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Abstract. We survey a number of recent results that relate the fine-
grained complexity of several NP-Hard problems with the rank of certain
matrices. The main technical theme is that for a wide variety of Divide
& Conquer algorithms, structural insights on associated partial solutions
matrices may directly lead to speedups.

1 Introduction

Rank is a fundamental concept in linear algebra to express algebraic dependence
in relations described by matrices. It has numerous applications in theoretical
computer science and mathematics, ranging from algebraic complexity [BCS97],
communication complexity [LS88], to extremal combinatorics [Mat10].

A common phenomenon in these areas is that low rank often helps in proving
combinatorial upper bounds or in designing algorithms, e.g., through represen-
tative sets [BCKN15,FLPS16,KW14] or the polynomial method [Wil14].

In particular, rank has recently found applications in fine-grained complexity
and the closely related area of parameterized complexity. For example, influen-
tial results such as algorithms for kernelization [KW14], the longest path prob-
lem [Mon85], and connectivity problems parameterized by treewidth [CNP+11,
CKN13,BCKN15], rely crucially on certain low-rank factorizations.

Low-rank factorizations especially arise very naturally when applying the
general Divide & Conquer and the closely related Dynamic Programming tech-
nique. Recall that these techniques (conceptually) partition a solution into partial
solutions. Typically, lists of candidates for these partial solutions are maintained
by an algorithm that gradually filters and extends these partial solutions to a
complete solution.

The dominating term in the runtime of such an algorithm is the number of
such partial solutions. But sometimes, there is no need to keep track of all partial
solutions because of group domination: For example, suppose that partial solu-
tions s0, s1, . . . , sl are such that for any partial solution t that forms a complete
solution with s0 there is also an i > 0 such si forms a complete solution with t.
Then of course, s0 can be safely disregarded as partial solution.
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In this survey we study several standard Divide & Conquer algorithms from
the field of fine-grained complexity for NP-hard problems and explore how group
domination helps to improve them. A crucial tool in these are partial solution
matrices. Given two groups of partial solutions R and C a partial solution matrix
A ∈ {0, 1}R×C is a matrix such that A[p, q] = 1 if and only if partial solutions
p and q combine to a complete solution. We will see that insights on rank-
related parameters of the partial solution matrices can be used to speed up the
associated Divide & Conquer algorithms in a variety of settings.

Organization. This survey is organized as follows: In Sect. 2 we introduce used
notation In Sect. 3 we introduce some matrices along with their various parame-
ters, which will be used in Sect. 4 to provide algorithms for various NP-complete
problems. Finally, in Sect. 5 we mention some other directions that we do not
fully touch.

2 Preliminaries

We let AB denote the set of vectors or functions indexed by B with values in
A. The symbol ε denotes the empty string, vector or partition. If b is a Boolean,
we denote [b] for 1 if b if true and 0 otherwise. On the other hand, if [b] is an
integer we use [b] to denote {1, . . . , b}.

In this survey all matrices will be written in bold font. If M ∈ {0, 1}R×C is
a matrix and X ⊆ R and Y ⊆ C we denote M[X,Y ] for the matrix induced
by rows X and columns Y . If either X or Y is replaced with a · this means
no restriction is placed on the rows or columns, respectively. We let ≡2 denote
equivalence modulo 2. If Y, Y ′ ⊆ R, we denote M[X,Y ◦ Y ′] for the matrix
obtained by horizontally concatenating the matrices M[X,Y ] and M[X,Y ′].

Partitions and the Partition Lattice. Given a set U , we use Π(U) for the set
of all partitions of U , i.e. a family of subsets of U that are pairwise disjoint and
whose union equals U . It is known that, together with the coarsening relation �,
Π(U) gives a lattice, with the maximum element being {U} and the minimum
element being the partition into singletons. We denote � for the join operation
and � for the meet operation in this lattice; these operators are associative and
commutative. I.e., for two partitions p and q, p � q is obtained as follows: let ∼
be the relation on the elements with v ∼ w, if and only if v and w belong to the
same set in p or v and w belong to the same set in q. Now, p � q is the partition
of U into the equivalence classes of the transitive closure of ∼. (In simple graph
terms: build a graph H with a vertex set U , by turning each set in p and each set
in q into a clique. Now, p � q is the partition of U into the connected components
of H.) p � q precisely consists of all sets that are the nonempty intersection of
a set from p and a set from q. We use Πm(U) ⊂ Π(U) to denote the set of all
partitions of U in blocks of size 2, or equivalently, the set of perfect matchings
over U . Moreover, Π2(U) denotes the set of all partitions with two blocks, i.e.
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cuts. Thus there are partitions {X,Y } where X ∩ Y = ∅, X ∪ Y = U and X
or Y may equal the empty set. Given p ∈ Π(U) we let #blocks(p) denote the
number of blocks of p. We sometimes formally interpret a partition as a family
of disjoint subsets in the natural way. If p = {P1, . . . , Pl} ∈ Π(U) and X ⊆ U we
define p|X = {P1 \ X, . . . , Pl \ X} as the restriction of p onto X. Also, if A ⊆ U ,
we let {A} denote the partition with the single non-trivial block A.

3 Some Matrices and Their Rank-Related Parameters

In this section we introduce and study a number of families of matrices that will
serve as partial solution matrices in the next section. In order to use them as
such the following terminology will be useful:

Definition 3.1. A family of matrices {At}t is explicit if the following holds for
every t: If At is an n×n matrix, then given t and 1 ≤ r, c ≤ n, the entry At[i, j]
can be computed in polylog(n) time. A factorization At = LtRt is explicit if
{Lt}t is explicit.

