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Phase Transitions and Resilience in Physical 

and Psychological Health

MA R C E L  G .   M .  O L DE  R I K K E RT, N O E M I  S C H U U R M A N,   
A N D  R E N É  J.   F.  M E L I S

5.1. INTRODUCTION

To explain the usefulness of complexity science in medicine and clinical psy-
chology, we will start with answering the golden why. Why do we need complex 
systems theory in studying diseases? Thereafter, we will discuss how this com-
plexity thinking affects medicine, and what specific tools from complexity science 
can be applied. Both will be detailed in an in- depth description of our under-
standing of resilience and the dynamics of tipping points (TPs) that are often 
met in clinical practice. This will be followed by a methodological description 
of how the complexity and resilience of human physiological and psychological 
systems can be studied and quantified in medicine and psychology. We will end 
this chapter picturing the horizon of the next stage of application of complexity 
science in patient care and medical science.

5.1.1 The Why of Complex Systems for Complex Patients

The adjective “complex” for patients describes them in abstract ways as a 
multicomponent system (1), with many (feedback) interactions (2), that are at 
least partly nonlinear (3), history and environment dependent (4), and of dif-
ferent temporal and spatial scales (5).1 The components can be organs, but 
also components in the environment (e.g., the patient’s family) that impact the 
patient’s physical and psychological health. In the following sections, we will dis-
cuss examples in which the complexity lens in medicine and psychology is helpful 
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in understanding and forecasting critical transitions between different disease 
states.

5.1.2. Complexity in Older Persons

Many examples of transitions and cascades of change can be seen in older people, 
who repeatedly have to adapt to changing conditions due to social change (e.g., re-
tirement, loss of spouse) or incident chronic diseases (e.g., heart failure, dementia) 
against the background of the physiology of aging that involves diminishing phys-
ical and cognitive reserve capacity. The underlying multimorbidity dominantly 
presents in almost all older persons, and their multiform interactions (between 
the multiple disease causes, the symptoms, the medicines, and the other treat-
ment components such as exercise and diet) reflect the multiple- agent condition 
in humans.2 In these clinical scenarios, it is widely recognized that the linearly 
organized medical practice, fueled by the science of single disease management, 
is insufficient to understand, study, and handle such complex multimorbidity 
conditions.3,4

Many other patient problems may also profit from enriching the classical med-
ical and psychological knowledge base by using a complexity science perspective. 
This holds true within the single disease domain, be it for complex chronic diseases 
such as depression, diabetes, or Alzheimer’s disease or for infectious diseases such 
as HIV. All show similar complex phenomena in pathophysiology:  They have 
multiple etiological and interacting components, multiple factors determining 
nonlinear spread, multiple organs involved in different historical time lines, and 
thus different consecutive stages and emerging stage- transitions in their patient’s 
journeys.5,6 This warrants a complexity science perspective in healthcare sciences 
as well as in psychological and medical sciences.

5.1.3 How Complexity Thinking Affects Medicine

The paths to improved understanding of many human diseases, including cancer, 
diabetes, chronic inflammatory diseases, and neurodegenerative disorders, lie in 
understanding the changed functioning (and malfunctioning) of interactions be-
tween biological components.7 Often malfunctioning of a single organ (or organ 
part) does not cause serious problems due to redundancy in the physiological 
networks, but the combined effects of multiple malfunctioning components of 
an interacting network of organs are substantial and life threatening. For ex-
ample, hippocampal and prefrontal cortex atrophy are often seen together with 
white matter lesions as malfunctioning components or nodes, of which only 
the summed pathophysiology in the neuronal network causes cognition and 
functional performance to deteriorate in daily living so that dementia must be 
diagnosed. An understanding of how individual (sub)components function is 
helpful, but not enough to understand the whole disease severity and the individ-
ually emerging disease presentations. This means that reducing the research focus 
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to smaller and smaller components, which is the traditional scientific approach, 
has limits in understanding individual patients and the huge variation present 
in clinical practice. Precision medicine, with a focus on genetic, proteomic and 
metabolomic phenotyping, will not be able to forecast treatment effects in com-
plex diseases that are further determined by relevant interactions at a higher level 
of scale (e.g., increasing amyloid- beta knowledge in Alzheimer’s disease did not 
result in a single trial with positive effects on cognition and daily functioning nor 
in accurate predictions of Alzheimer disease trajectories). This requires multiscale 
modeling and predictors at a higher level, integrating not only molecular, cel-
lular, and organ but also individual and group pathophysiological factors (e.g., 
also white matter lesions, sleep quality, loneliness, and caregiver support probably 
highly determine Alzheimer treatment effect and prognosis).8

5.1.4 Tools for Investigating HUMAN complexity

There are three modes of investigation of human physiology when working within 
complexity science:  theoretical, computational, and experimental. These modes 
increasingly include quantitative, realistic, and even predictive models, bringing 
together statistical data analysis, modeling efforts, analytical approaches, and lab-
oratory experiments.

