following lemma. Intuitively, the
crux is that F is a FVS of G if and only if for some

s,m′,W the number of partitions (L,R) of V \ F such

that |Cω,s,m
′

W | is odd; in this case deg(F ) can be read off
from W .

Lemma 8.1. Let G be a graph and d be an integer.
Pick ω(v) ∈R {1, . . . , 2|V |} uniformly and independent
at random for every v ∈ V (G), and define ω′(v) :=
|V |2ω(v) + d(v). The following statements hold:

1. If for some integers m′, W = i|V |2 + d we have

that |Cω
′,k,m′

W | 6≡ 0 (mod 2n−k−m
′
), then G has a

feedback vertex set F satisfying deg(F ) = d.

2. If G has a feedback vertex set F satisfying deg(F ) =
d, then with probability at least 1/2 for some

m′, W = i|V |2 + d we have that |Cω
′,k,m′

W | 6≡
0 (mod 2n−k−m

′
).

Lemma 8.1 states that in order to solve the Feed-
back Vertex Set problem it is sufficient to compute

|Cω,n−k,m
′

W | for all setting of the parameters. Before
proving the Lemma we need to recall some standard
building blocks:

Lemma 8.2. (Lemma A.7 in [CNP+11]) A graph
with n vertices and m edges is a forest iff it has at most
n−m connected components.

Definition 8.2. A function ω : U → Z isolates a set
family F ⊆ 2U if there is a unique S′ ∈ F with
ω(S′) = minS∈F ω(S), where ω(S′) :=

∑
v∈S′ ω(v).

Lemma 8.3. (Isolation Lemma, [MVV87]) Let
F ⊆ 2U be a non-empty set family over a universe U .
For each u ∈ U , choose a weight ω(u) ∈ {1, 2, . . . ,W}
uniformly and independently at random. Then
Pr[ω isolates F ] ≥ 1− |U |/W .

Proof. [of Lemma 8.1] We first prove 1. Note that

if |Cω
′,k,m′

W | 6≡ 0 (mod 2n−k−m
′
), there must be some

vertex subset F such that the number of choices L,R
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with (F,L,R) ∈ Cω,s,m
′

W is not a multiple of 2n−k−m
′
.

As we can independently decide for each component of
G[V \ F ] whether to include it in L,R G[V \ F ] thus
must have at most n−k−m′ connected components. By
Lemma 8.2 it therefore must be a FVS. The condition
on the degree follows by the weighting.

For item 2. First apply Lemma 8.3 with U = V and
the set family F being the set of all feedback vertex sets
F of G satisfying deg(F ) = d. With probability 1/2,
there will be some weight i such that there is a unique
FVS F with deg(F ) = d of weight i. By Lemma 8.2 this

is the only F that has a contribution to |Cω
′,k,m′

W | that

is not a multiple of 2n−k−m
′

as the number of extension

of F to an object of Cω
′,k,m′

W is exactly 2cc(G[V \F ]),7

assuming ω(F ) = W , |F | = k and |E[V \ F ]| = m′.

We now continue with a lemma that is useful
towards computing |Cω,s,m

′

W |.

Definition 8.3. If F 0 ⊆ V (G) is a FVS of G and

(F,L,R) ∈
(
F 0

·,·,·
)
, we denote cω,s,m

′

W (F,L,R) :=

|{(F ′, L′, R′) ∈ Cω,s,m
′

W : F ′ ∩ F 0 = F

∧ L′ ∩ F 0 = L ∧R′ ∩ F 0 = R}|.

Lemma 8.4. There is a polynomial time algorithm
forestDP(G,ω, F, L,R, s,m′,W ) that, given a graph G,
weight function ω : V (G) → N, vertex sets F,L,R

and integers s, k,m′,W computes cω,s,m
′

W (F,L,R) in
poly(n,W ) time, assuming that F ∪L∪R is an FVS of
G.