This section is organized as follows: In Subsect. 3.1 we define a number of
rank-related parameters. In the subsequent subsections we present case studies
of matrices where the different rank-related parameters are useful: In Subsect. 3.2
we study the field rank, in Subsect. 3.3 the Boolean rank, and in Subsect. 3.4 the
support rank.

3.1 Some Rank-Related Parameters of Matrices

We study several parameters that express various sorts of (algebraic) dependence
between rows of a matrix. Let At be a binary matrix, for a field F, we denote
rkF(At) for the rank of At over F. We define the field rank of At as the minimum
of rkF(At) over all reasonable1 fields F.

We define the support rank supRank(At) of a matrix At to be the minimum
rank of a matrix A′

t over a finite field F with the property that At[p, q] is non-zero
if and only if A′

t[p, q] is non-zero for every p, q. This parameter goes by several
names, such as the ‘non-deterministic rank’ [Wol03], and its computation has
received significant attention by researchers working on linear algebra.2

We let boolRank(At) denote the Boolean rank of matrix At. This is the
minimum size of a family F of submatrices of A with value 1 in each cell
with the following property: every matrix cell with of A with value 1 is con-
tained in at least one submatrix in F . Such a family F is often called a
rectangle cover. Boolean rank can also be defined as the rank of At over the
Boolean semiring ({0, 1},∧,∨): A matrix At has Boolean rank at most r if there
exist Boolean matrices Lt and Rt such that At[p, q] = ∨r

i=1(Lt[p, i] ∧ Rt[i, q]).

1 Since things get a bit tricky formally here, let’s just say we restrict attention to the
fields R and Fp for finite p.

2 https://aimath.org/pastworkshops/matrixspectrum.html.

https://aimath.org/pastworkshops/matrixspectrum.html
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The Boolean rank can also be interpreted as the minimum ‘biclique cover’ of the
bipartite graph of which A is the incidence matrix. It is worthwhile noticing that
boolRank(At) is equal to the logarithm of the non-deterministic communication
complexity [KN97].

We let indMatch(At) denote the maximum size of a permutation matrix (i.e.
exactly one cell with value 1 per row and column) that is a submatrix of At.
We use this notation since indMatch(At) can be seen to be equal to the largest
induced matching of the bipartite graph that has At as its incidence matrix.

Definition 3.2. Given a matrix At ∈ {0, 1}R×C and a subset X ⊆ R, a subset
X ′ ⊆ X is a representative set of X with respect to At if for every c ∈ C,
there exists an r ∈ X such that At[r, c] = 1 only if there exists r′ ∈ X ′ such that
At[r′, c] = 1.

It is easy to see that representation is transitive: If X is a representative set
of Y and Y is a representative set of Z, then X is a representative set of Z.

We observe that a set of rows X has no representative set of X as a strict
subset if and only if every element r ∈ X has a ‘reason’ to be included, i.e. a
column c such that At[r, c] = 1 and At[r′, c] = 0 for every r′ ∈ Xt \ r.

Observation 3.1. Let At ∈ {0, 1}R×C . A set X ⊆ R, is an inclusion-wise
minimal representative set of itself if and only if there exists Y ⊆ C such that
At[X,Y ] is a permutation matrix.

We are interested in computing small representative sets for any (worst-case)
set of rows. Observation 3.1 implies that the minimum size representative set of
any set of rows is at most indMatch(At), and that there exists some set of rows
for which the minimum size of a representative set equals indMatch(At). Thus
to understand the exact efficiency of computing representative sets, the quantity
indMatch(At) is of relevance.

Unfortunately it is NP-complete to compute indMatch(At) even in spe-
cial cases such as matrices with at most 3 non-zero values per row and col-
umn [Loz02]. Moreover, even if there would be a polynomial time algorithm, in
many cases we would like to avoid to construct the matrix At explicitly. For-
tunately, the following lemma shows that often we can compute representative
sets in time sublinear in terms of the dimensions of the matrix if it has a small
factorization.

Lemma 3.1. Suppose At ∈ {0, 1}R×C has field, support or Boolean rank r and
the associated factorization is explicit. Then, a representative set of a given sub-
set of rows X ⊆ R can be found in |X|rω−1polylog(r) time, where ω < 2.371
is the smallest number such that two (n × n)-matrices can be multiplied in
nω+o(1) time. Moreover, if At has Boolean rank r, the runtime can be reduced
to |X|r · polylog(r) time.

Proof. Let A′
t = LtRt be the explicit factorization of rank r, where A′

t is a
matrix such that A′

t �= 0 if and only if At �= 0. So Lt is an (|R| × r)-matrix and
Rt is an (r × |C|)-matrix. We first focus on the field and support rank.
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Construct the matrix Lt[X, ·] explicitly. Note this is possible within |X| · r ·
polylog(r) time: This matrix has |X| × r entries, and that each entry of it can
be computed in polylog(r) time since the factorization A′

t = LtRt is assumed to
be explicit. Now use fast Gaussian elimination algorithm based on fast matrix
multiplication algorithms [BCKN15, Lemma 3.15] to compute a row basis X ′

of Lt[X, ·] in time |X|rω−1, where ω < 2.373 is a number such that two n × n
matrices can be multiplied within nω+o(1) time.

It remains to show that X ′ is a representative set of X. Let c be a column
and let r be a row such that A[r, c] �= 0. This implies that A′[r, c] �= 0. Since X ′

is a row-basis of L′
t, there exist r1, . . . , r� ∈ R and λ1, . . . , λl ∈ F such that

�∑

i=1

λiL′
t[ri, ·] = Lt[r, ·], which implies

�∑

i=1

λiA′
t[ri, ·] = A′

t[r, ·].