As evidenced by the growing literature on complexity and TPs in medicine 
and psychology,9,10 these constructs are already being applied in medical re-
search and clinical practice. This may lead to an exciting time where our current, 
more static concepts of chronic diseases are likely to change, in favor of highly 
dynamic concepts with multiple scales taken into account in understanding and 
influencing health and disease.10

Complexity science perspectives in medicine and psychology demand attitudes 
quite different from those in physics, chemistry, and mathematics, where one 
may successfully search for fundamental laws, true for all conditions. Biological 
complex systems are different, as they also experience evolution, degeneration, 
and loss of entropy by added energy and human behavior, in contrast with the 
second law of thermodynamics that predicts stability of entropy in closed systems 
in equilibrium state and increase of entropy in open natural processes. Thus, there 
probably are no general laws for complexity in the domain of human physiology. 
Nevertheless, we may sharpen our reasoning on human complexity in health and 
disease by learning how complexity science tools were applied and helped to ex-
plain complex behaviors in other solid matter, biological and social systems. In 
the following section, we will discuss some of these tools, including (indicators 
of) TPs and resilience in the context of medicine and clinical psychology.

5.2. TIPPING POINTS, TRANSITIONS, AND RESILIENCE

It is becoming increasingly evident that many complex systems have critical 
thresholds, or TPs, during which the system shifts abruptly from one state to 
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another. In clinical practice we often meet such unpredicted TPs, which there-
fore probably are the most undisputed phenomena that fit better with complexity 
than with deterministic theory. Well- known examples of TPs include acute tran-
sition toward delirium episodes, heart failure crises, recurrent falls, migraine 
attacks, epileptic seizures, and other acute severity states. In the psychological 
domain, the TPs in bipolar disorder are also studied using complexity science 
methods. The common denominator of complex systems in which these TPs for 
acute and theoretically reversible changes are observed is that they all rely on 
one or more positive feedback mechanisms. These can accelerate change and 
propel the system over the TP and into a different and less preferable, but stable, 
diseased state.

Within dynamic systems theory, the mathematical catastrophe model helps 
to understand how changes in a patients’ systemic resilience act as risk markers 
of increased likelihood of passing TPs. In this model, TPs are known as cata-
strophic bifurcations. These bifurcations can be easily imagined for the equilib-
rium state of an older patient that can respond with either recovery or severe 
complications to stressors such as surgery or chemotherapy. Although some 
older patients (the “systems”) with sufficient resilience may respond well, change 
can also be dramatic in patients with low resilience, causing a complication to 
pass a TP. The situation in which critical transitions occur, for example, toward 
delirium, a syncope (fall due to insufficient cerebral perfusion), or a stroke, can 
be modeled by an equilibrium curve that is acutely “folded.” Notably, when a 
patient is close to such a “fold,” or TP bifurcation, a minor stressor can already 
push his system across the safe boundary. Although declining systemic resil-
ience may seemingly have little effect on older (or intensive care) patients when 
they are not meeting (anymore) stressors, they may be in a situation where even 
small (additional) stressors may push these patients over a TP, which shows lack 
of resilience. The concept of systemic resilience is therefore closely connected 
to the TP theory. However, it is in fact not obvious that a single overarching re-
silience property for the whole system exists that might determine the risk of 
passing through and recovering from TPs for the most important disease states 
in older adults. In principle, the acute severity states in different organs may 
have their own specific resilience. It is not yet known whether systemic resil-
ience can be validly assessed.

