
A projection-based data partitioning method for distributed

tomographic reconstruction

Jan-Willem Buurlage* Rob H. Bisseling� Willem Jan Palenstijn*

K. Joost Batenburg*�

Abstract

Tomography is a non-destructive technique for imaging the

interior of a 3D object. We present an e�cient data parti-

tioning strategy for distributed tomographic reconstruction

algorithms. Our novel partitioning method is a re�nement of

the previously published GRCB algorithm. Instead of taking

as input a discrete set of lines corresponding to source�pixel

pairs, the introduced algorithm works directly on the (cone-

shaped) projections. We introduce a geometric characteri-

zation of the communication volume, as well as a continuous

model for load-balancing based on the varying line densities

throughout the object volume. The resulting algorithm is

orders of magnitude faster than the original algorithm while

producing partitionings of similar quality. We introduce a

novel communication data structure that can e�ciently rep-

resent the communication metadata. An implementation

on top of Bulk and the ASTRA toolbox is discussed. We

provide experimental results of our method for various com-

monly used acquisition geometries. We achieve a speedup

of 2.8× compared to ASTRA-MPI when using 32 GPUs to

reconstruct an image for a circular-cone beam acquisition

geometry.

1 Introduction

With tomographic techniques, the interior of an object
can be imaged without destroying the object, which
makes tomography an important tool in medicine, in-
dustry, and science. Using a beam of penetrating
radiation, consisting of, e.g., photons or electrons,
two-dimensional projections of an object are acquired.
These projections can be related to integrals of some
volumetric property of the object, such as its density.
Computed Tomography (CT) is a technique to retrieve
a 3D pro�le of this property from the measured projec-
tion images [4, 11].

*Centrum Wiskunde & Informatica, PO Box 94079, 1090 GB
Amsterdam, the Netherlands.

�Mathematical Institute, Utrecht University, PO Box 80010,
3508 TA Utrecht, the Netherlands.

�Mathematical Institute, Leiden University, PO Box 9512,
2300 RA Leiden, the Netherlands.

A tomographic experiment is performed using a
source that emits the penetrating radiation, and a
two-dimensional detector that captures the projection
images. A �nite number of projections are taken of the
object. In this article, we will consider point sources,
and rectangular �at panel detectors. This means that
each projection corresponds to a cone, with at its base
the detector, and at its apex the source.

Two important operations in CT algorithms are
the forward projection and the backprojection. A for-
ward projection operation is a linear transformation
that models the physical experiment. It takes a dis-
cretized representation of the object, and outputs the
two-dimensional projections of the object. The backpro-
jection operator is the adjoint of the forward projection
operator. Various models can be used for this linear
transformation [13, 14, 18].

There are a broad variety of reconstruction algo-
rithms for CT. An important subset of these algo-
rithms uses forward projection and backprojection op-
erations, and these operations typically dominate their
runtime costs. Our focus in this article is on recon-
struction methods that alternate between forward pro-
jection and backprojection operations, with optionally
some in-between operations in the image or measure-
ment domain. These include SIRT [9], Krylov methods
such as CGLS [10], ML-EM [12], and methods origi-
nating from convex optimization such as FISTA [1] and
Chambolle�Pock [7].

The computational cost of these reconstruction
methods grows superlinearly with respect to the in-
put data. The size of typical tomographic data sets
is rapidly increasing, due to advances in hardware and
increased interest in multi-modal imaging, imaging of
dynamic systems, and adaptive acquisition. Large data
sets of many GBs in size are increasingly common, and
for these data sets even optimized GPU implementa-
tions do not always su�ce to keep the computational
costs manageable. This motivates the move to large
distributed-memory compute clusters, to keep recon-
struction times reasonable.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
21

 to
 1

31
.2

11
.1

2.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

yang11
Typewritten Text
58



When performing projection operations on a
distributed-memory system, communication is the main
bottleneck for algorithms that make use of alternating
forward projection and backprojection operations. The
data partitioning method presented in this article con-
cerns itself with minimizing the required communica-
tion, without changing the overall structure of the un-
derlying algorithms, for an arbitrary acquisition geom-
etry, i.e., a set of source and detector positions. It is a
re�nement of the previously published GRCB partition-
ing algorithm [3].

While the GRCB method has a good time complex-
ity compared to, e.g., the projection operations, it is still
too slow to apply in real time. This limits its applica-
bility in various situations, such as adaptive acquisition
where the user may want to zoom in on a region-of-
interest after initial inspection, or in cases where the
acquisition geometry simply changes from scan to scan,
because the user changes, e.g., the source-to-object dis-
tance, or the source-to-detector distance.

This article is structured as follows. In section 2, we
discuss how to model tomographic reconstruction as a
linear inverse problem, discuss an associated partition-
ing problem, and summarize the original GRCB parti-
tioning method. In section 3, we introduce a geometric
characterization of the partitioning problem, and use
this to develop a more e�cient partitioning algorithm.
In section 4, we introduce a memory-e�cient data struc-
ture that stores communication metadata. In section 5,
we give the results of our numerical experiments. Fi-
nally, in section 6, we present our conclusions.