Note that the implication follows from post-multiplying both sides of the first
equation with Rt. In particular, the latter implies that

∑�
i=1 λiA′

t[ri, c] �= 0.
Thus A′

t[ri, c] �= 0 for some i, as required.
For the Boolean rank factorization, let Lt and Rt be the matrices of the

explicit factorization (note that now the factorization is over the ∧ − ∨ semi-
ring). Construct the matrix Lt[X, ·] explicitly and let X ′ ⊆ X be all elements
r ∈ X for which there is a c such that Lt[r, c] = 1 and Lt[r′, c] = 0 for every
r′ ∈ X \r. It is clear that X ′ is a representative set of X since the set of columns
with a cell with value 1 is by construction the same in Lt[X, ·] and in Lt[X ′, ·].
This computes a representative set in |X| · r · polylog(r) time. ��

3.2 Field Rank: Partitions and Matchings

We now introduce two matrices that express connectivity of subgraphs.

Partitions Connectivity Matrix. The following matrix was instrumental for
the derandomization of the Cut&Count approach [CNP+11] from [BCKN15].

Definition 3.3. For t ≥ 0, define matrix Pt ∈ {0, 1}Π([t])×Π([t]) as

Pt[p, q] =

{
1, if p � q = {[t]},

0, otherwise.

Suppose that t is odd and let P,Q ⊆ Π([t]) be all partitions with one block
of size (t − 1)/2 + 1 that contains the element 1 and all other blocks singleton.
It is easy to see that for p ∈ P and q ∈ Q we have p � q = {[t]} if and only if
the non-singleton blocks of p and q are X and ([t] \ X) ∪ 1, for some X ⊆ [t] \ 1.
This shows that indMatch(Pt) roughly 2t. We continue with showing that the
rank of Pt over F2 is only slightly higher. To do so we first define the factorizing
matrices:
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Definition 3.4. For t ≥ 0, define matrix Ft ∈ {0, 1}Π([t])×Π2([t])) that has rows
index by partitions and columns indexed by cuts as

Ft[p, {X,Y }] =

{
1, if p refines {X,Y },

0, otherwise.

Since there are at most 2t cuts the following implies the promised rank upper
bound:

Lemma 3.2 (Cut&Count factorization). Pt ≡2 Ft · FT
t .

Proof. Let p, q ∈ Π([t]). By expanding the definition of matrix multiplication,
we have that

(Ft · FT
t )[p, q] =

∑

{X,Y }∈Π2([t])

[p � {X,Y }] · [q � {X,Y }].

Since (Π([t]),�) is a lattice, p, q � {X,Y } is equivalent with p � q � {X,Y }
and we can rewrite into

=
∑

{X,Y }∈Π2([t])

[p � q � {X,Y }]

The number of cuts that coarsen a partition is exactly its number of blocks
minus 1 since for each component we can choose a side and divide by 2 because
of a cut is an unordered pair.

= 2#blocks(p � q)−1

≡2 [#blocks(p � q) = 1] = [p � q = {[t]}] = Pt[p, q]. ��
It can also be shown that rkR(Pt) ≤ 4t using the ‘squared determinant

approach’ from [BCKN15].

Matchings Connectivity Matrix. Note that the aforementioned construction
of an induced matching of Pt crucially relies on partitions with many singleton
blocks. A natural question is how large induced matchings exist in the submatrix
of Pt induced by all partitions without singleton blocks. While the answer to
this question is not known,3 significant progress was made on the following even
smaller submatrix of Pt:

Definition 3.5. For t ≥ 0, define matrix Ht ∈ {0, 1}Πm([t])×Πm([t]) as

Ht[P,Q] =

{
1, if P ∪ Q is a Hamiltonian Cycle,

0, otherwise.

We now define a family of matchings of Ht that are crucial to understand
the structure of Ht. See Fig. 1 for an illustration.
3 At least, to the author.
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Fig. 1. The graph Z8.

Definition 3.6 (Basis matchings). Let t ≥ 2 be an even integer, and let Zt =
([t], E) be a graph with vertices [t] and edges E = {{i, j} : �j/2� = �i/2� + 1}.
Define Xt to be the set of perfect matchings of Zt.

It can be shown that for every perfect matching M of Zt there is a unique
different perfect matching M such that M ∪ M is a Hamiltonian cycle of Zt.
This proves that indMatcht(Ht) ≥ |Xt|. This bound turns out to be tight. Even
stronger, it turns out that Xt is a row-basis of Ht, and thus rkF2(Ht) = |Xt| =
2t/2−1, by virtue of the following factorization:

Lemma 3.3 ([CKN13]). If P,Q are two perfect matchings of Kt, then

Ht[P,Q] ≡2

∑

M∈Xt

[P ∪ M is an Ham. Cycle ] · [Q ∪ M is an Ham. Cycle].

Let us remark that other variants of the rank of Ht over the reals also have
been studied. In [RS95], the authors showed that if Ht is restricted to all per-
fect matchings on the complete balanced bipartite graph on t vertices, then its
rank is

(
t−2

t/2−1

)
. Their motivation was to disprove the original formulation of the

‘log-rank conjecture’ in communication complexity. They achieved this by relat-
ing their rank bound to a second bound: The non-deterministic communication
complexity of the same submatrix of Ht is Ω(n log log n). In [CLN18] the authors
showed that rkR(At) equals 4t, modulo some poly(t) factors.

3.3 Boolean Rank: Disjointness Matrix

We now define one of the most well-studied families of matrices in the field of
communication complexity:

Definition 3.7. For t ≥ p, q ≥ 1, define matrix Dt,p,q ∈ {0, 1}([t]p )×([t]q ) as

Dt,p,q[P,Q] =

{
1, if P ∩ Q = ∅,

0, otherwise.