Historically, resilience in humans was first defined as the system’s ability to 
cope with stress and preserve functioning.17 Since then, systemic resilience has 
been predominantly studied in the stress recovery system of the hypothalamic– 
pituitary– adrenal axis. Later, resilience was studied in- depth in medicine in the 
domains of psychology and psychiatry, where it was defined as the capacity to re-
cover following psychosocial stressors.18 A growing series of empirical studies in 
living systems returned to the original stress- concept of resilience and showed that 
this may be quantified by several mathematical measures of slowing recovery of 
complex systems from stressors, both artificial (e.g., heat, chemicals) and natural 
(e.g., climate change).9 This was confirmed by controlled laboratory experiments, 
initially with cyanobacteria and algae.10,11
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5.2.1. Resilience Indicators in Clinical Psychology

Although the study of complex systems in psychology is young, research on re-
silience and resilience indicators has made remarkable progress in recent years, 
especially in the context of emotional regulation research and research on psycho-
pathology networks. Psychopathology network researchers conceptualize psycho-
logical disorders as a disordered state of a network of symptoms that directly affect 
each other and themselves over time.12– 14 Emotion regulation research focuses on 
the dynamics of emotions and particularly the (mal)adaptive responses of people’s 
emotion processes to internal and external stimuli.15

Both fields are related in the sense that complex psychological dynamic sys-
tems are the central focus, and this system may become disordered at some point 
in time. The resilience of the systems determines (in part) the likelihood of un-
wanted outcomes occurring. For example, a lack of resilience in emotion processes 
is considered to play a key role in psychological maladjustment, including the 
development of psychological disorders.15 In psychopathology networks, people 
who have symptom networks that are characterized by low resilience are prone to 
develop psychological disorders.12,13

In both emotion regulation and psychopathology network research, a lack of 
resilience is present when individuals are relatively strongly affected by, and show 
relatively weak recovery from, the effects of momentary perturbations on the psy-
chological variables (emotions or symptoms) under study.16 These perturbations 
can be either negative (e.g., stressors ranging from missing a train, to breaking up 
with one’s partner) or positive (e.g., viewing beautiful art or getting a promotion at 
work). People with low resilience will have longer- lasting effects of perturbations 
on their emotions or symptoms, and because there is little recovery, the effects 
of multiple (even small) perturbations can more easily build up to problematic 
levels. Key indicators of a lack of resilience of the dynamic system that have been 
used in psychology are similar dynamical indicators of resilience as used in med-
ical research: strong autocorrelations in the time series for the variables of interest 
(e.g., emotions or symptoms), strong cross- correlations (interrelations over time) 
between these variables, and high variability of these variables over time.

For example, a person with a strongly connected network of depression 
symptoms (see Figure 5.1) will, for example, after experiencing chronic stress 
(e.g., exacerbated by a strong autoregression for stress or worrying), more easily 
develop a depressed mood, then worry more, which may lead to sleep problems, 
subsequently fatigue, and then concentration problems, issues at work and self- 
reproach, and even more feelings of worthlessness (see Figure 5.1C).12 On the 
other hand, someone for whom the effects of stress on mood, of worrying and 
fatigue on sleep problems and concentration, or of failure on their sense of self- 
worth are weak will be more resilient against developing a major depressive dis-
order (see Figure 5.1D).

Autocorrelation has arguably had the most attention within the context of 
emotion regulation, where it is used as a measure of “emotional inertia” or re-
sistance to change in emotions,16,17 although it is also an important part of 
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dynamic (psychopathology) networks.13 The autocorrelation (or autoregression 
coefficients) for a particular psychological variable (e.g., mood or a symptom) is 
obtained through time series modeling, and may be negative or positive (ranging 
from  – 1 to 1). Positive autocorrelations indicate that a relatively low score 
now (e.g., for mood) will partly carry over to the scores at later times. Positive 
autocorrelations are expected to occur for a plethora of psychological variables, 
especially those pertaining to mood, given that these are considered to typically 
show some stability over time. Negative autocorrelations indicate that a low score 
at this moment is followed by a high score at later times, and vice versa. This 
is something that is rarely seen for psychological variables but may occur for 
disordered psychological processes of intake (e.g., eating disorders). The stronger 
the autocorrelations, the stronger the carryover, and the easier it will be to predict 
future states of the variable from a past state. Importantly, this also means that the 
variables will recover relatively slowly from perturbations, because their effects 
are carried over for some period of time (see Figure 5.1A). Multiple perturbations 
will also more easily add up over time as a result of this. Hence, strong autocorre-
lation is used as an indication of low resilience. In contrast, when autocorrelations 
are weak, this indicates that each moment is a “new moment,” with little or no 
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Figure 5.1 Panels A and B: Simulated autoregressive process for worrying for 
(hypothetical) individuals “Cameron,” with an autocorrelation of 0.7 (A), and individual 
“Alex,” with an autocorrelation of 0.1 (B). Both individuals experience a strong stressor 
at time point 25, but Cameron recovers much more slowly than Alex, because Cameron’s 
process has more moment- to- moment carry- over. Panels C and D: Psychopathology 
networks for individuals Cameron (C) and Alex (D). Cameron’s network is more densely 
connected than Alex’s network, which has less, and weaker, autoregressive and cross- 
lagged associations.
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carryover from previous moments, and as such the relatively resilient system can 
“recover” very rapidly from perturbations (see Figure 5.1B).

