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Abstract. Treewidth is a measure of how tree-like a graph is. It has
many important algorithmic applications because many NP-hard prob-
lems on general graphs become tractable when restricted to graphs
of bounded treewidth. Algorithms for problems on graphs of bounded
treewidth mostly are dynamic programming algorithms using the struc-
ture of a tree decomposition of the graph. The bottleneck in the worst-
case run time of these algorithms often is the computations for the so
called join nodes in the associated nice tree decomposition.

In this paper, we review two different approaches that have appeared
in the literature about computations for the join nodes: one using fast
zeta and Möbius transforms and one using fast Fourier transforms. We
combine these approaches to obtain new, faster algorithms for a broad
class of vertex subset problems known as the [σ, ρ]-domination prob-
lems. Our main result is that we show how to solve [σ, ρ]-domination
problems in O(st+2tn2(t log(s) + log(n))) arithmetic operations. Here,
t is the treewidth, s is the (fixed) number of states required to repre-
sent partial solutions of the specific [σ, ρ]-domination problem, and n is
the number of vertices in the graph. This reduces the polynomial fac-
tors involved compared to the previously best time bound (van Rooij,
Bodlaender, Rossmanith, ESA 2009) of O(st+2(st)2(s−2)n3) arithmetic
operations. In particular, this removes the dependence of the degree of
the polynomial on the fixed number of states s.

Keywords: Tree decompositions · Dynamic programming · Fast
Fourier transform · Möbius transform · Fast subset convolution ·
Sigma-rho domination

1 Introduction

Treewidth is an important concept in the theory of graph algorithms that mea-
sures how tree-like a graph is. While many problems that are NP-hard on general
graphs become efficiently solvable when restricted to trees, this often extends to
these problems being polynomial or even linear-time solvable when restricted to
graphs that have bounded treewidth. In general this is done in two steps:

1. Find a tree decomposition of the input graph of small treewidth.
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2. Solve the problem by dynamic programming on this tree decomposition.

In this paper, we focus on the second of these two steps and show how to improve
the running times of algorithms on tree decompositions using algebraic trans-
forms. We apply these to the general case of the so called [σ, ρ]-domination prob-
lems. This includes many well-known vertex subset problems such as Indepen-

dent Set, Dominating Set and Total Dominating Set, but also problems
such as Induced Bounded Degree Subgraph and Induced p-Regular

Subgraph.
If we assume that a graph G is given with a tree decomposition T of G of

width t, then the running time of an algorithm on tree decompositions is typi-
cally polynomial in the size of graph G, but exponential in the treewidth t. Early
examples of such algorithms include algorithms on vertex partitioning problems
(including the [ρ, σ]-domination problems) [30], edge colouring problems such as
Chromatic Index [5], or other problems such as Steiner Tree [21]. Often the
worst-case running time of these algorithms involve large factors that depend
on the treewidth t. This lead researchers to look for algorithms where these
factors grow as slow as possible as a function of t. For several Dominating

Set-like problems such as Independent Dominating Set, Total Dominat-

ing Set, Perfect Dominating Set and Perfect Code, Alber et al. [1] give
improved algorithms with special attention to the exponential dependence on the
treewidth t: for example, they showed how to solve Dominating Set in O∗(4t)
time. This was improved by Van Rooij et al. [26] who first showed how to solve
Dominating Set in O∗(3t) time by giving an O(3tt2n)-time algorithm. Van
Rooij et al. also generalised this result solving the [ρ, σ]-domination problems
in O(st+2(st)2(s−2)n3) time. The result for Dominating Set seems to be opti-
mal in some sense, as Lokshtanov et al. [22] showed that any O∗((3 − ε)t)-time
algorithm would violate the Strong Exponential-Time Hypothesis; we expect the
same for the other [ρ, σ]-domination problems.

Since then, several results have appeared improving running times of dynamic
programming algorithms on tree decompositions. For example, the algorithm by
Van Rooij et al. [26] has been generalised to Distance-r Dominating Set [12]
and Distance-r Independent Set [18]. The most notable new results are
the Cut and Count technique [16] giving randomised O∗(ct)-time algorithms for
many graph connectivity problems, mostly supported by matching lower bounds
based on the Strong Exponential-Time Hypotheses, the rank-based approach [9,
14] and the determinant-based approach [9,31] that derandomise these results at
the cost of a greater base of the exponent c.

For many of these algorithms, the computations in the so called join nodes
of a nice tree decomposition are the bottleneck of the worst-case run time. To
speed up these computations, several approaches have been used, often based on
algebraic transforms. One such method is using fast zeta and Möbius transforms
in a way that is similar to the well-known fast subset convolution algorithm by
Björklund et al. [2]. This method was first used in the context of tree decompo-
sitions by Van Rooij et al. [26] who also generalised the approach to work for the
[σ, ρ]-domination problems. At the same time, Cygan and Pilipczuk, showed that
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the fast subset convolution result could also be based on Fourier transforms [17];
they also generalised it in a different way. A variant to this approach that we
follow in this paper, directly applied to tree decompositions, can be found in the
appendix of [15]. We will discuss both these approaches in more detail in this
paper. Finally, faster joins are also obtained based on Clifford algebras [31], but
these are beyond the scope of this paper.

1.1 Goal of This Paper

The goal of this paper is twofold. Firstly, we want to present a faster algorithm for
the [σ, ρ]-domination problems. This algorithm uses O(st+2tn2(t log(s)+log(n)))
arithmetic operations: this improves the polynomial factors compared to our
earlier result [26] and removes the dependency of the degree of the polynomial
on s, where s is the (fixed) number of states used. Secondly, we want to give a
comprehensible overview of how Fourier and Möbius transforms can be used to
obtain faster algorithms on tree decompositions.

We choose to take an algebraic perspective that allows for easier generalisa-
tion and easier combination of Fourier and Möbius transform-based approaches
than that in [25,26]. However, we consider the approach in [25,26] to be more
intuitive: it relies only on counting arguments (this is especially true for the first
algorithm for Dominating Set in [25] that does not explicitly use any algebraic
transform). In our overview, we will not give details on our earlier generalised
convolution approach from [26]: after the initial examples, we directly go to the
new and improved algorithm.

2 Preliminaries

2.1 Graphs and Tree Decompositions

Let G = (V,E) be an n-vertex graph with m edges. A terminal graph1 GX =
(V,E,X) is a graph G = (V,E) with an ordered sequence of distinct vertices
that we call its terminals: X = {x1, x2, . . . , xk} with each xj ∈ V . Two terminal
graphs GX = (V1, E1,X1) and HX = (V2, E2,X2) with the same number of
terminals k, but disjoint vertex and edge sets, can be glued together to form
the terminal graph GX ⊕ HX by identifying each terminal xi from X1 with xi

from X2, for all 1 ≤ i ≤ k. That is, if X = X1 = X2 through identification,
then GX ⊕ HX = (V1 ∪ V2, E1 ∪ E2,X). A completion of a terminal graph GX

is a non-terminal graph G that can be obtained from GX by gluing a terminal
graph HX on GX and then ignoring which vertices are terminals in the result.