This time, we focus on the Boolean rank:
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Lemma 3.4. For even k, boolRank(Dt,k/2,k/2) = O(2kk log t).

Proof. We use the probabilistic method. Note that if P ∩ Q = ∅, then Pr[P ⊆
S ∧ S ∩ Q = ∅] = 2−k. Pick S1, . . . , Sl, where l = 2k · k log 20t. If P ∩ Q = ∅, the
probability that there is no i such that P ⊆ Si and Si ∩ Q = ∅ is

(1 − 2−k)l ≤ exp(−l/2k) = exp(−20k log t) ≤ 1/tk.

By a union bound, with positive probability there exists an i such that P ⊆ Si

and Si ∩ Q = ∅ for each of the
(

t
k/2

)2 ≤ tk possible disjoint pairs P,Q. In
particular, a family S1, . . . , Sl with this property exists, and this can be used as
the rectangle cover. ��

Note the above proof is standard in Communication Complexity4. The above
argument can be generalized to upper bounds on the Boolean rank of Dt,p,q by
choosing a different distribution of the Si’s, and also can be made explicit by
employing techniques reminiscent to [AYZ95] to get the following result:

Lemma 3.5 ([FLPS16]). boolRank(Dt,p,q[P,Q]) = O(
(
p+q

p

)
2o(p+q) log t), and

the associated factorization is semi-explicit, in the sense that it could be computed
in O(

(
p+q

p

)
2o(p+q)t log t) time.

3.4 Support Rank: Linear Independence and Bipartite Colorings

Sometimes, in order to compute small representative sets quickly, it may be
needed to consider the rank of different matrices with the same support. Consider
the following example: Let A be the complement of a t × t identity matrix. It
is easily seen that indMatch(A) = 2, but there is a large gap with the rank of
A which typically is t or t − 1. We resolve this gap by studying the rank of a
different matrix with same support.

Linear Independence. The following matrix expresses when two linear inde-
pendent sets again form an linear independent set. It arises frequently especially
due to connections with matroid theory.

Definition 3.8. Let F be a field and let M ∈ F
R×C be a matrix. Define a matrix

LM ∈ {0, 1}(Cp)×(Cq) as

LM[P,Q] =

{
1, if rkF(M[·, P ∪ Q]) = p + q,

0, otherwise.

Note that, even if p = q = 1 and M is an identity matrix, then the matrix
LM is the complement of the |C| × |C| identity matrix which has high rank (as
mentioned above). Therefore, indeed resorting to support rank is needed here to
get a low rank factorization. Define Ī := [p + q] \ I to be the complement of I,
and define ΣI =

∑
i∈I i.

4 See e.g. http://www.tcs.tifr.res.in/∼prahladh/teaching/2011-12/comm/lectures/
l03.pdf.

http://www.tcs.tifr.res.in/~prahladh/teaching/2011-12/comm/lectures/l03.pdf
http://www.tcs.tifr.res.in/~prahladh/teaching/2011-12/comm/lectures/l03.pdf
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Lemma 3.6 (Generalized Laplace Expansion, Lemma [CFK+15]). Let
M ∈ {0, 1}(p+q)×(p+q) and let P,Q ⊆ [p + q] with |P | = p and |Q| = q. Then

det(M) = (−1)�p/2� ∑

I⊆[p+q],|I|=p

(−1)ΣI det(M[I, P ]) · det(M[Ī , Q])

We start with employing generalized Laplace expansions to factorize L in a
natural special case:

Lemma 3.7. If p + q = |R|, supRank(LM[P,Q]) =
(
p+q

p

)
and the associated

factorization is explicit.

Proof. Define L′
M[P,Q] = det(M[·, P ◦ Q]), where the ◦ operator denotes con-

catenation (see Sect. 2). We will show that L′
M has the same support as L′

M

and low rank over F. As the determinant of a square matrix is non-zero if and
only if it is of full rank, we have that det(M[·, P ◦ Q]) is non-zero if and only if
rkF(M[·, P ∪ Q]) = p + q, as required. The lemma now is a consequence of the
following factorization implied by Lemma 3.6.

L′
M[P,Q] = (−1)�p/2� ∑

I⊆[p+q],|I|=p

(−1)ΣI det(M[I, P ]) · det(M[Ī , Q]). ��

We continue with focusing on the case p + q � |R|. A natural idea is to pre-
multiply M with a random (p+ q)×n matrix. This indeed works if we allow for
randomized algorithms, but with constant probability the sought independent set
may become dependent. A derandomized version of this ‘truncation’ operation
was presented in [LMPS18], leading to the following result:

Lemma 3.8 ([LMPS18]). supRank(LM) =
(
p+q

p

)
, and the associated factoriza-

tion is explicit.

This bound has quite diverse applications: For example, it generalizes and
refines the rank bound from Lemma 3.2, and it even strengthens this bound
in the special case that the partitions are ‘unbalanced’. See [LMPS18] for more
details.

Colorings Matrix. We now introduce a matrix that naturally arises in graph
coloring problems. It was defined for this purpose in [JN18], but somewhat sur-
prisingly also found an application in the area of online algorithms [BEKN18].

Definition 3.9. For an integer c ≥ 1 and bipartite graph H with parts X =
{x1, . . . , xt} and Y = {y1, . . . , yt′} and ordered edges in X × Y , define matrix
Cc,H ∈ {0, 1}[c]X×[c]Y as

Cc,H [p, q] =

{
1, if pi �= qj for every (i, j) ∈ E(H)),
0, otherwise.
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Note that even if H is a single edge, Cc,H is the complement of the (c × c)
identity matrix. Therefore, indeed resorting to support rank is needed here to
get a low rank factorization.