Multiple studies in psychology show evidence that emotional inertia is a risk 
factor for psychological maladjustment. For example, the level of people’s emo-
tional inertia has been found to be correlated to neuroticism, low self- esteem, 
lower overall positive affect, and higher negative affect; having a major de-
pressive disorder; and even the onset of major depressive disorder two years 
later.15,17

Strong cross- correlations (or cross- lagged effects), which are correlations be-
tween variables over time, are also considered indicative of a lower resilience 
of psychological systems. If variables are strongly interconnected, the effects of 
perturbations on one variable in the system easily spread to other variables and, 
hence, can alter the system on a larger scale than may be expected based on just 
the original perturbation. As such, and especially when strong cross- correlations 
are combined with strong autocorrelations, consequences of small perturbations 
can be severe. This idea is central to psychopathology networks, which consist of 
networks of interrelated symptoms of psychological disorders.12– 14

High variability in variables over time is also considered an indication of a 
lack of resilience to perturbations, such as when someone is overly reactive to 
what could be considered small stressors.15 However, researchers report some 
concern in the robustness of using variability as an indicator for resilience, be-
cause high variability may also result due to actual strong perturbations instead of 
overreactions, low variability may also be maladaptive (e.g., when someone is so 
impervious to perturbations that emotions lose their adaptive function),15 and a 
lower variance may also result due to either very low or very high mean levels of 
symptoms or emotions (ceiling or floor effects).16,18

As discussed previously, changes in resilience may indicate tipping points for 
sudden transitions in complex systems. Changes in resilience indicators, such as 
increasing autocorrelations, variances, and cross- correlations, thus may be used 
as early warning signals for sudden transitions from a normal healthy state to a 
disordered state.16,19 Recent work in the context of psychopathology networks 
provides evidence in line with this, mainly in the context of the development of 
major depressive disorder (MDD). For example, van de Leemput et al.16 found 
that people who showed sudden transitions from normal to depressive states, 
or vice versa, also had stronger autocorrelations, correlations between emotion 
scores, and higher variability in these scores before this transition, than people 
that did not show such transitions. Furthermore, in a case study, a person who 
had experienced repeated relapse into MDD was taken of their antidepressants 
during a healthy state (double blind), which eventually resulted in a sudden tran-
sition back into depression, and early warning signals were observed before this 
transition.19

Note that not all depression states are the result of a sudden transition, as 
gradual development is also observed among patients and is consistent with 
complex systems theory. What kind of change will occur in practice will most 
likely depend on the circumstances. For example, Cramer et al.14 showed through 
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simulations of MDD as a complex system people with dense networks may de-
velop depression gradually, while people with strongly connected networks may 
be prone to sudden transitions to depression. Others presented time series models 
to study the nature of bipolar disorder and found in their empirical examples that 
one patient’s disorder was better described by gradual transitions between manic 
and depressive states, while others showed sudden transitions.20