The treewidth of a (non-terminal) graph is a measure of how-tree like the
graph is. From an algorithmic viewpoint this is a very useful concept because,
where many NP-hard problems on general graphs are linear time solvable on
trees by dynamic programming, often similar style dynamic programming algo-
rithms exist for graphs whose treewidth is bounded by a constant. We outline
1 This is also known as a k-boundary graph.
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the basics on treewidth and specifically on dynamic programming on tree decom-
positions below. More information can, amongst other places, be found in work
by Bodlaender [4,6–8,10].

Definition 1 (tree decomposition and treewidth). A tree decomposition
of an undirected graph G = (V,E) is a tree T in which each node i ∈ T has an
associated set of vertices Xi ⊆ V (called a bag), with

⋃
i∈T Xi = V , such that

the following properties hold:

– for every edge {u, v} ∈ E, there exist a bag Xi such that {u, v} ⊆ Xi;
– for every vertex v in G, the bags containing x form a connected subtree: i.e.,

if v ∈ Xi and v ∈ Xj, then v ∈ Xk for all nodes k on the path from i to j in
T .

The width of a tree decomposition T is defined as maxi∈T {|Xi|} − 1: the size of
the largest bag minus one. The treewidth of a graph G is the minimum width
over all tree decomposition of G.

For a tree decomposition T with assigned root node r ∈ T , we define the terminal
graph Gi = (Vi, Ei,Xi) for each node i ∈ T : let Vi be the union of Xi with all
bags Xj where j is a descendant of i in T , and let Ei ⊆ E be the set of edges
with at least one endpoint in Vi\Xi (and as a result of Definition 1 with both
endpoints in Vi). Now, Gi contains all edges between vertices in Vi\Xi, and all
edges between Vi\Xi and Xi, but no edges between two vertices in Xi.2 Observe
that, G is the completion of Gi formed through Gi ⊕ ((V \Vi) ∪ Xi, E\Ei,Xi),
and Xi can be seen as the separator separating Vi\Xi from V \Vi in G (where
either side of the separator can be empty).

We now describe dynamic programming on a tree decomposition T . Given a
graph problem that we are trying to solve P, define a partial solution of P on
Gi to be the restriction to the subgraph Gi of a solution of P on a completion of
Gi (any completion of Gi, not only G itself). We say that the partial solution S′

on Gi can be extended to a full solution S on a completion of Gi, where S\S′ is
the extension of S′. As an example, consider the Minimum Dominating Set

problem: a solution for this problem is a vertex subset D in G such that for all
v ∈ V there is a d ∈ D with v ∈ N [d]. A partial solution is a subset D ⊆ Vi such
that for all vertices in v ∈ Vi\Xi there is a d ∈ D with v ∈ N [d]: for vertices in
Xi there does not need to be a dominating neighbour in d ∈ D as d can also be in
an extension of D. A dynamic programming algorithm on a tree decomposition
computes, for each node i ∈ T in a bottom-up fashion, a memoisation table Ai

containing all relevant (described in the next paragraph) partial solutions on Gi

obtaining a solution to P in the root of T .
To restrict the number of partial (relevant) solutions stored, an equivalence

relation is defined on them: two partial solutions S′
1 and S′

2 on Gi are equivalent

2 Often Gi is defined including all edges between vertices in Xi. We choose the alter-
native definition as it makes formulating the join algorithms in Sect. 4 easier: no
bookkeeping of number of neighbours between vertices in Xi needs to be done, as
they only become neighbours higher up in the tree.
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with respect to P if any extension of S1 also is an extension of S′
2 and vice

versa. When given two equivalent partial solutions S′
1 and S′

2 for an optimisation
problem (minimisation or maximisation), we say that S′

1 dominates S′
2 if for any

extension SE of S′
1 and S′

2, the solution value of S′
1 ∪ SE is equal or better than

the solution value of S′
2 ∪ SE . Clearly, a dynamic programming algorithm on a

tree decomposition needs to store only one partial solution per equivalence class,
and if we consider an optimisation problem it can store a partial solution that
dominates all other partial solutions within its equivalence class.

Mostly, it is convenient to formulate a dynamic programming algorithm on
a special kind of tree decomposition called a nice tree decomposition [20].3

Definition 2 (nice tree decomposition). A nice tree decomposition is a
tree decomposition T with assigned root node r ∈ T with Xr = ∅, in which each
node is of one of the following types:

– Leaf node: a leaf i of T with Xi = ∅.
– Introduce node: an internal node i of T with one child node j and Xi =

Xj ∪ {v} for some v ∈ V \Vj.
– Forget node: an internal node i of T with one child node j and Xi = Xj\{v}

for some v ∈ Xj.
– Join node: an internal node i of T with two child nodes l and r with Xi =

Xl = Xr.

Given a tree decomposition consisting of O(n) nodes, a nice tree decomposition
of O(n) nodes of the same width can be found in O(n) time [20]. Consequently,
a dynamic programming algorithm on a nice tree decomposition can be used on
general tree decompositions by applying this transformation. After computing
Ai for all nodes i ∈ T , the solution to P can be found as the unique value in
Ar, where r is the root of T : here Gi = G and there is only a single equivalence
class as Xi = ∅.

This paper focuses on computing Ai for a join node i of a nice tree decom-
position. This node is the most interesting as often it dominates the running
time of the entire dynamic programming algorithm. For an example, consider [1]
where an O∗(4t) algorithm for Minimum Dominating Set for graphs with a
tree decomposition of width t is given, while all computations except the com-
putation for the join nodes can be performed in O∗(3t) time.

2.2 Dynamic Programming for [σ, ρ]-Domination Problems

The [σ, ρ]-domination problems are a class of vertex-subset problems introduced
by Telle [28–30] that generalise many well-known graph problems such as Maxi-

mum Independent Set, Minimum Dominating Set, and Induced Bounded

Degree Subgraph. See Table 1 for an overview.

3 Different version of the original definition [20] exists in literature (e.g, [16,25]): the
restrictions on the vertices in a bag of a leaf node and the root node often vary, and
sometimes an additional type of node called an edge introduce node is used.
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Definition 3 ([σ, ρ]-dominating set). Let σ, ρ ⊆ N, a [σ, ρ]-dominating set
in a graph G = (V,E) is a subset D ⊆ V such that:

– for every v ∈ D: |N(v) ∩ D| ∈ σ;
– for every v ∈ V \D: |N(v) ∩ D| ∈ ρ.

We consider only σ, ρ ⊆ N that both are either finite or cofinite.
For given σ, ρ ⊆ N and the corresponding definition of a [σ, ρ]-dominating

set, one can define several different problem variants.

– Existence problem: given a graph G, does G have a [σ, ρ]-dominating set?
– Optimisation problem (minimisation or maximisation): given a graph G,

what is the smallest [σ, ρ]-dominating set in G, or what is the largest [σ, ρ]-
dominating set in G?