Lemma 3.9. supRank(Cc,H) = 2t, and the associated factorization is explicit.

Proof. Define a matrix C′
c,H as follows

C′
c,H [p, q] =

∏

(i,j)∈E(H)

(pi − qj).

Since the product vanishes whenever pi = qj for some (i, j) ∈ E(H) and it is
the product of positive numbers otherwise, we see that indeed C′

c,H [p, q] �= 0 if
and only if Cc,H [p, q] �= 0. Moreover, this matrix has a low rank factorization
that follows directly from expanding the parentheses to state the polynomial in
its standard form: In particular, we have that C′

c,H [p, q] equals
∏

(i,j)∈E(H)

(pi − qj)

=
∑

W⊆E(H)

(
∏

i∈X

p
dW (i)
i

)⎛

⎝
∏

j∈Y

(−qj)dE(H)\W (j)

⎞

⎠

=
∑

(di∈{0,...,dE(H)(i)})i∈X

(
∏

i∈X

pdi
i

)
⎛

⎜⎜⎝
∑

W⊆E(H)
∀i∈X:dW (i)=di

∏

j∈Y

(−qj)dE(H)\W (j)

⎞

⎟⎟⎠ , (1)

where the second equality follows by expanding the product and the third equal-
ity follows by grouping the summands on the number of edges incident to vertices
in W included in X. It is easily seen that (1) gives a factorization of C′

c,H of rank
at most the maximum number of the possibilities for d, since the inner dimen-
sion of the implied factorization is indexed by the possible vectors d. These are
vectors d with |X| coordinates where each di ∈ {0, . . . , d|E(H)|(i)}. The vec-
tor dE(H) that maximizes the number of such possible vectors while satisfying∑

i∈X dE(H)(i) = k is the vector with k coordinates being equal to 1 by convexity
(i.e., H is a matching) in which case the number of possibilities for di ∈ {0, 1}
for all k vertices in X. ��

4 Using Low Rank Matrix Factorizations to Speed up
Dynamic Programming

In this section we will use the insights from the previous section to speed up
several natural dynamic programming algorithms. In Subsect. 4.1 this is a natural
O∗(qk) time algorithm to decide whether a given graph with given permutation
of cutwidth k has a proper q-coloring (see the section for definitions). We improve
the runtime to O∗(ck) time where c is a constant independent of q.



Algorithms for NP-Hard Problems via Rank-Related Parameters of Matrices 155

In Subsect. 4.2 we study two connectivity problems parameterized by path-
width and show they can be solved in O∗(cpw) time by building on natural
O∗(pwpw) time dynamic programming algorithms.

Finally, in Subsect. 4.3 we present one of the first uses of representative sets
to solve k-path in O∗(ck) by speeding up a natural nO(k) time algorithm.

4.1 Cutwidth

In this subsection we demonstrate the methods based on low rank factorizations
on the graph coloring problem. Recall that in the graph coloring problem one is
given an undirected graph G = (V,E) and an integer q, and one is asked whether
there exists a proper coloring, which is a vector x ∈ [q]V such that xv �= xw for
every {v, w} ∈ E. Let {v1, . . . , vn} = V (G) be a linear ordering of its vertices.

We denote all edges as directed pairs (vi, vj) with i < j. For i = 1, . . . , n,
define Vi as the i’th prefix of this ordering, Ci as the i’th cut in this ordering,
and Xi and Yi as the left and respectively right endpoints of the edges in this
cut, i.e.

Vi = {v1, . . . , vi},

Ci = {(vl, vr) ∈ E(G) : l ≤ i < r},

Xi = {vl ∈ V (G) : ∃(vl, vr) ∈ Ci ∧ l < r},

Yi = {vr ∈ V (G) : ∃(vl, vr) ∈ Ci ∧ l < r}.

Note that Xi ⊆ Xi−1 ∪ {vi} and Yi−1 ⊆ Yi ∪ {vi}. We let Hi denote the
bipartite graph with parts Xi, Yi and edge set Ci. We study the graph coloring
problem in the setting where one is given a permutation of low cutwidth, which
is defined as follows:

Definition 4.1. The cutwidth of the linear order {v1, . . . , vn} is the maximum
value of |Ci| taken over all i.

We use the following notation: A vector x ∈ V I is an extension of a vector
x′ ∈ V I′

if I ′ ⊆ I and x′
i = xi for every i ∈ I ′. If x ∈ V I and P ⊆ I then the

projection x|P is defined as the unique vector in V P of which x is an extension.
For i = 1, . . . , n, we define T [i] ⊆ [q]Xi to be the set of all q-colorings of the
vertices in Xi that can be extended to a proper q-coloring of G[Vi]. The following
lemma allows to compute representative sets of T [i].

Lemma 4.1 ([JN18]). If T ′[i− 1] is a representative set of T [i− 1] with respect
to Cq,Hi−1 , then T ′[i] is a representative set of T [i] with respect to Cq,Hi

, where

T ′[i] =
{

(x ∪ (vi, c))|Xi
: x ∈ T ′[i − 1], c ∈ [q],

(∀v ∈ N(vi) ∩ Xi−1 : xv �= c
)}

.

We remark that the lemma is very similar to the recurrence underlying a
standard O∗(qk) time dynamic programming algorithm for the task at hand,
but it is formulated in the language of this survey in order to allow for a speed
up via representative sets as we now outline:
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Theorem 4.1 ([JN18]). The graph coloring problem can be solved in O∗(2ω·k)
time, assuming a linear order of cutwidth at most k is given.