Proof. We denote F0 = F ∪L∪R for the given FVS. We
will use dynamic programming over the forest induced
by V \ (F ∪ L ∪ R), in a way very similar to the proof
of [CNP+11, Theorem B.1]. We assign roots to each
tree in the forest V (G) \ F0 arbitrarily, so the standard
relations parents, children, ancestors and descendants
are well-defined. For a vertex v, we denote T [v] for
the tree induced by v and all its descendants. If v has d
children (which we order in arbitrary fashion) and i ≤ d,
we also denote T [v, i] for the tree induced by v and all
descendants of its first i children.

For x ∈ {L′, R′, F ′}, the table entries for the
dynamic programming are defined as follows:

A
(x)
W,s,m′ [v, i] := |{(F ′, L′, R′) ∈

(
V (T [v, i]) ∪ F0

·, ·, ·

)
:

F ′ ∩ F0 = F ∧ L′ ∩ F0 = L ∧R′ ∩ F0 = R

∧ ω(F ′) = W ∧ E[L′, R′] = ∅
∧ |F ′| = s ∧ |E[L′ ∪R′]| = m′ ∧ v ∈ x}|.

7Here we let cc denote the number of connected components

For convenience we also denote A
(x)
W,s,m′ [v] for

A
(x)
W,s,m′ [v, d], where d is number of children of v.

If v is a leaf of a tree in the forest V \F0, then it is
easy to see that we have

A
(x)
W,s,m′ [v, 0] =


1, if ω(v) = W − ω(F ) ∧ |F |

= s ∧ |E[L∗ ∪R∗]|
= m′ ∧ E[L∗, R∗] = ∅

0, otherwise,

where L∗ denotes L′ ∪ {v} if x = L′ and L′ otherwise,
and similarly R∗ denotes R′ ∪ {v} if x = R′ and R′

otherwise.
If v has children v1, . . . , vd in the forest V \ F0, we

have that

A
(F ′)
W,s,m′ [v, 1] =

∑
x′∈{L′,R′,F ′}

A
(x′)
W−ω(F ′),s−1,m′ [v1]

A
(L′)
W,s,m′ [v, 1] = [N(v) ∩R = ∅](A(L′)

W,s,m′−|N(v)∩L|−1[v1]

+A
(F ′)
W,s,m′−|N(v)∩L|[v1])

A
(R′)
W,s,m′ [v, 1] = [N(v) ∩ L = ∅](A(R′)

W,s,m′−|N(v)∩R|−1[v1]

+A
(F ′)
W,s,m′−|N(v)∩R|[v1])

Here we use Iverson’s bracket notation [b] for a Boolean
predicate b which denotes 1 if b is true and 0 otherwise.

To see that this holds, note we need to account for
the possible contributions of v to ω(F ′), |F ′| and need to
check whether E[L′, R′] = ∅ is not violated and account
for an increase of E[L′∪R′] which may include the edge
{v, v1}.

Moreover, for i > 1 we have that

A
(F ′)
W,s,m′ [v, i] =∑

x′∈{L′,R′,F ′}
W1+W2=W−|F |
s1+s2=m

′−|F |
m′1+m2=m

′−|E[L∪R]|

A
(x)
W1,s1,m′1

[v, i− 1] ∗A(x′)
W2,s2,m′2

[vi].

A
(L′)
W,s,m′ [v, i] =∑

x′∈{L′,F ′}
W1+W2=W−|F |
s1+s2=m

′−|F |
m′1+m2=m

′−|E[L∪R]|−[x′=L′]

A
(x)
W1,s1,m′1

[v, i− 1] ∗A(x′)
W2,s2,m′2

[vi].

A
(R′)
W,s,m′ [v, i] =∑

x′∈{R′,F ′}
W1+W2=W−|F |
s1+s2=m

′−|F |
m′1+m2=m

′−|E[L∪R]|−[x′=R′]

A
(x)
W1,s1,m′1

[v, i− 1] ∗A(x′)
W2,s2,m′2

[vi].
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Similarly as before we need account for the possible
contributions of v to ω(F ′), |F ′| and need to check
whether E[L′, R′] = ∅ is not violated and account for
an increase of E[L′ ∪ R′] which may include the edge
{v, v1}. Note we compensate for double counting due
to F,L,R.