– Counting problem: given a graph G, how many [σ, ρ]-dominating sets exist in
G?

– Counting optimisation problem (minimisation or maximisation): given a
graph G, how many [σ, ρ]-dominating sets in G exist of minimum/maximum
size?

Many well-known NP-hard vertex subset problems in graphs correspond to the
existence or optimisation variant of a [σ, ρ]-domination problem, as can be seen
from Table 1.

When solving a [σ, ρ]-domination problem by dynamic programming on a
tree decomposition, the equivalence classes for partial solutions stored in the
memoisation table Ai (as defined in Sect. 2.1) can be uniquely identified by the
following:

Table 1. Examples of [σ, ρ]-domination problems (taken from [28–30]).

σ ρ Standard description

{0} {0, 1, . . .} Independent Set/Stable Set

{0, 1, . . .} {1, 2, . . .} Dominating Set

{0} {0, 1} Strong Stable Set/2-Packing/Distance-2
Independent Set

{0} {1} Perfect Code/Efficient Dominating Set

{0} {1, 2, . . .} Independent Dominating Set

{0, 1, . . .} {1} Perfect Dominating Set

{1, 2, . . .} {1, 2, . . .} Total Dominating Set

{1} {1} Total Perfect Dominating Set

{0, 1, . . .} {0, 1} Nearly Perfect Set

{0, 1} {0, 1} Total Nearly Perfect Set

{0, 1} {1} Weakly Perfect Dominating Set

{0, 1, . . . , p} {0, 1, . . .} Induced Bounded Degree Subgraph

{0, 1, . . .} {p, p + 1, . . .} p-Dominating Set

{p} {0, 1, . . .} Induced p-Regular Subgraph
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– the vertices in Xi that are in the partial solution D;
– for every vertex in Xi (both in D and not in D), the number of neighbours

in D.

This corresponds exactly to the bookkeeping required to verify whether a par-
tial solution locally satisfies the requirements imposed by the specific [σ, ρ]-
domination problem. As such, we can identify every equivalence class using an
assignment of labels (sometimes also called states) that capture the above prop-
erties to the vertices in Xi: such an assignment is called a state colouring. Given
σ, ρ ⊆ N, define the set of labels C = Cσ ∪ Cρ as follows (the meaning of a label
is explained below):

Cσ =

⎧
⎨

⎩

{|0|σ , |1|σ , |2|σ , . . . , |� − 1|σ , |�|σ} if σ finite where � = max{σ}
{|≥0|σ} if σ = N

{|0|σ , |1|σ , |2|σ , . . . , |� − 1|σ , |≥�|σ} if σ �= N cofinite where � = max{N\σ} + 1

Cρ =

⎧
⎨

⎩

{|0|ρ, |1|ρ, |2|ρ, . . . , |� − 1|ρ, |�|ρ} if ρ finite where � = max{ρ}
{|≥0|ρ} if ρ = N

{|0|ρ, |1|ρ, |2|ρ, . . . , |� − 1|ρ, |≥�|ρ} if ρ �= N cofinite where � = max{N\ρ} + 1

We will use the ||ρ and ||σ notation to denote labels from Cρ, respectively Cσ. In
general, when we write |l|ρ or |l|σ, with a variable l, we mean the labels that are
not equal to |≥�|ρ or |≥�|σ. This allows us to refer to other labels by expressions
such as |l − 1|ρ. The symbol � is reserved to indicate the last labels |�|σ, |≥�|σ,
|�|ρ, |≥�|ρ and is used similarly to form labels such as |� − 1|ρ.

Let CXi be the set of assignments of labels from C to the vertices in Xi. A
label from Cσ for a vertex v ∈ Xi indicates that v is in the solution set D in
the partial solution, a label from Cρ indicates that v is not. Furthermore, the
numbers in the labels indicate the number of neighbours that v has in D; the ≥
symbol in the label |≥1|ρ indicates that v has this number of neighbours (one in
this case) in D or more. For an example, consider Minimum Dominating Set

for which σ = N and ρ = N\{0}; for this problem C = {|≥0|σ, |0|ρ, |≥1|ρ}.
Now, the elements from CXi bijectively correspond to the above defined

equivalence classes of partial solutions on Gi. Consequently, we can index the
memoisation table Ai by CXi . To keep the dynamic programming recurrences
in this paper simple, we will not store partial solutions in Ai, only the required
partial solution values or counts. That is, from here on, let the table Ai be a
function Ai : CXi → {0, 1, ..,M}∪{∞} that assigns a number to each equivalence
class of partial solutions. In an existence variant of a problem, we let Ai(c), for
c ∈ CXi , be 0 or 1 indicating whether a partial solution of this equivalence
class exists. In an optimisation variant, Ai(c) indicates the size of a dominating
partial solution in this equivalence class, or ∞ if no such partial solution exists.
For convenience reasons4, we let Ai(c), for c ∈ CXi , contain the size of the
partial solution D′ restricted to V ′\X ′, i.e., the size of a corresponding partial
solution equals Ai(c) plus the number of σ labels in c. In a counting variant,
Ai(c) indicates the number of partial solutions in the equivalence class of c.
4 In this way, we do not have to correct for double counting in join nodes in the rest

of this paper.
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Notice that for an existence variant, we can bound M by 1; for an optimisation
variant, we can bound M by n; and for a counting variant, we can bound M by
2n.

Below, we give explicit recurrences for Ai for solving a minimisation variant
of a [σ, ρ]-dominating problem by dynamic programming on a nice tree decom-
position T . Modifying the recurrences to the existence or counting variant of
the problem is an easy exercise. Extensions to the recurrences in which partial
solutions are stored (for existence and optimisation variants) are easy to make,
but tedious to write down formally. This is also to true for the extension to the
optimisation counting variant where one needs to keep track of both the size and
the number of such partial solutions.

Leaf Node. Let i be a leaf node of T . Since Xi = ∅, the only partial solution is
∅ with size zero: this size is stored for the empty vector [].

Ai([]) = 0

Introduce Node. Let i be an introduce node of T with child node j. Let Xi =
Xj∪{v} for some v ∈ V \Vj . For c ∈ CXj and cv ∈ C the label for vertex v denote
by [c, cv] the vector c with the element cv appended to it such that [c, cv] ∈ CXi .
Now:

Ai([c, cv]) =
{

Aj([c]) if cv ∈ {|0|σ, |≥0|σ} or cv ∈ {|0|ρ, |≥0|ρ}
∞ otherwise

Here, Gi equals Gj with one added isolated vertex v. Hence, v can be in the
partial solution or not, and both choices do not influence the partial solution
size on Vi\Xi (which equals Vj\Xj). Note that only one of the labels from
{|0|σ, | ≥ 0|σ} and one from {|0|ρ, | ≥ 0|ρ} is used, and which depends on the
specific [σ, ρ]-domination problem that we are solving.