2 Background

Tomographic reconstruction. Tomographic recon-
struction can be modeled as a linear system of equa-
tions. The physical model is discretized in order to
obtain a matrix W ∈ Rm×n, that maps a discretized
representation x ∈ Rn of the object (the image), to a
vector of measurements b ∈ Rm. A component xj cor-
responds to the jth voxel in the volume. A component
bi corresponds to a measurement for the ith ray, be-
tween a source point and a pixel on the detector. The
reconstruction problem in tomography is a linear inverse
problem of the form: given W and b, �nd x such that:

Wx ≈ b.

In order to construct the system matrix W we in-
troduce two concepts: the acquisition geometry, and the
object volume. The acquisition geometry is a set of line
segments in three-dimensional space. For each projec-
tion, where the radiation source and detector positions
are �xed, each detector element on the detector (cor-
responding to a pixel in the projection image), is the

row i

ray i

0 1

2 3

4 5

7

Figure 1: Constructing a row of the system matrix W .
The object volume is discretized into 2 × 2 × 2 voxels,
and a ray from the acquisition geometry intersects this
volume. Here, it passes through four of the numbered
voxels, the ones marked red, leading to four nonzeros in
the corresponding matrix row.

end point of a line segment that starts at the position
of the source. The imaged object is represented as a
discretized volume of voxels. Each voxel corresponds to
a small cube, and the associated value xj corresponds
to some volumetric property of the object, such as its
density, at the location of the voxel.

We do not consider parallel-beam geometries, where
conceptually the source is in�nitely far away, as they
are usually easier to partition. However, the method we
present should generalize to those geometries as well.

Each row of the matrix W corresponds to a line
segment in the acquisition geometry. Each column of
W corresponds to a voxel of the object volume. We
assume that the matrix elements Wij are given by the
length of the intersection of the ith line with the jth
voxel. Note that W is sparse, as each line will only
intersect a relatively small collection of voxels. This
construction is illustrated in �gure 1.

The forward projection and backprojection oper-
ations that are crucial for many reconstruction algo-
rithms, correspond to sparse matrix�vector (SpMV)
products with W and WT , respectively.

Parallel execution of projection operations.

When the sparse matrix�vector products y = Wx and
x = WTy are executed on a distributed-memory sys-
tem that consists of p nodes (or processing elements, or
simply processors), communication between the nodes
is the single most important consideration for the com-
putational e�ciency. The relevant data are the nonzeros
of the matrix W , the components of the image x, and
the components of the measurements y. For each of
these three types of data, a suitable p-way partitioning

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
21

 to
 1

31
.2

11
.1

2.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

yang11
Typewritten Text
59



has to be chosen.
The sth part of the data, is assigned to the sth

processor. The three types of data: the image, mea-
surements, and nonzeros, correspond to three ways of
partitioning the underlying sparse matrix. An image
partitioning implies a column partitioning of the matrix,
a measurement partitioning implies a row partitioning

of the matrix, and �nally a nonzero-based partitioning
gives a 2D partitioning of the matrix.

Communication occurs because di�erent processors
depend on the same data. Each nonzero Wij corre-
sponds to two �oating-point operations (�ops), as it
has to be multiplied with image component xj and the
result of this multiplication occurs in the sum for the
measurement component yi =

∑
Wij 6=0Wijxj . In other

words, a nonzero element Wij couples the jth compo-
nent of x and the ith component of y. Communication
is usually unavoidable if one requires a balanced par-
titioning where each part is of roughly equal size, but
by choosing a suitable partitioning the total communi-

cation volume, i.e., the number of data words sent, can
be reduced signi�cantly. The components of the vectors
x and y must also be assigned to a processor, without
any restriction. In that case, the parallel algorithm will
have four phases: (i) a scatter phase where each com-
ponent xj is communicated to the processors that need
it; (ii) a local computation of products Wijxj followed
by an addition of products for the same row i; (iii) a
gather phase where the contributions to each compo-
nent yi are communicated to the owner of the compo-
nent; (iv) a local addition of the received contributions
for each component yi.

Partitioning for SpMVs is a well-studied problem
in combinatorial scienti�c computing. The underlying
structure is modeled as a hypergraph, where common
models include row-net and column-net [6], medium-

grain [16], and �ne-grain [5]. Partitioning methods
aim to �nd a balanced partitioning of the vertices
of the model hypergraph, that minimizes the total
communication volume and in certain cases also the
number of messages sent.

The system matrix for a tomographic reconstruc-
tion problem is sparse and consists of O

(
mn1/3

)
nonze-

ros, and common values for m and n are 109 or even
higher. This corresponds to many terabytes of data,
which means that the matrix cannot be stored explic-
itly for the desired high resolutions, even when employ-
ing a sparse data structure, and that the forward and
backprojection must be implemented in a matrix-free
manner. This also means that it is not at all clear how
SpMV partitioning approaches can be applied. Instead,
we consider the underlying geometry of the problem.

Tomographic partitioning problem. In tomo-
graphic reconstruction, a cuboid region V ⊂ R3 called
the object volume is de�ned. The sample being scanned
is completely contained in V , and after discretizing the
object volume into n = nx × ny × nz voxels, the sam-
ple can be represented using an image x with one com-
ponent for each voxel. For distributed-memory tomo-
graphic reconstruction, we choose to �nd a suitable par-
titioning of the object volume V , which after discretiz-
ing gives a partitioning of the image x, corresponding to
a column partitioning of the matrix. The relevant part
of W can be generated locally on each processor. Only
contributing partial sums for the projection data have
to be communicated during the projection operations.