Proof. Compute T ′[0] = T [0] to be the singleton set with only the unique
zero-dimensional vector. The for each i = 1, . . . , n to the following: First use
Lemma 4.1 to compute T ′[i] from T ′[i−1]. After each such step, use Lemma 3.1
with the explicit factorization of Lemma 3.9 to compute a subset T ′′[i] of T ′[i]
that represents T ′[i] with respect to Cq,Hi

. By transitivity it also represents T [i]
and we can set T ′[i] := T ′′[i] and continue with computing T ′[i + 1]. In the end
we can check whether a proper q-coloring exists since it does if and only if T [n]
(and thus T ′[n]) is non-empty by definition of T [n]. The run time follows since
the number of partial solutions is at most 2k at every step and the bottleneck is
due to the application of Lemma 3.1. ��

4.2 Pathwidth

A path decomposition of a graph G = (V,E) is a path P in which each node x
has an associated set of vertices Bx ⊆ V (called a bag) such that

⋃
Bx = V and

the following properties hold:

1. For each edge {u, v} ∈ E(G) there is a node x in P such that u, v ∈ Bx.
2. If v ∈ Bx ∩ By then v ∈ Bz for all nodes z on the (unique) path from x to y

in P.

The pathwidth of P is the size of the largest bag minus one, and the pathwidth
of a graph G is the minimum pathwidth over all possible path decompositions
of G. We define nice path decompositions as follows.

Definition 4.2 (Nice Path Decomposition). A nice path decomposition is
a path decomposition where the underlying path of nodes is ordered from left to
right (the predecessor of any node is its left neighbor) and in which each bag is
of one of the following types:

First bag: the bag associated with the leftmost node x is empty, Bx = ∅.
Introduce vertex bag: an internal node x of P with predecessor y such

that Bx = By ∪ {v} for some v /∈ By. This bag is said to introduce v.
Introduce edge bag: an internal node x of P labeled with an edge {u, v} ∈

E(G) with one predecessor y for which u, v ∈ Bx = By. This bag is said to
introduce {u, v}, and every edge is introduced by exactly one bag.

Forget bag: an internal node x of P with one predecessor y for which Bx =
By \ {v} for some v ∈ By. This bag is said to forget v.

Last bag: the bag associated with the rightmost node x is empty, Bx = ∅.
It is easy to verify that any given path decomposition of pathwidth pw can

be transformed in time |V (G)|pwO(1) into a nice path decomposition without
increasing the width. For a bag Bi, we define the Gi = (∪i

j=1Bj , Ei) where Ei

are all edges introduced in bags B1, . . . , Bi.
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Steiner Tree. In the Steiner Tree problem5 one is given an undirected graph
G, a vertex subset K ⊆ V (G), and an integer s. The goal is to determine if there
exists a subset K ⊆ Y ⊆ V (G) such that |Y | ≤ s and G[Y ] is connected. As in
the previous case studies, we first present a recurrence that allows to gradually
build partial solutions. To facilitate this we use the following notation:

Definition 4.3. Given a graph G′, a subset Y ⊆ V (G′) and a partition p ∈
Π(X) where X ⊆ Y , we say that Y connects p in G′ if for every two vertices
u, v ∈ X the following holds: u and v are connected in G′[Y ] if and only if u and
v are in the same block in p.

For a bag Bi, a subset X and an integer s we define T [i,X, s] to be the set
of partitions p ∈ Π(X) such that there exists a subset Y ⊆ V (Gi) that connects
p in Gi and satisfies K ⊆ Y , |Y | ≤ s and

∀u ∈ Y ∃v ∈ X : u and v are connected in Gi[Y ].

We now show how to compute entries T [i, ·, ·] given the appropriate entries T [i−
1, ·, ·], by distinguishing on what kind of bag Xi is:

First Bag. If i is the first bag, T [i,X, s] = {ε}, where ε is the empty partition.
Introduce Vertex Bag. If Bi introduces a vertex v, note that Gi contains v

as an isolated vertex (as we did not introduce any of its incident edges). If
v ∈ K it needs to be included in X. Hence, if v /∈ X we have that

T [i,X, s] =

{
∅ if v ∈ K and v /∈ X,

T [i − 1,X, s], if v /∈ K and v /∈ X.

Moreover if v is included in the solution, it should also be included in the
partitions as a singleton:

T [i,X ∪ {v}, s] = {p ∪ {{v}} | p ∈ T [i − 1,X, s − 1]} .

Introduce Edge Bag. If an edge {u, v} is introduced in Bi we have that
T [i,X, s] = T [i − 1,X, s] if {u, v} �⊆ X, and otherwise

T [i,X, s] = {p � {{u, v}} | p ∈ T [i − 1,X, s]} .

Note that here {u, v} denoted the partition of X with {u, v} as only non-
trivial block.

Forget Vertex Bag. If a vertex v is forgotten in Bi, all partitions in T [i−1,X, s]
remain in T [i,X, s] and all partitions in

T [i − 1,X ∪ {v}, s]

remain in T [i,X, s] if they do not include v as a singleton:

T [i,X, s] = T [i − 1,X, s] ∪ {
p|X | p ∈ T [i,X ∪ {v}], {v} /∈ p

}
.

5 For ease of exposition, we discuss a less general variant of the Steiner tree prob-
lem. The same methods can also solve more general versions within time that
only depends linearly on the number of vertices, see [BCKN15] or the exposition
in [CFK+15].
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With all recurrences in place, we are ready to sketch the algorithm for Steiner
tree:

Theorem 4.2. Given a graph G and a path decomposition of G of width pw,
any instance of Steiner tree on G can be solved in O∗((1 + 2ω)pw) time.