Forget Node. Let i be a forget node of T with child node j. Let Xi = Xj\{v}
for some v ∈ Xj .

By definition of Gi, Gi contains edges between v and vertices in Xi while Gj

does not. To account for these edges, we start by updating the given table Aj

such that it accounts for the additional edges: that is, for an edge {u, v} with
u ∈ Xi, we adjust the counts of the number of neighbours expressed in the state
colourings for u and v. We do so before we construct table Ai.

Let [c, cu, cv] ∈ CXj be such that cu and cv are labels for u and v respectively.
For every edge {u, v} with u ∈ Xi, we update Aj twice, once for u and once for
v. We update Aj for u as follows:

Aj([c, cu, cv ]) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Aj([c, cu, cv ]) if cv ∈ Cρ

∞ if cv ∈ Cσ , cu ∈ {|0|ρ, |0|σ}
Aj([c, |l − 1|ρ, cv ]) if cv ∈ Cσ , cu = |l|ρ, l > 0
Aj([c, |l − 1|σ , cv]) if cv ∈ Cσ , cu = |l|σ , l > 0
min{Aj([c, |� − 1|ρ, cv ]), Aj([c, |≥�|ρ, cv])} if cv ∈ Cσ , cu = |≥�|ρ
min{Aj([c, |� − 1|σ , cv ]), Aj([c, |≥�|σ , cv ])} if cv ∈ Cσ , cu = |≥�|σ
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No update needs to be done if v is not in the partial solution D (first line). If
cu indicates that u has no neighbours in D while v ∈ D, then no such partial
solution exists (second line). Otherwise, the counts in the label of u need to
account for the extra neighbour. In the last four lines, we perform the required
label update for all other labels giving special attention to the case where a
| ≥ �|σ or | ≥ �|ρ label is used. Here, the minimum needs to be taken over two
equivalence classes that through the added edge become equivalent: we take the
minimum because we are solving the minimisation variant. Updating Aj for v
goes identically with the roles of u and v switched, and as stated above, we
perform this update for all edges incident to v in Gj .

Next, we compute Ai and start keeping track of equivalence classes based on
Xi instead of based on Xj . To do so, we select a dominating solution from the
partial solution equivalence classes for which v has a number of neighbours in D
that corresponds to the specific [σ, ρ]-domination problem:

Ai(c) = min
cv a valid label

Aj([c, cv])

Here, a valid label cv is any label that corresponds to having the correct number
of neighbours in D as defined by the specific [σ, ρ]-domination problem: cv is a
label |l|σ or |l|ρ for which l ∈ σ or l ∈ ρ, respectively, or cv is a label | ≥ �|ρ or
|≥�|σ in case of cofinite σ or ρ.

Join Node. Let Ai be the memoisation table for a join node i of T with child
nodes l and r. Here we give a simple algorithm for the join node; in Sect. 4, we
survey more involved approaches.

A trivial algorithm to compute Ai would loop over all pairs of state colourings
cl, cr of Xi that agree on which vertices are in the solution set D, and then
consider two corresponding partial solutions Dl on Gl and Dr on Gr and infer
the state colouring ci of the partial solution Dl ∪ Dr on Gi. It then stores in Ai

the minimum size of a solution for each equivalence class for Gi.
Note that the agreement on which vertices are in D is necessary for Dl ∪ Dr

to be a valid partial solution: otherwise vertices that are no longer in Xi can
obtain additional neighbours in D. At the same time the agreement is not a too
tight restriction as any partial solution D on Gi can trivially be decomposed
into partial solutions on Gl and Gr that agree on which vertices on Xi are in D.

Root Node. In the root node r of T (which is a forget node), Xr = ∅, Gr = G
and consequently Ar([]) is the minimum size of a [σ, ρ]-dominating set on G. The
result we set out to compute!

Lemma 1. Let P be the minimisation variant of a [σ, ρ]-domination problem
with label set C using s = |C| labels. Let A be an algorithm for the computations
in a join node for problem P that, given a join node i with |Xi| = k and the
memoisation tables Al and Ar for its child nodes, computes the memoisation
table Ai in O(f(n, k)) arithmetic operations. Then, given a graph G with a tree
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decomposition T of width t, P can be solved on G in O((st+1t + f(n, t + 1))n)
arithmetic operations.

Proof. First transform T into a nice tree decomposition T ′ with O(n) nodes.
If we show that the table Aj associated to any node j of T ′ can be computed
in O(skk + f(n, k)) arithmetic operations, then the result follows as k ≤ t + 1.
Consider the recurrences in the dynamic programming algorithm exposed above.
The result trivially holds for leaf and root nodes, and also for the join nodes by
definition of A. It is easy to see that in the recurrences for the introduce and
forget nodes, every value is computed using a constant amount of work. Since
the tables are of size sk, and for a forget node we need to do at most k update
steps as we can add at most k edges, the result follows. �

It is not difficult to modify the above algorithm to obtain:

Proposition 1. Lemma 1 holds irrespective of P being a existence, maximisa-
tion, minimisation, counting, counting minimisation or counting maximisation
variant of a [σ, ρ]-domination problem.

3 Overview of Fast Transforms

To obtain fast algorithms for the computations in join nodes of a nice tree decom-
position, we use several well-known algebraic transforms, specifically the Möbius
transform and the Fourier transform. We opted for a reasonably extensive cov-
erage of this standard material because of completeness reasons and because the
details matter for some of the arguments in Sects. 4 and 5.

Recall that, in the introduction on dynamic programming for [σ, ρ]-
domination problems, we stored integers in the domain {0, 1, . . . ,M} for some
large integer M . We present the algebraic transforms using computations in Fp,
the field of integers modulo a prime number p. Since we know that, for a join
node i with child nodes l, r, all values in the memoisation tables Ai, Al and Ar

are in {0, 1, . . . ,M}, we can do the computations in Fp as long as p > M .
In the literature, the discrete Fourier transform is often defined on sequences

in C. We choose Fp to avoid any analysis of rounding errors, especially when we
combine it with the use of zeta and Möbius transforms. Using Fp does require
that p is chosen appropriately: Fp must contain certain roots of unit required
for the Fourier transforms. In the statements of definitions, propositions and
lemmas in this section, we will sometimes say that p is chosen appropriately
to state that Fp contains the roots of unity required in the definition or in the
following proof. A short discussion on how to choose a proper prime number p
such that this condition is satisfied can be found in Sect. 3.3.

3.1 The Discrete Fourier Transforms Using Modular Arithmetic

Definition 4 (discrete Fourier transform). Let a = (ai)r−1
i=0 be a sequence

of numbers in Fp, and let ωr be an r-th root of unity in Fp. The discrete Fourier
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transform and inverse discrete Fourier transform are transformations between
sequences of length r in Fp defined as follows:

DFT (a)i =
r−1∑

j=0

ωij
r aj DFT−1(a)i =

1
r

r−1∑

j=0

ω−ij
r aj

Recall that an r-th root of unity is an element x ∈ Fp such that xr = 1 while
xl �= 1 for all l < 1.