The quality of a partitioning is judged on two
grounds: the amount of communication it induces, and
whether or not the parts are roughly equal in terms of
computational cost.

Instead of considering the nonzeros, we can look
at the problem geometrically. A tomographic measure-
ment consists of a number of projections, and for each
projection we consider the line segments from the source
position to each pixel on the detector. This de�nes a set
of line segments G that we call the acquisition geometry.
Communication is required for each line in the acquisi-
tion geometry that travels through multiple parts of the
image volume. The number of parts a line ` crosses for
a partitioning π is denoted by λ`(π). Since we can des-
ignate one of the parts as the owner of the line, we have
for the communication volume:

Λ(π) =
∑
`∈G

(λ`(π)− 1).

For a good partitioning π, this value will be manageably
small.

The computational cost of a part is modeled as
the number of �ops it has to perform in a projection
operation. Each voxel is involved in twice as many �ops
as there are lines ` ∈ G crossing the voxel. For the jth
voxel, we write ω(j) for the number of lines crossing the
voxel. The total computational weight of the sth part
is then given by:

T (s) =
∑

j : xj∈Vs

ω(j).

Here, the notation xj ∈ Vs indicates that the voxel xj is
assigned to the sth part after discretizing. For a good
partitioning, the following load imbalance ε should be
kept small:

ε(π) = max
0≤s<p

T (s)

Tavg
− 1,

where Tavg =
∑
s T

(s)/p. We can summarize the
tomographic partitioning problem as follows.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
21

 to
 1

31
.2

11
.1

2.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

yang11
Typewritten Text
60



Definition 2.1. Let G be an acquisition geometry, V
the object volume, εmax the maximum allowed load im-
balance, and p the number of processors. Let Π denote
the set of all p-way volume partitionings. The tomo-
graphic partitioning problem is the following optimiza-
tion problem:

minimizeπ∈Π Λ(π)

subject to ε(π) ≤ εmax.

Geometric recursive coordinate bisectioning.

The GRCB algorithm only looks at partitionings π that
are obtained by recursive coordinate bisectioning. That
is to say, the volume is recursively split p − 1 times,
each time along one of the axes. Axis-aligned cuboid
partitionings such as the ones obtained by GRCB are
convenient in practice, and can be expected to give rea-
sonably good results. Because the communication vol-
ume is additive (see theorem 2 in [3]), bisectioning can
be done independently for each part, which is why we
can obtain a good partitioning for any number of pro-
cessors by recursively splitting in two.

The splitting subroutine of GRCB that performs
the bisectioning, is based on a plane sweep. We are
able to identify which splitting plane, among all the
possible axis-aligned ones, is able to best limit the
communication volume by directly considering all the
lines in the acquisition geometry G.

3 A new projection-based partitioning method

The GRCB algorithm uses a discrete model for the
acquisition geometry, explicitly considering a set of
rays. While this leads to an exact representation of
computation load (in �ops) and communication volume
(in data words), it does mean that the input data sizes
for the partitioning method are large.

Here, we take a di�erent approach and use a con-
tinuous model for the acquisition geometry, communica-
tion volume, and computational load. For �ne enough
resolutions, we expect the discretization error incurred
by this model to be small. Instead of minimizing the
communication volume subject to a load balance con-
straint, we now aim to minimize the communication
volume and the load imbalance simultaneously by gen-
erating a candidate split for each of the three coordi-
nate axes on the basis of load balance, and among these
candidate splits choose the one that realizes the lowest
communication volume.

As before, the object volume is a cuboid V =
[x1, x2] × [y1, y2] × [z1, z2] ⊂ R3 that we want to par-
tition into p parts. We limit ourselves to partitionings
obtained by recursive bisectioning. In this article, the
faces of a cuboid are considered part of the cuboid.

Figure 2: The shadow of a part with respect to the
point source de�nes the region on the detector for which
line segments cross the part. Here, the part and its
shadow are shown in red. The shadow can be computed
by projecting the eight vertices of the cuboid on the
detector, and then taking their convex hull.

The acquisition geometry is modeled as a set P of
cone-shaped projections pk. Each projection pk can be
described by a source�detector pair. The point-source
is at position sk ∈ R3. The detector is a rectangular
region Dk ⊂ R3. The cone with base Dk and apex sk
de�nes the projection pk.

3.1 Communication volume. We consider the ef-
fect that one of the projections pk = (sk, Dk) has on
the communication volume. In the discrete model, the
volume depends on the resolution on the detector, i.e.,
the shape in pixels of the detector Dk, e.g., 2000×2000.

For each detector pixel with center d
(i)
k , we consider the

line segment ` from sk to d
(i)
k . The number of cuts in

`, which is the number of additional parts of the object
volume that it intersects, is the contribution in number
of data words to the communication volume. Note that
we determine a single p-way partitioning of the object
volume for the set of all rays from all projections.

We describe here a new approach that works di-
rectly on the cones de�ned by the projections, rather
than the individual pixels. It is therefore independent
of the detector discretization, and this greatly reduces
the size of the input data to the partitioning algorithm.

We exploit the fact that line segments correspond-
ing to neighbouring pixels often cross the same parts.
We want to group rays by identifying pixels in a re-
gion of the detector for which the corresponding line
segments all cross exactly the same parts. The key ob-
servation that makes this possible is that a region of the
detector for which the line segments cross a given part
of the object volume, corresponds to the shadow of that
part onto the detector. This is illustrated in �gure 2.