Proof Sketch. Let {Bi}l
i=1 be the path decomposition. For every X and s, we

compute a family of partitions T ′[i,X, s] that is a representative set for T [i,X, s]
with respect to P|X|, based on representative sets T ′[i−1,X ′, s] of T [i−1,X ′, s]
with respect to P|X′|. By following the above recurrence (but with all occurrences
of T [·, ·, ·] with T ′[·, ·, ·]). It can be shown that in all cases indeed the resulting set
T ′[i,X, s] is representative of T [i,X, s]. Alternating this computation with the
table reduction procedure from Lemma 3.1 ensures |T ′[i,X, s]| ≤ 2|X|poly(n)
and it runs in 2ω|X| time. Summing over all possibilities for X per bag, the run
time becomes nO(1)

∑
X⊆Bi

2ω|X| = nO(1)(1 + 2ω)pw time. ��
For completeness, we remark that the Steiner tree problem can be solved in

O∗(3pw) time by a randomized algorithm [CNP+11].

Hamiltonian Cycle. In the Hamiltonian cycle problem one is given an undi-
rected graph G, and is asked whether there exists a simple cycle C ⊆ E(G) with
|C| = n.

Definition 4.4. Given a graph G′, a subset Y ⊆ E(G′) and a partition p ∈
Π(X) where X ⊆ V (G′), we say that Y connects p if for every two vertices
u, v ∈ X the following holds: u and v are connected in (∪e∈Y e, Y ) if and only if
u and v are in the same block in p.

For a bag Bi, a vector d ∈ {0, 1, 2}Bi we define T [i, d] to be
{

M ∈ Πm(d−1(1))
∣∣∣∃Y ⊆ E(Gi) : Y connects p ∧ ∀v ∈ Bi : dY (v) = dv

∧ ∀v ∈ V (Gi) \ Bi : dY (v) = 2
}

,

where we let dY (v) denote the number of edges in Y that is incident to v.
Similar to the algorithm for Steiner tree, a recurrence for T [i, d] in terms of

T [i − 1, d] can be formulated, and the same recurrence can be used to compute
a set T ′[i, d] that is a representative set of T [i, d] with respect to H|d−1(1)| from
entries of the type T ′[i − 1, d] that are representative sets of T [i − 1, d] with
respect to H|d−1(1)|. We refer to [BCKN15] for details.

By interleaving these computations with an algorithm implied by Lemma 3.1
with the matrix Ht and its factorization from Lemma 3.3 we can obtain the
following theorem in a way similar to the previous sections:

Theorem 4.3 ([BCKN15]). Given a graph G with path decomposition of width
pw, it can be determined in O∗((2+2ω/2)pw) time whether G has a Hamiltonian
cycle.
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In fact, the same running time can be obtained for the weighted version of
the problem (the Traveling Salesman Problem). We would also like to mention
that the problem can be solved in O∗((2 +

√
2)pw) time with a randomized

algorithm [CKN13].

4.3 k-Path

In the k-path problem one is given a graph G = ([n], E) and an integer k. The
task is to determine whether G has a path on at least k vertices. Recall a path
is a sequence of vertices such that consecutive vertices are adjacent and each
vertex occurs at most once in the sequence. We outline an approach that was
originally described in the paper that introduced representative sets [Mon85]6

For every i = 1, . . . , k and v ∈ V we define

T [i, v] =
{

X ∈
(

[n]
i

)∣∣∣∃ path that ends at v and visits X
}

.

By trying all possibilities for the penultimate vertex v′ in the path the following
recurrence can be obtained:

T [i, v] = {X ∪ {v} : X ∈ T [i − 1, v′], v ∈ N(v′)}.

Similarly we have that

Lemma 4.2. If T ′[i − 1, v′] is a representative set of T [i − 1, v′] with respect
to Dn,i−1,k−(i−1), then T ′[i, v] is a representative set of T [i, v] with respect to
Dn,i,k−i where

T ′[i, v] = {X ∪ {v} : X ∈ T ′[i − 1, v′], v ∈ N(v)}.

Similarly as before, we use Lemma 3.1 in combination with Lemma 4.2 to
obtain the following result:

Theorem 4.4. Given a graph G and an integer k, it can be determined in
O∗(4k) time whether G has a path on at least k vertices.

Proof. Compute T ′[1, {v}] = T [1, {v}] = {{v}}. For i = 2, . . . , k do the follow-
ing: Compute T ′[i, v] as defined in Lemma 4.2 for every v ∈ V . Afterwards use
Lemma 3.1 to compute a set T ′′[i, v] that is a representative set of T ′[i, v] with
respect to Dn,i,k−i. By Lemma 3.1, |T ′′[i, v]| ≤ (

k
i

)
and the time required to

compute the set is at most 4k. By transitivity, it will also be a representative
set of T [i, v] and we can set T ′[i, v] = T ′′[i, v] and use it in the next iteration to
compute a family that is a representative for T [i + 1, v].

Afterwards, we can return whether G has a path on at least k vertices since
it does if and only if T ′[k, v] is non-empty for some vertex v. ��
6 Indeed, the idea of representing partial solutions with a strict subset is natural, but

to the author’s knowledge [Mon85] was the first paper (in parameterized complexity)
to use a generalization of this concept beyond equivalence classes.
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Let us remark for completeness that the currently fastest deterministic algo-
rithm for k-path refines the above approach and solves the problem in O∗(2.597k)
time [Zeh15]. In the randomized setting, a beautiful algorithm from [BHKK17]
solves the problem in O∗(1.66k) time.

5 Other Relevant Directions

This survey focused on only few applications in the area of parameterized com-
plexity. We list a few of the most relevant directions not yet discussed.