These two transformations are inverses as their names suggest.

Proposition 2. DFT−1(DFT(a))i = ai

Proof. In the derivation below, we first fill in the definitions and rearrange the
terms (1). Then, we split the sum based on k = i and k �= i (from 1 to 2).

DFT
−1

(DFT(a))i =
1

r

r−1∑

j=0

ω
−ij
r

r−1∑

k=0

ω
jk
r ak =

1

r

r−1∑

k=0

ak

r−1∑

j=0

(ω
k−i
r )

j (1)

=
1

r
ai

r−1∑

j=0

(ω
i−i
r )

j
+

1

r

r−1∑

k=0
k �=i

ak

r−1∑

j=0

(ω
k−i
r )

j
= ai

1

r

r−1∑

j=0

1 +
1

r

r−1∑

k=0
k �=i

ak · 0 = ai

(2)

Finally, we use that the first part of the sum is trivial as ωi−i
r = ω0

r = 1, while

the second part cancels as
∑r−1

j=0(ω
k−i
r )j = 1−ω(k−i)r

r

1−ωk−i
r

is a geometric series with

ω
(k−i)r
r = (ωr

r)k−i = 1k−i = 1. �
There exist fast algorithms for the discrete Fourier transform and its inverse,

called fast Fourier transforms (FFT’s), e.g., see the Cooley-Tukey FFT algo-
rithm [13] and Rader’s FFT algorithm [24]. These algorithms are not particularly
difficult to understand, but beyond the scope of this paper.

Proposition 3 (fast Fourier transform). The discrete Fourier transform
and its inverse for sequences of length r can be computed in O(r log r) arithmetic
operations.

The definition of the discrete Fourier transform can be naturally extended
from sequences to higher dimensional structures. Let Zr be the commutative
ring of integers modulo r (here the modulus r can be non-prime), and let Zk

r be
the Zr-module of k-tuples with elements from Zr.

Definition 5 (multidimensional discrete Fourier transform). Let Z =
Zr1 × Zr2 × · · · × Zrk

, and let R =
∏k

i=1 ri. Also, let A = (ax)x∈Z be a tensor
of rank k with elements in Fp indexed by the k-tuple x = [x1, x2, . . . , xk], where
p is chosen appropriately. The multidimensional discrete Fourier transform and
inverse multidimensional discrete Fourier transform are defined as follows:
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DFTk(A)x =
r1−1∑

y1=0

ωx1y1
r1

r2−1∑

y2=0

ωx2y2
r2

· · ·
rk−1∑

yk=0

ωxkyk
rk

ay

DFT−1
k (A)x =

1
R

r1−1∑

y1=0

ω−x1y1
r1

r2−1∑

y2=0

ω−x2y2
r2

· · ·
rk−1∑

yk=0

ω−xkyk
rk

ay

When r = r1 = r2 = . . . = rk, this simplifies to the following:

DFTk(A)x =
∑

y∈Zk
r

ωx·y
r ay DFT−1

k (A)x =
1
rk

∑

y∈Zk
r

ω−x·y
r ay

where the expressions in the exponents are the dot products on the tuples x and
y in Z

k
r .

Note that the dot products are in exponents of which the base is an r-th root of
unity, hence they are computed modulo r: this agrees with the notation where
x and y are taken from Z

k
r .

Proposition 4 (fast multidimensional discrete Fourier transform). Let
Z = Zr1 × Zr2 × · · · × Zrk

, and let R =
∏k

i=1 ri. Also, let A be a tensor of
rank k with elements in Fp, A = (ax)x∈Z , where p is chosen appropriately.
The multidimensional discrete Fourier transform and inverse multidimensional
discrete Fourier transform of A can be computed in O(R log(R)) time.

Proof. Denote by x[xi ← y] the tuple x with the i-th coordinate of x replaced
by y. We compute DFTk(A) with an algorithm that uses k-steps. Let A0 = A.
At the i-th step of the algorithm, let:

(Ai)x =
ri−1∑

j=0

ωxij
ri

ax[xi←j]

Notice that if k = 1, this formula equals the one dimensional discrete Fourier
transform. It is not hard to see that Ak is the k-dimensional Fourier transform
of A: if one repeatedly substitutes the formula for Ai−1 in the formula for Ai

starting at i = k, one obtains the (non-simplified) formula for the k-dimensional
Fourier transform in Definition 5.

For the inverse multidimensional Fourier transform, almost the same proce-
dure can be followed. Let A0 = A and use the following formula at the i-th step,
finally obtaining the result Ak. Here, again if k = 1, this formula equals the one
dimensional inverse discrete Fourier transform.

(Ai)x =
1
ri

ri−1∑

j=0

ω−xij
ri

ax[xi←j]
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For the running time, notice that step i preforms R
ri

standard 1-dimensional
(inverse) discrete Fourier transforms on a sequence of length ri. By Proposition 3
this can be done in O( R

ri
ri log(ri)) = O(R log(ri)) time. This leads to a total

running time of O(R
∑k

i=1 log(ri)) = O(R log(R)). �
In the above proof, the sequences A0,A1, . . . ,Ak are created using 1-dimensional
(inverse) discrete Fourier transforms. Because the 1-dimensional discrete Fourier
transform and 1-dimensional inverse discrete Fourier transform are inverses, it
directly follows that the sequence A0,A1, . . . ,Ak used in the k-dimensional dis-
crete Fourier transform algorithm equals the sequence Ak,Ak−1, . . . ,A0 used
in the inverse k-dimensional discrete Fourier transform. I.e., as the name sug-
gests, the k-dimensional inverse discrete Fourier transform is the inverse of the
k-dimensional discrete Fourier transform.

We mainly use the multidimensional fast discrete Fourier transform in com-
bination with the well-known convolution theorem.

Lemma 2 (multidimensional convolution theorem). Let Z = Zr1×Zr2×
· · · × Zrk

, and let A=(ax)x∈Z , B=(bx)x∈Z be tensors of rank k with elements
in Fp, where p is chosen appropriately. Let the tensor multiplication A · B be
defined point wise, and let for ax and by the sum x +y be defined as the sum in
Z (coordinate-wise with the i-th coordinate modulo ri). Then:

DFT−1
k (DFTk(A) · DFTk(B))x =

∑

z1+z2≡x

az1bz2

Proof. We prove the lemma for the simplified case where r = r1 = r2 = . . . = rk

and hence Z = Z
k
r , the more general case goes analogously but is notation-wise

much more tedious as one needs to differentiate between multiple moduli and
their corresponding roots of unity.

The proof follows the same pattern as in Proposition 2. That is, we first fill
in the definitions (3) and rearrange the terms (4). Next (5), we observe that
the sum over all j ∈ Z

k
r can be written as a product of k smaller sums, each

involving but one coordinate of j.