Finally we can merge the counts stored at the roots
of each tree of the forest to get the desired value.
Specifically, if the the roots are r1, . . . , rc then
(8.7)

cω,s,m
′

W (F,L,R) =
∑

x1,...,xc∈{L′,R′,F}
W1+...+Wd=W−(d−1)|F |
s1+...+sd=m

′−(d−1)|F |
m′1+...+m

′
d=m

′−(d−1)|E[L∪R]|

d∏
i=1

A
(xi)
Wi,si,m′i

[ri].

Here we again compensate for double counting due

to F,L,R. Given all entries A
(xi)
Wi,si,m′i

[ri], we can

combine (8.7) with standard dynamic programming to

compute cω,s,m
′

W (F,L,R) is polynomial time.

8.1 Cut and Count Using Simple Separation:
Proof of Lemma 6.1 The algorithm promised by
the lemma is listed in Algorithm BFVS1. For the
claimed time bound, note all steps are polynomial time
except Lines 5, 8 and 11, and these jointly give rise to
3(|S|+|A∩F |) + 3(|S|+|B∩F |) iterations. As the separation
(A,B, S) was assumed to satisfy the properties |A ∩
F |, |B∩F | ≥ (2−d−o(1))k and |S| ≤ (1−2·2−d+o(1))k
from Lemma 3.2, the time bound follows.

For the correctness, we claim that at Line 14

count = |Cω
′,k,m′

W | for some m′, W = i|V |2 + d. The
lemma follows from this by Lemma 8.1. To see the
claim, observe that the algorithm iterates over all par-
titions (F,L,R) of the separator S in Line 5. For each
partition, and every way to split W,k,m (Line 6), the al-
gorithm computes the number countA (resp. countB) of
“extensions” of the partition in G[A∪S] (resp. G[B∪S])
that “respect” the split, and then multiples countA and
countB. To see why the two counts are multiplied, ob-
serve that there are no edges between A and B in the
separation (A,B, S), so extending into G[A ∪ S] is in-
dependent to extending into G[B ∪ S].

8.2 Cut and Count Using 3-way Separation:
Proof of Lemma 7.2 We now present the improved
BFVS algorithm below. First, we argue its correctness,

that at Line 18, count = |Cω
′,k,m′

W |. First, the algorithm
iterates over partitions of S1,2,3 in Line 6 the same
way Algorithm BFVS1 iterates over partitions of S.
The rest of the algorithm, which includes the matrix
multiplication routine, seeks to compute the number
of extensions in S1 ∪ S2 ∪ S3 given each partition of

S1,2 ∪ S1,3 ∪ S2,3 (and given the current partition of
S1,2,3, as well as a three-way split of W,k,m′). Like
in the case of separator (A,B, S) in BFVS1, it is true
that the extensions of S1, S2, and S3 are independent
given the partition of S1,2 ∪ S1,3 ∪ S2,3, but in this
case, the size of |S1,2 ∪ S1,3 ∪ S2,3| can be prohibitively
large. Instead, to compute this quantity efficiently, first
observe that since there are no edges between S1 and
S2,3, the number of extensions of S1 only depends on the
partition of S1,2 ∪S1,3, and not S2,3. For each partition
of S1,2 ∪ S1,3, take the graph H defined in Line 8,
and imagine adding an edge between the respective
partitions of S1,2 and S1,3, weighted by the number of
extensions in S1. We proceed analogously for extensions
of S2 and S3. Finally, the total number of extensions
(given the partition of S1,2,3) amounts to computing,
for all triangles in H, the product of the weights of the
three edges (Line 16), which can be solved by a standard
matrix multiplication routine.

Finally, the desired running time bound is more
complicated for BFVS2. We prove Lemma 8.5 below
which, together with Lemma 7.1, implies the running
time bound of Lemma 7.2.

Lemma 8.5. For any constant ε > 0, the BFVS prob-
lem with parameters k and d can be solved in time

O?(3(1−min{(2/3)d,(3−ω)(2/3)d+(2ω−3)3−d}+o(1))k).