5.2.2. Resilience Indicators in Medicine

Personalized healthcare requires a balanced judgment based on the present di-
sease states and the resilience of an individual person to resist or recover from al-
teration on one or more of these disease severity states. However, whereas a huge 
knowledge base is available about diseases, we know very little on how people 
resist, recover from, and adapt to disease. The same is true for how people will re-
spond to or recover from treatment and surgery. This implies that, in medicine, we 
often have more knowledge on the perturbation (the external factor challenging 
the equilibrium of the system; i.e., the disease or treatment) than we have on the 
capacity of the system (the person involved) to deal with this perturbation. In dis-
aster and public health- based theory, resilience is the trajectory a system follows 
in time while being perturbated. In public health, we want to predict prior to the 
perturbation the system will respond and how to design systems to maximize 
their resilience (ability to resist and readily rebound from) perturbations. This is 
equally true for clinical medicine. It assumes that the response of the system is 
followed in time (the so- called resilience trajectory) to quantify the resistance and 
recovery of the system after the perturbation. However, out the same negligence 
of resilience in clinical medicine, resilience trajectories are not often followed in 
a systematic way and with objective measures. This leaves clinicians to their clin-
ical intuitions when predicting and following resilience for health challenges or 
treatments.

This may not be as problematic when enough resilience can be assumed. 
However, it is problematic and may cause iatrogenic damage when a person has 
multimorbidity or frailty. A lack of objective resilience indicators makes it difficult 
to provide personalized healthcare, and timely management of delayed recovery 
is often not possible. With the increasing availability of (sensor- based) time series 
on health indicators, the advent of new (dynamic) indicators of resilience now 
offers a means to quantify, monitor and understand resistance and recovery in 
medicine.

5.2.3. Indicators of Resilience

Possible measures to serve as indicators of resilience in medicine can be simi-
larly as in the abovementioned field of psychology derived from dynamical sys-
tems theory, which first suggests “that the recovery rate after small experimental 
perturbation can be used as an indicator of how close a system is to bifurcation 
point.”7p1120 Indeed, in the literature, a number of striking similarities between 
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warning signals for impending acute transitions across a range of chronic epi-
sodic disorders have been described, each characterized by longer recovery times 
following a stressor.6– 8 For example, elongation of the recovery period following 
an acute heart failure episode acts as risk marker for quick relapse of heart failure 
(Table 5.1), longer recovery time of repolarization in cardiac muscle cells (longer 
QTc interval) increases the risk of ventricular fibrillation, and longer neuronal 
recovery times in epilepsy and migraine predict subsequent seizures and head-
ache attacks. On the other hand, very short periods of state change, also called 
“flickering,” may also signal a later more permanent change (e.g., flickering 
periods of paroxysmal atrial fibrillation, before chronic atrial fibrillation or only 
more lasting recovery from substance abuse after several short attempts of quit-
ting but with quick relapse, before it sticks).

In clinical practice, these principles may serve to develop bedside tests to 
measure the physical resilience of a patient by the development of tests based 
on the stimulus– response paradigm. These tests apply a standardized, but safe 
(in the sense that it doesn’t carry the risk to elicit the actual critical transition), 

Table 5.1 Recovery Times as an Indicator of Resilience and Prognosis 
for Recovery after Passing Tipping Points in the Course of a Range 

of CHRONIC diseases.6

Discipline Disease Recovery time Disease state predicted 
by longer recovery time

Cardiology Arrhythmia QTc elongation time Torsade de Pointe 
arrhythmia

G- enterology Colitis Clearing time clostridium 
dif.

Clostridium 
D. overgrowth

Geriatrics Falls Centre of mass recovery 
time

Falls, loss of balance

Hematology Acute 
leukemia

Lymphocyte recovery 
time

Relapse of disease

Immunology Breast cancer Lymphocyte recovery 
time

Relapse of disease

Neurology Epilepsy Depolarization recovery 
time

Epileptic state

Oncology Neck cancer Lesion regression time Relapse state
Psychiatry Depression Positive mood recovery 

time
Depressed state

Public Health Smoking Craving decay over time Relapse of smoking
Pulmonology Tube- 

ventilation
Ventilation recovery time Ventilation weaning 

failure

Source: Olde Rikkert MG, Dakos V, Buchman TG, et al. Slowing down of recovery as 
generic risk marker for acute severity transitions in chronic diseases. Crit Care Med. 
2016;44:601– 606. doi:10.1097/ CCM.0000000000001564
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perturbation, and the response of the system perturbated is followed both for how 
much the system is perturbated (resistance) and for the recovery time (Figure 5.2).