DFT−1
k (DFTk(A)·DFTk(B))x =

1

rk

∑

y ∈Zk
r

ω−x ·y
r

⎛

⎝
∑

z1∈Zk
r

ωy ·z1
r az1

⎞

⎠

⎛

⎝
∑

z2∈Zk
r

ωy ·z2
r bz2

⎞

⎠

(3)

=
1

rk

∑

z1,z2∈Zk
r

az1bz2

∑

y ∈Zk
r

ω
y ·(z1+z2−x)
r (4)

=
1

rk

∑

z1,z2∈Zk
r

az1bz2

k∏

i=1

⎛

⎝
r−1∑

j=0

ω
j((z1)i+(z2)i−xi)
r

⎞

⎠ (5)

Here, xi, (z1)i and (z2)i are the i-th components of x, z1 and z2 respectively.
When xi ≡ (z1)i + (z2)i modulo r in the parenthesised sum of Eq. 5, this

sum becomes
∑r−1

j=0 ω0
r and thus equals r. Otherwise, when xi �≡ (z1)i + (z2)i
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the parenthesised sum is again a geometric series:
∑r−1

j=0(ω
(z1)i+(z2)i−xi
r )j that

solves to 1−(ω
(z1)i+(z2)i−xi
r )r

1−ω
(z1)i+(z2)i−xi
r

= 0 as (ω(z1)i+(z2)i−xi
r )r = (ωr

r)(z1)i+(z2)i−xi = 1 in
the numerator.

Continuing from (5), we obtain:

DFT−1
k (DFTk(A)·DFTk(B))x =

1

rk

∑

z1,z2∈Zk
r

az1bz2

k∏

i=1

r[xi = (z1)i + (z2)i] (6)

=
∑

z1,z2∈Zk
r

az1bz2

k∏

i=1

[xi = (z1)i + (z2)i] =
∑

z1+z2≡x

az1bz2

(7)

completing the proof. �
Taking all the above together, we finally obtain the following result. To dis-

tinguish from Zr, let N<r = {0, 1, . . . , r−1} be the integers up to r with standard
operators without modulus (operations for which the result of standard opera-
tions on N<r is outside N<r are considered undefined, i.e., 2 + 2 is undefined in
N<3).

Lemma 3 (cyclic and non-cyclic convolution). Let N = N<q1×N<q2×· · ·×
N<ql

, and let Q =
∏l

i=1 qi. Let Z = Zr1 × Zr2 × · · · × Zrk
, and let R =

∏k
i=1 ri.

Let f, g : Z ×N → Fp, where p is chosen appropriately. And, let h : Z ×N → Fp

be the combined (partially cyclic and partially non-cyclic) convolution of f and
g defined as:

h(x, i) =
∑

y1+y2≡x

∑

j1+j2=i

f(y1, j1)g(y2, j2)

where the sum y1+y2 ≡ x is evaluated component-wise modulo ri at coordinate i
(sum in Z), and the sum j1 + j2 = i is evaluated component-wise without
modulus (sum in N). Then, the combined convolution h can be computed in
O(R Q 2l(log(R) + log(Q) + l)) arithmetic operations.

Proof. We reduce the problem to a standard multidimensional convolution (with
modulus) by padding the input with zeroes. To be precise, let Z ′ = Z2q1 ×Z2q2 ×
· · · × Z2ql

(N with for each coordinate twice as many values and with modulo
additions), and let f ′, g′ : Z × Z ′ → Fp be equal to f and g on the intersection
of their domains (where N is interpreted as subset of Z ′ by interpreting each
N<qi

as subset of Z2qi
) and zero otherwise. Use Proposition 4 and Lemma 2

to compute the standard multidimensional convolution of f ′ and g′. Because
Z×Z ′ has RQ2l elements, this requires O(RQ2l(log(R)+log(Q)+ l)) arithmetic
operations. Because the padded zeroes prevent the circular convolution effect,
we can extract h by taking the restriction of the result to Z × N . �
Different than for previous propositions and lemmas, we have more freedom in
choosing the prime p that is ’chosen appropriately’ in the lemma above. For
the given proof, appropriate means that in Fp all ri-th roots of unity exists
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and all 2qi-th roots of unity exist. However in our applications of the lemma,
l is often fixed. This means that the running time does not change if we allow
Z ′ = Zs1 ×Zs2 ×· · ·×Zsl

with, for all i, 2qi ≤ si ≤ cqi for a small constant c. In
other words, with respect to the different qi, there must be some root of unity,
but the order of this root of unity has a broad range in which it is acceptable
for our results to be valid.

Corollary 1 (multidimensional non-cyclic convolution). Let N = N<q1×
N<q2 × · · · × N<ql

, and let Q =
∏l

i=1 qi. Let f, g : N → Fp, where p is chosen
appropriately. Let h : N → Fp be the non-cyclic convolution of f and g defined
as:

h(i) =
∑

j1+j2=i

f(j1)g(j2)

where the sum j1 + j2 = i is evaluated component-wise without modulus (sum
in N). Then, h can be computed in O(Q 2l(log(Q) + l)) arithmetic operations.

Proof. Direct consequence of Lemma 3 with k = 0. �

3.2 Möbius Inversion Using Fast Zeta and Fast Möbius Transforms

The zeta and Möbius transforms apply to functions on partially ordered sets.

Definition 6 (zeta and Möbius transform). Let P be a partially ordered
set. Given a function f : P → Fp, the zeta transform ζ(f) and the Möbius
transform μ(f) are defined as follows:

ζ(f)(x) =
∑

y≤x

f(y) μ(f)(x) =
∑

y≤x

μ(y, x)f(y)

where μ(x, y) =
{

1 if x = y
−∑

x<z≤y μ(z, y) if x < y

The recursively defined function μ(x, y) on pairs x, y ∈ P with x ≤ y is the
Möbius function of P .

The zeta transform ζ(f) and the Möbius transform are inverses, as we will
now show.

Lemma 4 (Möbius inversion). Let f : P → Fp any function, then
μ(ζ(f))(x) = f(x).

Proof. Let x, y ∈ P and consider the sum
∑

x≤z≤y μ(z, y). If x = y, then this sum
equals μ(x, x) = 1. If x < y, then this sum equals μ(x, y) +

∑
x<z≤y μ(z, y) = 0

by definition of μ(x, y). As such:

μ(ζ(f))(x) =
∑

y≤x

μ(y, x)
∑

z≤y

f(z) =
∑

z≤x

f(z)
∑

z≤y≤x

μ(y, x) =
∑

z≤x

f(z)[z = x] = f(x)

The first equality is by expanding the definitions. The second follows by reorder-
ing terms. And, the third follows from the above, where [z = x] is Iverson
notation that is 1 if z = x and 0 otherwise. �
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In this paper, we will not define any Möbius transform explicitly. We will show
how to compute zeta transforms ζ(f) of functions f : P → Fp for some partial
orders P . Then, given ζ(f), we show that we can reconstruct f . This reconstruc-
tion (implicitly) is an algorithm for the Möbius transform because a consequence
of Lemma 4 is that the zeta transform has a unique inverse.