Proof. Let f1, f2 be the values from Lemma 7.1, and let
f3 := 1 − 3f1 − 3f2, so that (f3 − o(1))k ≤ |S1,2,3| ≤
(f3 + o(1))k. For each of the O?(3f3+o(1)) iterations on
Line 6, building the graph H (Lines 8 to 15) takes time
O?(32f2+f1+o(k)), and running matrix multiplication
(Line 16) on a graph with O?(3f2+o(k)) vertices to
compute the sum over the product of the three edges
of all triangles takes time O?(3ωf2+o(k)). Therefore, the
total running time is

O?(3f3+o(k)(32f2+f1+o(k) + 3ωf2+o(k)))

= O?(3f3+2f2+f1+o(k) + 3f3+ωf2+o(k))

= O?(31−f2−2f1+o(k) + 31−(3−ω)f2−3f1+o(k))

≤ O?(31−
(
2
3

)d
+o(k)

+ 3
1−(3−ω)

(
2
3

)d
− 2ω−3

3d
+o(k)

),

where the last inequality uses Conditions (1a) and (1b)
of Lemma 7.1, and the fact that 2ω − 3 ≥ 0.
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Algorithm 6 BFVS1(G,F, k,A,B, S)

Input: Graph G = (V,E), FVS F of size k, parameters k, d ≤ n, and separation (A,B, S) from Lemma 3.2
Output: A FVS of size at most k satisfying deg(F ) ≤ dk, or Infeasible if none exists.

1: Pick ω ∈R {1, . . . , 2|V |} uniformly and independently at random for every v ∈ V (G)
2: Set ω′(v) := |V |2ω(v) + d(v)
3: count← 0
4: for m′,W such that 0 ≤ m′ ≤ m, W = |V 2|i+ d ≤ ω(V ) for some d ≤ dk do
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14: if count 6≡ 0 (mod 2n−k−m′) then
15: return a FVS of G[{v1, . . . , vi}] of size ≤ k satisfying deg(F ) ≤ dk, constructed by self-reduction

16: return Infeasible
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Algorithm 7 BFVS2(G, k, S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3)

Input: Graph G = (V,E), FVS F , parameters k, d ≤ n, and separation (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) from Lemma 7.1
Output: A FVS of size at most k satisfying deg(F ) ≤ dk, or Infeasible if none exists.

1: for poly(n) iterations do
2: Pick ω ∈R {1, . . . , 2|V |} uniformly and independently at random for every v ∈ V (G)
3: Set ω′(v) := |V |2ω(v) + d(v)
4: count← 0
5: for m′,W such that 0 ≤ m′ ≤ m, W = |V 2|i+ d ≤ ω(V ) for some d ≤ dk do
6: for (F0, L0, R0) ∈

(
S1,2,3
·,·,·

)
do

7: for nonnegative Wi, ki,m
′
i, i ∈ [3] such that

∑
iWi = W,

∑
i ki = k,

∑
im
′
i = m′ do

8: H ← an empty graph with vertices indexed by
(
S1
·,·,·

)
∪
(
S2
·,·,·

)
∪
(
S3
·,·,·

)
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10: for (F1, L1, R1) ∈
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, (F2, L2, R2) ∈
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·,·,·

)
do

11: count3← 0
12: for (F3, L3, R3) ∈

(
Si∩F
·,·,·

)
do

13: count3← count3 + forestDP(G[Si], ω, F3, L3, R3, ki,m
′
i,Wi)

14: Add an edge e between vertices (F1, L1, R1) and (F2, L2, R2) of H

15: Assign weight count3 (mod 2n−k−m′) to the edge e

16: count0← sum over the product of the three edges of all triangles in H
17: count← count + count0

18: if count 6≡ 0 (mod 2n−k−m′) then
19: return a FVS of G[{v1, . . . , vi}] of size ≤ k satisfying deg(F ) ≤ dk, constructed by self-reduction

20: return Infeasible
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