The communication volume in our continuous
model is estimated in the following way. We consider
a candidate split into two parts. Strategies to gener-
ate these candidate splits are discussed later. This split
happens along one of the axes of the object volume, at

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
21

 to
 1

31
.2

11
.1

2.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

yang11
Typewritten Text
61



Figure 3: Where shadows of a part overlap, line seg-
ments in that region cross multiple parts.

a given location. The split induces two subvolumes, one
to the left of the splitting plane, and one to the right.
To identify the region on the detector for which the line
segments cross both parts, we forward project the ver-
tices of these subvolumes onto the detector. The shadow
of each subvolume can be found by taking the convex
hull of its projected vertices. The area of the intersec-
tion of the two shadows is proportional to the number
of line segments crossing both parts for any �ne enough
discretization of the detector. We compute this for each
projection in P in order to �nd the total communication
volume.

Algorithm 1 Computing the communication volume
for a given split. Here, M is a magni�cation value,
relating the detector size to the object volume size, and
VL and VR are cuboids corresponding to the volumes to
the left and to the right of the candidate splitting plane.

Subroutine: communicationVolume
Input: VL, VR, P
Output: Λ

Λ← 0
for all pk ∈ P do

SL ← convexHull(project(pk,vertices(VL)))
SR ← convexHull(project(pk,vertices(VR)))
Λ← Λ + area(SL ∩ SR)

if consider gradient then
Λ← Λ +M × area(VL ∩ VR)

A subroutine for computing the communication
volume for any candidate split of the volume V into a
left part VL and a right part VR is given in algorithm 1,
optionally taking into account volume for a gradient-
based regularizer as discussed in section 3.3.

Because the communication volume is additive, we
can split the volume recursively. After p − 1 splits, we
have obtained a partitioning into p parts. The inter-
play between shadow intersections and communication
volume for a �xed projection is illustrated in �gure 3.

3.2 Load balance. We next discuss generating a set
of candidate splits that we want to evaluate. These
candidate splits should divide the object volume into
parts with roughly equal computational weight, and
among that set we choose the one that induces the least
amount of communication.

Modeling the computational weight in our continu-
ous setting does not appear to be as straightforward as
for the communication volume. Recall that the compu-
tational weight of a voxel is de�ned as the number of
lines intersecting it. We no longer have an explicit set
of lines nor of voxels, but regardless of the discretiza-
tion we have that the line density in the volume for
a given projection decreases as 1/r2 where r is the dis-
tance to the source. The computational weight of a part
Vs should therefore be proportional to the integral:

(3.1)

|P |∑
k=1

∫
Vs

1

||x− sk||22
dx.

If we want to split along, say, the x axis, into two parts
with equal computational weight, then we want to �nd
c ∈ [x1, x2] so that

∫ c

x1

∫ y2

y1

∫ z2

z1

|P |∑
k=1

1

||x− sk||22
dz dy dx

=

∫ x2

c

∫ y2

y1

∫ z2

z1

|P |∑
k=1

1

||x− sk||22
dz dy dx.

The volume integral for a rectangular volume V =
[x1, x2]× [y1, y2]× [z1, z2] can be written as the following
2D integral:

∫ x2

x1

∫ y2

y1

|P |∑
k=1

( 1

ak(x, y)

(
arctan

(z2 − sk,z
ak(x, y)

)
− arctan

(z1 − sk,z
ak(x, y)

)))
dy dx,

(3.2)

where

ak(x, y) =
√

(x− sk,x)2 + (y − sk,y)2.

This is, of course, more e�cient to solve numerically
compared to the original three-dimensional problem.

For �nding c, we use the following strategy. We
take N samples in the volume V . Next, we choose c
such that

(c− x1)f̄L = (x2 − c)f̄R,

where f̄L is the average of the integrand in (3.1), or
the more e�cient variant in (3.2), for samples with an
x-coordinate smaller than c, and f̄R for the remaining

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
21

 to
 1

31
.2

11
.1

2.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

yang11
Typewritten Text
62



samples. We �nd the optimal c by sorting theN samples
by their x-coordinate, and performing a linear scan
while updating the averages to the left and right of c.
It is possible to decide on the number of samples N
dynamically, by updating c for each new sample, and
taking samples until the optimal value for c converges.

A di�culty is introduced for acquisition geometries
where, because of a limited detector size, or a source
that is close to the object, the object volume is not
contained in the cones de�ned by the projections. In
these cases, we want to integrate over the intersection
of the cone and the volume. This can be easily realized
by rejecting samples for a projection pk if the sample
projects to a point outside of the detector. For these
acquisition geometries, we cannot employ the analytical
reduction from 3D to 2D shown in (3.2).

As an alternative to approximating the above in-
tegrals numerically, we can employ a simpler strategy
to identify valid candidate splits. We still consider each
axis in turn. If we split in the middle along a given axis,
we end up with two parts that are equal in volume and
should thus have the same number of voxels (up to dis-
cretization errors). If the number of lines intersecting a
voxel is more or less constant throughout the volume,
the number of voxels is one way to achieve a reasonable
load balance.

Solving the numerical integraton problem, or using
the splitting in the middle strategy (which we will refer
to as midway in our experiments), both result in three
candidate splits, one for each axis. Out of these three
candidate splits, the best one is chosen each time, based
on communication volume.