5.1 Pair Problems

For a fixed family of explicit matrices {At}t, we may study the following problem
PAIR(A): Given an integer t and sets P,Q such that At ∈ {0, 1}R×C and P ⊆ R
and Q ⊆ C, the goal is to detect whether there exists p ∈ P and q ∈ Q such that
At[p, q] = 1. Freivalds [Fre77] famous matrix multiplication algorithm can be
used to obtain the following result by computing At = (rLt)(Rtr

′) with random
vectors r ∈ {0, 1}P and r′ ∈ {0, 1}Q:

Observation 5.1. If At has an explicit7 field, support or Boolean rank rt fac-
torization, then an instance (t, P,Q) of PAIR(A) can be solved with a random-
ized algorithm in rt(|P | + |Q|) · polylog(t)) time.

An interesting special case is PAIR(Dt,p,q), also known as the orthogonal vec-
tors problem. Several algorithms for this problem have been developed that rely
on interesting rank parameters of Dt,p,q such as the rank over the reals [BHKK09]
and an intriguing variant of ‘probabilistic rank’ [AWY15,AW17].

An especially interesting theme is that of sparse factorizations. That is, a
factorization At = LtRt such that both L and R are relatively sparse.

Sparse factorizations for PAIR(Dt,p,q) are used in for example in [FLPS16].
In an unpublished note [Ned17], the author observed that if a natural algo-
rithm that relies on a sparse Boolean rank decomposition of Lemma 3.5 can
be improved slightly, a classic algorithm for the Subset Sum problem can be
improved.

In a very recent work [Ned19] on improving the Bellman-Held-Karp algo-
rithm for the Traveling Salesman Problem, the author studied the problem
PAIR(H). That is, given two families of perfect matchings P,Q ⊆ Πm([t]),
determine whether there exist perfect matchings p ∈ P and q ∈ Q that form
a Hamiltonian cycle of the complete graph Kt on t vertices. By combining the
rank bound rkF2(Ht) = 2t/2−1 with Observation 5.1 this problem can be solved
in O((|P | + |Q|)2t/2tO(1)) time with a randomized algorithm. In [Ned19] an
O(((|P |+ |Q|)23t/10 +3t/2)tO(1)) time randomized algorithm was given that was
instrumental to obtain a new result on TSP. Curiously this faster algorithm for
PAIR(H) uses a factorization of H of higher rank, but since it is much sparser
it is nevertheless more useful to solve PAIR(H). We refer to [Ned19] for more
discussion and details.
7 As a minor technical caveat, both Lt and Rt need to be explicit.
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5.2 Matrix Multiplication

It should be noted that often the use of Lemma 3.1 as described in Sect. 4 does
not yield the fastest algorithms, as these rely on more algebraic ideas such as
Observation 5.1. At a high level, these algorithms are obtained by applying the
low rank factorization at a more general level. Slightly more formal, one could
see many dynamic programming algorithms as evaluating a chain of matrix mul-
tiplications A1A2 ·Al where A1 is a row vector and Al is a column vector. Given
low-rank factorization of these matrices, their product can be evaluated quickly
if their products are evaluated in a clever order. If the factorizations are over
finite fields or in terms of support rank, typically standard tools in complex-
ity theory such as polynomial identity testing or the isolation lemma can be
used to solve the (unweighted variants) of the decision problems by introducing
randomization.

Notably, the algorithms obtained via this method are often known to be
optimal under the Strong Exponential Time Hypothesis8 (SETH). For example,
this gives rise to an O∗(3pw) time algorithm for Steiner Tree, an O∗((2 +

√
2)pw)

algorithm for Hamiltonian cycle, and an O∗(2k) time algorithm for graph coloring
(where k is the cutwidth of a given permutation). Furthermore, these algorithms
cannot be improved to O∗((3 − ε)pw) time, O∗((2 +

√
2 − ε)pw) time, and

O∗((2 − ε)k) time for any ε > 0, unless the SETH fails.

5.3 Counting Algorithms

If the number solutions needs to be counted instead of detecting only one, only
the rank over the reals can be applied in general. Instead, if one needs to count
the number of solutions modulo a prime p, the rank over Zp can be used.

A particularly non-trivial case is that of counting Hamiltonian cycles param-
eterized by the pathwidth. In [CLN18] a general connection between the com-
plexity of the problem and the rank of H was shown:

Theorem 5.1. Let r = limt→∞ log2(rk(Ht))/t. Assuming SETH, there is no
ε > 0 such that the number of Hamiltonian cycles can be computed in O∗((2 +
r − ε)pw) time on graphs with a given path decomposition of width pw. For
prime numbers p, the same applies to counting Hamiltonian cycles modulo p
when replacing r by rp, which is defined analogously to r by taking the rank over
Zp.

Determining the rank of Ht over various fields turns out a challenging job.
Over the reals, it was shown in [CLN18] that the rank of H is (up to factors poly-
nomial in t) equal to 4t. Thus, by Theorem 5.1 the existing O∗(6pw) algorithm
from [BCKN15] cannot be significantly improved, assuming SETH.

8 This hypothesis postulates that for every ε > 0 there is an integer k such k-CNF
satisfiability on n variables cannot be solved in O∗((2 − ε)n) time.



162 J. Nederlof

5.4 Further Results

This survey is far from exhaustive and biased towards the familiarity of the
author. Other interesting connections between fine-grained complexity can be
found in papers on the probabilistic rank [AW17], Waring rank [Pra18]. Since
many algorithms on fine-grained complexity of hard problems rely on fast matrix
multiplication, the rich theory underlying these fast algorithms that features a
plethora of variants (tensor) rank can also be considered to be in the same
category.

Let us conclude by remarking that studying problem specific tensors arising
from divide and conquer algorithms that merge triples of partial solutions into
a complete solution may be a good source of further research opportunities.

Acknowledgements. The author would like to thank Johan van Rooij and Stefan
Kratsch for their valuable feedback on a previous version of this survey.
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