Möbius inversion is often used in relation to lattices. A meet-semilattice is
a partial order P on which, for any two elements in x, y ∈ P , the meet x ∧
y (greatest lower bound) is properly defined. Similarly, a join-semilattice is a
partial order P set on which, for any two elements in x, y ∈ P , the join x ∨ y
(smallest upper bound) is properly defined. A lattice is a partial order P that
is both a meet and a join semi-lattice. An example is the finite lattice N

k
<r

with the coordinate-wise natural order and where the meet and join are the
coordinate-wise minimum and maximum.

We will use Möbius inversion on partial orders that are Cartesian prod-
ucts P k of a smaller partial order P . For x,y ∈ P k, x = [x1, x2, . . . , xk],
y = [y1, y2, . . . , yk], we write x ≤ y if and only if xi ≤ yi for all i. Additionally,
our partial orders have the property that for every x ∈ P , the downward closed
set {y ∈ P |y ≤ x} forms a join-semilattice. It is not hard to see that if for
every x ∈ P , {y ∈ P |y ≤ x} forms a join-semilattice, then for every x ∈ P k,
{y ∈ P k|y ≤ x} forms a join-semilattice as well, where the join operation is
defined coordinate-wise.

On the subset lattice (isomorphic to N
k
<2) there are well-known fast algo-

rithms for the zeta and Möbius transforms, often referred to as Yates’ algo-
rithm [32], see also [2,19]. Below, we generalise these algorithms to partial orders
P k for which, for every x ∈ P k, the set {y ∈ P k|y ≤ x} forms a join-semilattice.
For fast zeta and Möbius transforms on arbitrary finite lattices, see [3].

Proposition 5 (fast zeta and Möbius transforms). The zeta transform
and Möbius transform of a function f : Nk

<r → Fp can be computed in O(rkk)
arithmetic operations.

Proof. We compute ζ(f) with an algorithm that uses k steps. Let f0 = f , and
let x = [x1, . . . , xk]. Denote by x[xi ← y] the tuple x with the value on the
i-th coordinate replaced by y. At the i-th step of the algorithm, we compute fi

recursively using the left formula below.

fi(x) =

{
fi−1(x) if xi = 0
fi(x[xi ← xi − 1]) + fi−1(x) if xi > 0

fi(x) =
∑

j≤xi

fi−1(x[xi ← j])

(8)

The right formula above follows by induction on the left recurrence. By induction
on the step number i, one easily sees that fi satisfies the equation below, from
which we can obtain ζ(f) since fk = ζ(f). The result for ζ(f) follows because
each step computes rk values, each in constant time.

fi(x) =
∑

y1≤x1

∑

y2≤x2

· · ·
∑

yi≤xi

f([y1, y2, . . . , yi, xi+1, xi+2, . . . , xk])
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For μ(f), we use that μ(f) is the inverse of ζ(f): the sequence f0, f1, . . . , fk used
to compute ζ(f) from f can computationally be inverted to compute f from
ζ(f). That is, let fk = ζ(f), and let:

fi(x) =
{

fi+1(x) − fi+1(x[xi ← xi − 1]) if xi > 0
fi+1(x) if xi = 0 (9)

Assuming that the fi were computed using Eq. 8, and substituting the right part
of (8) into the case where xi > 0 in Eq. 9, we see that (9) computes the inverse
of Eq. 8:

⎛

⎝
∑

j≤xi

fi−1(x[xi ← j])

⎞

⎠ −
⎛

⎝
∑

j≤xi−1

fi−1(x[xi ← j])

⎞

⎠ = fi(x)

Hence, we can reconstruct f0 = f again. Since the run time is the same, we
obtain the result. �

It is easy to generalise the inductive proof above and obtain:

Lemma 5. Given algorithms for the zeta and Möbius transform for functions
f : P → Fp that use O(|P |) arithmetic operations, there are algorithms for the
zeta and Möbius transform for functions f : P k → Fp that require O(|P k|k)
arithmetic operations.

The application of the zeta and Möbius transform that is important to us is
the following lemma.

Lemma 6 (generalised covering product). Let P be a finite partial order
such that, for every x ∈ P k, the set {y ∈ P k|y ≤ x} forms a join-semilattice,
and let f, g : P k → Fp.

Define the generalised covering product h : P k → Fp of f and g through:

h(x) =
∑

y1∨y2=x

f(y1) g(y2)

Then μ(ζ(f) · ζ(g))(x) = h(x), where the product ζ(f) · ζ(g) is defined by point-
wise multiplication.

Proof. We will prove that (ζ(f) ·ζ(g))(x) = ζ(h)(x), then the result follows from
Lemma 4.

(ζ(f) · ζ(g))(x) =

⎛

⎝
∑

y≤x

f(y)

⎞

⎠

⎛

⎝
∑

y≤x

g(y)

⎞

⎠ =
∑

y1,y2≤x

f(y1) g(y2) (10)

Here, we first use the definition of the ζ-transform and then work out all the
product terms. The result equals ζ(h)(x) as we now show by working out the
definition of ζ(h)(x).

ζ(h)(x) =
∑

z≤x

∑

y1∨y2=z

f(y1) g(y2) =
∑

y1,y2≤x

f(y1) g(y2) (11)
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For the last equality, we reorder terms using that for any two y1,y2 ≤ x there is
a unique z such that y1 ∨y2 = z; this is well defined as the set {y ∈ P k|y ≤ x}
forms a join-semilattice. �

As a direct result, we obtain a generalisation of the covering product from [2].

Corollary 2. The generalised covering product for f, g : Nk
<r → Fp defined in

the statement of Lemma 6 can be computed in O(rkk) arithmetic operations.

Proof. Combine Lemma 6 with the fast evaluation algorithms of Proposition 5.
�

We conclude this part on zeta and Möbius transforms by a theorem on a
combined covering product and convolution product that we will use in the
sections to come.

Theorem 1. Let P be a finite partial order where, for every x ∈ P k, the set
{y ∈ P k|y ≤ x} forms a join-semilattice. Let N = N<q1 × N<q2 × · · · × N<ql

,
and let Q =

∏l
i=1 qi. Let f, g : P k × N → Fp, where p is chosen appropriately.

Define h : P k × N → Fp as follows:

h(x, i) =
∑

y1∨y2=x

∑

j1+j2=i

f(y1, j1) g(y2, j2)

If P allows zeta and Möbius transforms using O(|P |) arithmetic operations for
functions f ′ : P → Fp, then h can be computed in O(|P |k Q (k + log(Q))) arith-
metic operations.

In particular, if P k = N
k
<r, then h can be computed in O(rk Q (k + log(Q)))

arithmetic operations.