3.3 Image gradient computations. Image gradi-
ent computations form an optional component of a num-
ber of reconstruction methods. Prior information on the
object, such as the object being piecewise constant, or
being smooth, can be incorporated as a penalty term in-
volving the norm of the image gradient. In these cases,
tomographic reconstruction is performed by solving a
regularized least-squares problem:

(3.3) argminx∈Rn ||b−Wx||22 + λ||∇x||1.

To perform (discrete) gradient computations, each
processor requires the value of the neighbouring voxels
to each of its voxels. This means that values for
voxels that lie next to the splitting plane have to be
obtained from a remote processor. In previous work,
this communication cost was ignored in the partitioning
algorithm. However, it is straightforward to include this
as a term in the communication volume, by considering
the area of the splitting plane in addition to the area of
the shadow intersections.

Both the area of the splitting plane, and the area
of the shadow intersections on the detector are propor-
tional to their respective communication weights, but
by a di�erent coe�cient. Therefore, the areas should
be normalized, so that they can be compared to each
other. The discretization on the detector should take
into account the total area of the detector, and the dis-
cretization of the object volume should in turn take into
account its total volume.

In particular, discretization is commonly chosen so
that if a voxel in the volume has a cross-section of area
X, then the area of its shadow Y corresponds roughly
to the size of a detector pixel. We will use the magni-
�cation value M = Y/X to relate the communication
volumes due to gradient computations and due to an
SpMV.

In our new algorithm, this communication volume
for gradient computations is optionally taken into ac-
count. When splitting a part that is elongated in some
direction, the cross-section (area of the splitting plane)
will depend on the axis chosen, and this can in�uence
the resulting partitioning.

4 Communication data structures

In this subsection, we will discuss how to use the par-
titionings e�ciently in practice. The partitionings aim
to minimize the communication volume, while evenly
sharing the work among the processors. However, per-
forming the communication requires storing information
on what gets sent where during the execution.

The iterative algorithms that are the focus of this
work, perform alternating forward projection and back-
projection operations. During a forward projection,
that is the calculation of y = Wx, contributions to the
components of y are computed by the processors whose
part of the object volume is crossed by the line seg-
ment corresponding to that component. Therefore, each
component of y has one or more contributing proces-

sors. One of these contributing processors is designated
as the owner of the component. The owner computes
the sum of the contributions. Before a backprojection
x = WTy, this sum is distributed to the group of con-
tributing processors. With this gather�scatter setup the
modeled communication volume is realized in practice.

The communication data structure contains infor-
mation on the sets of contributing processors for each
component. This information has to be stored so that
the gather and scatter operations can be executed e�-
ciently in every iteration.

A straightforward way to build the communication
data structures, is to compute and store for each
individual component its set of contributing processors,
and to designate one of them as an owner (e.g., at

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
21

 to
 1

31
.2

11
.1

2.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

yang11
Typewritten Text
63



random or through a round-robin scheme). However,
this will severely increase the memory use, since the
size of the communication data structures for a realistic
number of processors will be bigger than the projection
data itself. This is because the metadata, that identi�es
what is being communicated, is associated with every
individual component.

To remedy this problem, we again exploit the
fact that line segments corresponding to neighbouring
pixels on the detector often cross the same parts.
In particular, we would like to �nd the regions of
pixels of projection images that have the same set of
contributing processors. This can be realized by looking
at arrangements induced by the shadows of each part of
the partitioning.

An arrangement is a subdivision of the plane into a
collection of labeled regions, or faces. In our case, we are
interested in subdivisions of the detector plane, and the
labels (or tags) are the sets of contributing processors
for the face.

We consider each projection separately. Every pro-
cessor shadow de�nes an arrangement of the rectangle
of the detector containing two faces: the shadow of the
part, and its complement. The p arrangements can be
merged e�ciently, as described in section 2.3 of the text-
book by de Berg et al. [8]. The resulting overlay ar-
rangement has faces de�ned by the intersections of the
faces in the original arrangements, and the tags can be
combined arbitrarily. In our case, the faces in the orig-
inal arrangements have a single contributing processor
corresponding to a tag that is a list with one element.
We start with an empty arrangement, and iteratively
merge in the arrangements for each processor. When
new faces are constructed during the merge subrou-
tine, the lists of contributors of the original faces are
concatenated. After merging together the p arrange-
ments, the resulting overlay structure de�nes a number
of faces, and each of these faces has an associated set of
contributing processors as de�ned by its tag. We sum-
marize this method in algorithm 2.

Our novel communication data structure is thus
a subdivision of the detector into a set of faces, with
an associated tag for each face listing the contributing
processors for that region. For a visual example, see
�gure 4. We then proceed to rasterize these faces,
leading for each face to a collection of scanlines. A
scanline is a consecutive set of pixels of a row on
the detector. We use this collection of scanlines in
the �nal algorithm for performing the communication
during an SpMV operation. This novel approach not
only drastically reduces the size of the communication
data structures, but also allows to perform aggregate
reads from GPU memory.

Algorithm 2 Finding the overlay for the communica-
tion structure for a given projection pk. Here, [s] is a
list with a single element s.