Empirical evidence for the feasibility and validity of such stimulus– response 
paradigm based tests is available as is illustrated by impaired systolic blood pres-
sure recovery after standing up under test conditions, which was predictive of 
this person’s survival in the following period.21 A second class of measures may be 
offered by characteristic changes in the patterns of fluctuations of a system in the 
response of the system to the natural perturbations it is permanently subject to. 
This response may also change when a system’s resilience is changing. The specific 
changes hypothesized are an increase in variance and temporal autocorrelation 
within time series as well as an increased cross- correlation in two or more time 
series describing aspects of the functioning of the system of interest. In this re-
spect, we followed the self- perceived physical, mental and social well- being of 20 
persons living in a nursing home for 100 days, and this provided empirical evi-
dence of the validity of these Dynamical Indicators of Resilience (DIORs) in dis-
criminating persons with different levels of frailty.2 In a group of high- functional 
older persons (i.e., the opposite of frailty) the DIORs (especially variance) also 
discriminated persons at different levels of successful aging persistently over 
one- year follow- up.8 These DIORs may prove valuable as dynamical resilience 
indicators in other time series of biological systems as well.

5.3. FUTURE CLINICAL APPLICATIONS

Applying complexity science methods, if clinically verified, may lead to major 
scientific breakthroughs in psychology and medicine, as this could lead to 
new individualized forecasting tools to be used in a wide range of diseases and 

Disease, treatment or
other stressor

Delayed recovery Incomplete recovery

Diminished resistance

Death or other critical transition

Time

Fu
nc
ti
on

Figure 5.2 Relation between resistance and recovery as part of overall dynamical 
resilience of a person following a stressor or disease.
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clusters of symptoms. The toolbox of time series analyses techniques and DIORs 
could go “viral” in a range of medical disciplines, as many medical researchers, 
psychologists and physicians regularly encounter TP dynamics.

However, first we must tackle the major challenge of moving complexity sci-
ence applications beyond group level validity and realize improved predictions 
based on individual time series that may positively guide individual older patients 
toward improved outcomes. This may seem far away; however, studies on contin-
uous glucose, wearable sensors, and electro- encephalographic monitoring already 
suggest that this complexity science approach enables improved forecasting and 
have successfully prevented hypoglycemic episodes, as well as epileptic seizures 
by a more reliable warning system for upcoming seizures.21– 24 In psychology, in-
dividual time series of mood and experienced emotion already can help explain 
major changes in mood in patients with bipolar disorders.16,25

Whether and how these tools will be implemented in clinical practice on a 
global scale is hard to predict, but complexity science tools may show up as emer-
gent support tools in our more and more complex patient populations, and like-
wise in our complex medical system. Further, some of these tools are already in 
use in clinical practice, such as in intensive care units as wearable devices to alarm 
periods during which patients have higher risks on epileptic insults.22 This can 
lead to changes in medication or lifestyle to guide patients toward a more resil-
ient state, which may be considered as concrete successes of complexity science 
in medicine.

5.4. CONCLUSIONS

After a period of reductionism in medical and psychological sciences and clin-
ical forecasting, focusing on in- depth and detailed characterization of indi-
vidual diseases, molecular, cellular, and organ functions at a single time point, 
we can now make a move toward linking these subparts in human physiology 
and psychology. This integrative change is greatly supported by the availability 
of complexity science tools for time series and network analyses, and the clinical 
availability of technical devices (“wearables”) to follow bodily and psychological 
signals reliably over time. This creates new data sets, not just consisting of large 
amounts of data (as in “big data”), but foremost of “complex data” with numerous 
interdependencies in the data structure. These data are interrelated as large se-
ries of data are acquired per person, which therefore have multiple cross-  and 
auto- correlations. The current growth of complexity science with methodology to 
intelligently and reproducibly analyze such data is timely and pushes the frontier 
of insight in the complex problems of both the outside skin and the inside skin 
world greatly forward.

This results in many complex clinical and research questions and hypotheses 
to be answered and tested, complex data to be analyzed, and innovations to be 
developed using dynamic network knowledge and dynamic forecasting signals 
from clinical practice. Iterative cycles of knowledge acquisition and implemen-
tation according to complexity science may finally integrate specialized subparts 
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of human knowledge again and therefore may also bridge the gaps between the 
many super- specialists and their disciplines involved in this process. Therefore, 
the application of complexity science in medicine, psychology and the humanities 
has the potential to open new horizons of interdisciplinary (team) research on 
the complex big clinical problems, such as how to manage the quickly increasing 
chronic and multimorbid disease burden and how to improve resilience for the 
stressors of modern life that we now globally face.
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