Subroutine: FindFaces
Input: π = {Vs}, pk
Output: overlay

overlay← EmptyArrangement

for 0 ≤ s < p do
cornerss ← project(pk,vertices(Vs))
shadows ← convexHull(cornerss)
arrangements ← FromFaceTag(shadows, [s])
merge(overlay,arrangements,concatenate)

Figure 4: Example of the overlay structure for a
single projection of the ccbw (left), and lamw (right)
geometries (see section 5). Note that the shadows of a
part might partially fall outside of the detector. On the
top row, the shadows of the coloured parts are given.
On the bottom row, the overlay structure is shown.
In the overlay, a darker gray indicates a larger set of
contributing processors.

5 Numerical experiments

We consider four categories of acquisition geometries for
our numerical experiments.

� ccb. Circular cone-beam. The source and detector
move in a circular trajectory around the object.
This is the typical geometry for laboratory CT
machines. We distinguish between ccbn where the
cone has a narrow angle, and the source is relatively
far away, and ccbw with a wide angle, and the
source is close to the volume.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
21

 to
 1

31
.2

11
.1

2.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

yang11
Typewritten Text
64



� hcb. Helical cone-beam. The source and detector
move in a helical trajectory around the object.
This is similar to ccb, but in addition to the
circular movement, the source and detector also
move along the orthogonal direction. This is a
common acquisition geometry in medical CT.

� lam. Laminography. The source and detector both
move along their own circular trajectory, but these
trajectories are on opposite sides of the volumes,
typically perpendicular to one of the axes of the
object volume. This geometry can be used to image
�at objects. We distinguish between lamw with
circular trajectories with a large radius, and lamn
with a small radius.

� tsyn. Tomosynthesis. A static detector is placed
under the object, while the source moves along a
limited-angle arc above the object. This geometry
is used, e.g., for breast cancer screening and airport
security.

Partitioning results. Here, we compare two meth-
ods for load balancing that were discussed in section
3.2, midway where we split the volume into two parts
of equal volume, and sampling where we take a �xed
number N = 100 000 of sample points for which we eval-
uate the integrand in (3.1), and then perform a linear
scan to �nd the optimal splitting point. We compare
the results for these methods with the original grcb
partitioning method. In practice, these partitionings
are of interest for multi-GPU clusters consisting of up
to p = 64 GPUs. We therefore consider three processor
counts, 16, 32, and 64. The partitioning statistics such
as communication volume and load imbalance are eval-
uated on volumes consisting of 2563 voxels, which is �ne
enough to obtain accurate statistics. We show some of
the partitionings visually in �gure 5.

In table 1, we show the communication volume Λ,
load imbalance ε, number of messages µ (i.e., the num-
ber of processor pairs that perform the communication),
and partitioning time T . Note that we do not optimize
for the number of messages explicitly. First, we observe
that there are no large discrepancies in the communica-
tion volume between the three di�erent methods. For
midway, the partitioning time is low (between 100 ms�
600 ms), but the load imbalance can be up to 0.34 for
the geometries considered. The number of messages is
somewhat lower compared to the other partitioning al-
gorithms, since the parts are automatically aligned be-
cause of the �xed split points, which is bene�cial for the
number of messages. The maximum number of mes-
sages is µmax = p(p− 1), and we note that the number
µ achieved is often a signi�cant fraction of µmax. This
attests to the di�culty of avoiding communication in to-

(a) ccbn (b) ccbw

(c) hcb (d) tsyn

(e) lamn (f) lamw

Figure 5: Resulting partitionings for the circular cone-
beam (ccb), helical cone-beam (hcb), tomosynthesis
(tsyn), and laminography (lam) acquisition geome-
tries. The results shown are for p = 32 processors using
the midway load balancing strategy.

mography, caused by rays crossing the object in many
directions. We see that the sampling method based
on our continuous formulation of the load balance is
able to achieve a reasonable load balance. Only in two
cases it is slightly higher than the maximum load imbal-
ance (0.05) that was imposed for grcb. The runtime of
the partitioning algorithm is up to 100× less than the
runtime of grcb, while the resulting partitionings have
similar quality.

In table 2, we consider the communication volume
for regularized reconstruction methods that solve (3.3).
We do this by explicitly considering communication be-
cause of image gradient computations during the par-

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
21

 to
 1

31
.2

11
.1

2.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

yang11
Typewritten Text
65



midway sampling grcb

p G Λ ε µ T Λ ε µ T Λ ε µ T
16 ccbn 0.72 0.00 44 0.15 0.72 0.00 40 6.72 0.72 0.00 44 242.54

ccbw 1.26 0.01 64 0.09 1.26 0.04 64 4.95 1.26 0.03 64 274.98
hcb 1.14 0.28 84 0.16 1.18 0.04 96 4.76 1.18 0.05 96 203.48
lamn 0.92 0.00 84 0.15 0.92 0.04 140 7.28 0.91 0.05 120 240.11
lamw 1.61 0.00 180 0.14 1.61 0.03 180 7.04 1.61 0.05 180 296.20
tsyn 0.72 0.10 76 0.15 0.73 0.03 76 2.22 0.72 0.05 76 210.32

32 ccbn 1.28 0.00 180 0.32 1.28 0.00 172 4.75 1.28 0.04 180 273.62
ccbw 1.90 0.01 272 0.31 1.90 0.04 272 4.74 1.90 0.04 272 350.76
hcb 1.91 0.33 328 0.33 1.96 0.04 350 4.92 1.98 0.05 368 296.13
lamn 1.53 0.01 340 0.24 1.53 0.05 446 7.23 1.53 0.05 394 330.22
lamw 2.61 0.17 552 0.19 2.66 0.03 552 7.23 2.65 0.05 552 347.40
tsyn 1.19 0.10 284 0.19 1.19 0.05 272 2.43 1.19 0.05 284 253.28

64 ccbn 1.92 0.04 640 0.38 1.92 0.04 648 5.43 1.92 0.05 640 324.07
ccbw 2.86 0.01 1040 0.37 2.85 0.04 1040 5.14 2.85 0.05 1040 449.93
hcb 2.74 0.34 1052 0.40 2.80 0.05 1170 5.25 2.79 0.05 1150 400.16
lamn 2.21 0.01 1268 0.37 2.20 0.06 1412 10.17 2.31 0.04 1346 480.77
lamw 3.68 0.17 1978 0.60 3.74 0.06 2048 10.29 3.73 0.05 2020 536.73
tsyn 1.79 0.12 936 0.40 1.80 0.05 928 4.09 1.80 0.05 948 246.44

Table 1: Partitioning statistics. We compare the communication volume Λ, given in multiples of 107, the load
imbalance ε, the number of messages µ and the partitioning time T in seconds for various combinations of processor
count p and acquisition geometry G.

titioning method, or ignoring this cost, as explained in
section 3.3. The e�ect is limited because the communi-
cation due to image gradient computations is relatively
small, as especially for larger processor counts the to-
tal communication volume is dominated by that of the
SpMV step. However, it improves the overall commu-
nication in some cases, up to 3% for ccbn, which is an
acquisition geometry with relatively low communication
volume Λ for the SpMVs.

Performance measurements. We have implemented
an extension to the open-source ASTRA tomography
toolbox that allows tomographic reconstruction algo-
rithms to run on distributed-memory GPU clusters.
This extension is called Pleiades, after the famous open
star cluster. The ASTRA toolbox [17] has highly op-
timized GPU implementations of projection operators,
which we use for the local forward projection and back-
projection operations. Our extension uses Bulk [2] to
realize the communication between nodes. Bulk is a
modern C++ library for bulk-synchronous parallel pro-
grams. It simpli�es the implementation of communi-
cation logic signi�cantly compared to, e.g., BSPlib or
MPI.

Our extension is an improvement over a previously
published extension to the ASTRA toolbox based on
MPI [15], which we will call ASTRA-MPI. This previous

extension uses slab partitionings, where the volume is
split up into blocks of consecutive slices along one of the
axes. This makes it suitable only for circular cone-beam
geometries.

In contrast, our distributed-memory extension to
the ASTRA tomography toolbox is �exible with respect
to the acquisition geometry and the used data partition-
ing, which we achieved by implementing the techniques
outlined in this article. We compare the performance
of Pleiades to that of ASTRA-MPI for the only acquisi-
tion geometries in our set that ASTRA-MPI supports,
which are ccbn and ccbw. In addition, we test the scal-
ability of Pleiades for hcb. Our test consists of three
Landweber iterations de�ned by the update:

x← x +WT (b−Wx),

which follows the typical structure of an iterative
method by alternating forward projection and backpro-
jection operations. In all cases, we take a volume of
20483 voxels, and 1024 projections of 2048 × 2048 pix-
els.

The performance tests were run on a compute
cluster of 8 nodes with a 40 Gbit Mellanox In�niband
connection. Each node has four NVIDIA GeForce
GTX TITAN X GPUs, two Intel Xeon E5-2630 v3
CPUs running at 2.40GHz, and 128GB RAM. We use
the midway strategy for Pleiades, partitioning over

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
21

 to
 1

31
.2

11
.1

2.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

yang11
Typewritten Text
66



p G ΛG

Λ

ΛG
reg

Λreg

ΛG
total

Λtotal

16 ccbn 1.00 0.88 0.97
ccbw 1.00 1.00 1.00
hcb 1.00 1.00 1.00
lamn 1.00 1.00 1.00
lamw 1.00 1.00 1.00
tsyn 1.00 1.00 1.00

32 ccbn 1.00 0.92 0.99
ccbw 1.00 1.00 1.00
hcb 1.00 0.94 0.99
lamn 1.00 1.00 1.00
lamw 1.00 1.00 1.00
tsyn 1.00 0.92 0.99

64 ccbn 1.00 1.00 1.00
ccbw 1.00 0.92 0.99
hcb 1.00 1.00 1.00
lamn 1.00 1.00 1.00
lamw 1.00 1.00 1.00
tsyn 1.00 0.95 0.99

Table 2: The relative performance when considering
the gradient-based regularization in the communication
volume. We compare the communication Λ due to
SpMV, the communication Λreg due to an image gra-
dient computation, as well as the total communication
Λtotal = Λ+Λreg. The fractions given are the communi-
cations when explicitly taking into account the gradient
communication during the partitioning (marked with a
superscriptG), divided by the communication when this
cost is ignored, both for the sampling method.

the 32 GPUs. Figure 6 shows the results of these
measurements. For some acquisition geometries, the
amount of available memory made it impossible to run
with a low number of GPUs. Our initial implementation
of Pleiades supports only p = 2q processors. We observe
that Pleiades is signi�cantly faster than ASTRA-MPI,
and Pleiades continues to scale even when using all
the available GPUs, unlike ASTRA-MPI which reached
a communication bottleneck for ccbw at around 16
GPUs.

6 Conclusion

We presented a new partitioning method for tomo-
graphic reconstruction that can handle arbitrary acqui-
sition geometries. Furthermore, we introduced an ef-
�cient data structure for the communication metadata
that needs to be stored to use these partitionings in
practice. We demonstrated that the method is able to
produce partitionings of similar quality to those pro-
duced by the previously published GRCB method, but
is much faster. Finally, we showed scalability results for

8 16 32

p

0.0

50.0

100.0

150.0

200.0

T
(s

)

ccbn (Pleiades)

ccbw (Pleiades)

hcb (Pleiades)

ccbn (ASTRA-MPI)

ccbw (ASTRA-MPI)

Figure 6: Scaling results of Pleiades versus ASTRA-
MPI. Vertically, the runtime in seconds of three consec-
utive Landweber iterations is shown. Horizontally, we
show the number of GPUs that were used.

using these partitionings in practice for a typical recon-
struction task. For ccbw with 32 GPUs we achieved a
speedup of 2.8× compared to ASTRA-MPI.

Acknowledgements

Financial support provided by The Netherlands Organ-
isation for Scienti�c Research (NWO), project number
639.073.506.

References

[1] A. Beck and M. Teboulle, A fast iterative

shrinkage-thresholding algorithm for linear inverse

problems, SIAM Journal on Imaging Sciences, 2 (2009),
pp. 183�202.

[2] J. W. Buurlage, T. Bannink, and R. H. Bis-
seling, Bulk: a modern C++ interface for bulk-

synchronous parallel programs, in Euro-Par 2018: Par-
allel Processing, vol. 11014 of Lecture Notes in Com-
puter Science, Springer, 2018, pp. 519�532.

[3] J. W. Buurlage, R. H. Bisseling, and K. J.
Batenburg, A geometric partitioning method for dis-

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
21

 to
 1

31
.2

11
.1

2.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

yang11
Typewritten Text
67



tributed tomographic reconstruction, Parallel Comput-
ing, 81 (2019), pp. 104�121.

[4] T. M. Buzug, Introduction to Computed Tomography:

From Photon Statistics to Modern Cone-beam CT,
Springer, 2008.

[5] Ü. V. Çatalyürek and C. Aykanat, A �ne-grain

hypergraph model for 2D decomposition of sparse ma-

trices, in Proceedings 15th International Parallel and
Distributed Processing Symposium. IPDPS 2001.

[6] Ü. V. Çatalyürek and C. Aykanat, Hypergraph-
partitioning-based decomposition for parallel sparse-

matrix vector multiplication, IEEE Transactions on
Parallel and Distributed Systems, 10 (1999), pp. 673�
693.

[7] A. Chambolle and T. Pock, A �rst-order primal-

dual algorithm for convex problems with applications to

imaging, Journal of Mathematical Imaging and Vision,
40 (2010), pp. 120�145.

[8] M. de Berg, O. Cheong, M. van Kreveld,
and M. Overmars, Computational Geometry: Al-

gorithms and Applications, Springer-Verlag TELOS,
Santa Clara, CA, USA, 3rd ed., 2008.

[9] P. Gilbert, Iterative methods for the three-

dimensional reconstruction of an object from pro-

jections, Journal of Theoretical Biology, 36 (1972),
pp. 105�117.

[10] M. R. Hestenes and E. Stiefel, Methods of conju-

gate gradients for solving linear systems, Journal of Re-
search of the National Bureau of Standards, 49 (1952),
pp. 409�436.

[11] A. C. Kak and M. Slaney, Principles of Computer-
ized Tomographic Imaging, Society for Industrial and
Applied Mathematics, 2001.

[12] K. Lange, R. Carson, et al., EM reconstruction

algorithms for emission and transmission tomography,
Journal of Computer Assisted Tomography, 8 (1984),
pp. 306�16.

[13] Y. Long, J. A. Fessler, and J. M. Balter,
3D forward and back-projection for X-ray CT using

separable footprints, IEEE Transactions on Medical
Imaging, 29 (2010), pp. 1839�1850.

[14] B. D. Man and S. Basu, Distance-driven projection

and backprojection in three dimensions, Physics in
Medicine and Biology, 49 (2004), pp. 2463�2475.

[15] W. J. Palenstijn, J. Bédorf, J. Sijbers, and
K. J. Batenburg, A distributed ASTRA toolbox,
Advanced Structural and Chemical Imaging, 2 (2017),
p. 19.

[16] D. M. Pelt and R. H. Bisseling, A medium-grain

method for fast 2D bipartitioning of sparse matrices,
in IEEE 28th International Parallel and Distributed
Processing Symposium, 2014, pp. 529�539.

[17] W. van Aarle, W. J. Palenstijn, J. Cant,
E. Janssens, F. Bleichrodt, A. Dabravolski,
J. D. Beenhouwer, K. J. Batenburg, and J. Si-
jbers, Fast and �exible X-Ray tomography using the

ASTRA toolbox, Optics Express, 24 (2016), p. 25129.
[18] F. Xu and K. Mueller, A comparative study of pop-

ular interpolation and integration methods for use in

computed tomography, 3rd IEEE International Sympo-
sium on Biomedical Imaging: Macro to Nano, (2006),
pp. 1252�1255. .

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
21

 to
 1

31
.2

11
.1

2.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

yang11
Typewritten Text
68