Proof. For the functions f , g, h, with domains P k ×N , we write ζ(f(−, i))(x) =∑
y≤x f(y, i) to fix the second component when using the zeta transform. Fol-

lowing the same reasoning as in Eqs. 11 and 10 in the proof of Lemma 6, one
easily obtains:

ζ(h(−, i))(x) =
∑

y≤x

∑

z1∨z2=y

∑

j1+j2=i

f(z1, j1) g(z2, j2)

=
∑

j1+j2=i

⎛

⎝
∑

y≤x

∑

z1∨z2=y

f(z1, j1) g(z2, j2)

⎞

⎠

=
∑

j1+j2=i

⎛

⎝
∑

z1,z2≤x

f(z1, j1) g(z2, j2)

⎞

⎠

=
∑

j1+j2=i

(ζ(f(−, j1)) · ζ(g(−, j2))) (x)
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Consequently, we can compute h by evaluating this expression and taking the
Möbius transform.

That is, we can compute h by taking the following steps:

1. Compute a fast zeta transform of f(−, j) and g(−, j), for each fixed j ∈ N
in O(|P |kk) arithmetic operations using Lemma 5. This takes O(|P |kQk)
arithmetic operations in total. For each j1, j2 ∈ N and x ∈ P k, we now have
ζ(f(−, j1))(x) and ζ(g(−, j2))(x).

2. For each fixed x ∈ P k, compute the sum over all j1 + j2 = i using the fast
convolution algorithm of Corollary 1 in O(Q log(Q)) arithmetic operations.
This takes O(|P |kQ log(Q)) arithmetic operations in total. For each x ∈ P k

and i ∈ N , we now have ζ(h(−, i))(x).
3. Finally, for each fixed i, take the Möbius transform of ζ(h(−, i))(x) in

O(|P |kk) time using Lemma 5. Like the first step, this takes O(|P |kQk) arith-
metic operations in total. As a result, we have the required values h(x, i).

The running time follows by summing the times required for each of the three
steps. �

3.3 Modular Arithmetic

As discussed in the introduction to this section, we embed the integers
{0, 1, . . . ,M} in the larger field Fp, for a prime p > M . However, we need to
choose p ’appropriately’ such that the resulting field Fp has the required root(s)
of unity. Below we give a short description of how this can be done.

Let r1, r2, . . . , rk be distinct integers. We look for a prime number p such that
Fp contains, for all i, an ri-th root of unity. To find the prime p, we consider
candidates mj = 1 + jR, where R =

∏k
i=1 ri, for j large enough such that

mj > M . By the prime number theorem for arithmetic progressions, the sequence
(mj)∞

j=1 contains O( 1
φ(R)

x
ln(x) ) prime numbers less than x, where φ is Euler’s

totient function. Since prime testing can be done in polynomial time, we can
look for the first candidate mj > M that is prime and choose p as such.

By Euler’s theorem, for any x ∈ Fp, with p chosen as in the previous para-
graph: 1 = xφ(p) = xp−1 = xjR. As such, for any x ∈ Fp, xl with l = jR

ri
is

an ri-th root of unity if (xl)i �= 1 for all i < ri. Finding an appropriate x is
not difficult for small ri as an 1

ri
-th fraction of all elements x ∈ Fp results in

xl being an ri-th root of unity. To see this, consider a generator g of the mul-
tiplicative subgroup of Fp. The sequence g1, g2, . . . , gp−1 equals all elements in
Fp\{0}. Putting this sequence to the power l gives gl, g2l, . . . , g(p−1)l which, by
choice of l, equals ω1

ri
, ω2

ri
, . . . , ω

(p−1)
ri , where ωri

is an ri-th root of unity in Fp.
Clearly, this forms l times the sequence ω1

ri
, ω2

ri
, . . . , ωri

ri
, as ωri

ri
= 1.
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4 Fast Join Operations

Having introduced the basics of dynamic programming on tree decompositions
for [σ, ρ]-domination problems in Sect. 2, and the basics of the fast Fourier and
fast Möbius transforms in Sect. 3, we are now ready to apply the fast transforms
to obtain fast join operations. We will survey some known techniques based on
both transforms.

Recall that, to compute the memoisation table for a join node i of a nice tree
decomposition, we are given two memoisation tables Al and Ar corresponding to
the (left and right) child nodes of i. These tables store a number for each state
colouring c with labels from C (as defined in Sect. 2.2): this number indicates the
existence (0 or 1) of a, the size of a, and/or the number of (minimum/maximum
size) partial solution(s) on Gl and Gr for the partial-solution equivalence class
corresponding to c. Here, a partial-solution equivalence class is uniquely identi-
fied by c in the following way: a label for a vertex v in c defines whether v is in
the solution set or not, and it defines how many neighbours v has in the solution
set (see Sect. 2.2). Our goal is to compute Ai.

As stated in Sect. 2.2, a trivial algorithm would loop over all combinations of
state colourings cl, cr of Xi that agree on which vertices are in the solution set
D. Then, the algorithm considers two corresponding partial solutions Dl on Gl

and Dr on Gr, and it infers the state colouring ci of the partial solution Dl ∪Dr

on Gi. Over all constructed partial solutions on Gi, it stores in Ai the minimum
size of a solution for each equivalence class ci. It is not hard to show that one
does not need to consider the partial solutions representing an equivalence class:
given the state colourings cl and cr, the state colouring of Dl∪Dr can be inferred
directly. This is done as follows. Since Gl, Gr and Gi = Gl ⊕ Gr do not contain
edges between vertices in Xi, for any vertex v ∈ Xi, the number of neighbours
in Dl and Dr add up to the resulting number in Dr ∪Dl. As such, for any vertex
v, if v has label |l|σ in cl and |l′|σ in cl, then any combined partial solution has
label |l + l′|σ for v in the state colouring that identifies the equivalence class (or
label | ≥ �|σ when l + l′ ≥ � and the | ≥ �|σ label is in Cσ). The same holds for
labels |l|ρ from Cρ.

We find it insightful to make tables, which we call ‘join tables’, that visualise
the resulting label of a vertex in ci given its labels in cl and cr: see Fig. 1.
In these tables, the patterns emerge that our fast join operations must fulfil.
Here, one can see the running time that a trivial algorithm uses to perform the
join: every non-empty cell represents a combination from Al and Ar that can
be made on each vertex coordinate (each vertex in Xi). As a result, this trivial
algorithm performs the join in O∗(xk) time, where k = |Xi| and x is the number
of non-empty cells in the join table.
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|≥0|σ |0|ρ |≥1|ρ
|≥0|σ |≥0|σ
|0|ρ |0|ρ |≥1|ρ

|≥1|ρ |≥1|ρ |≥1|ρ

|0|σ |0|ρ |1|ρ
|0|σ |0|σ
|0|ρ |0|ρ |1|ρ
|1|ρ |1|ρ

|0|σ |1|σ |2|σ |3|σ |≥0|ρ
|0|σ |0|σ |1|σ |2|σ |3|σ
|1|σ |1|σ |2|σ |3|σ
|2|σ |2|σ |3|σ
|3|σ |3|σ

|≥0|ρ |≥0|ρ

|0|σ |≥1|σ |0|ρ |≥1|ρ
|0|σ |0|σ |≥1|σ

|≥1|σ |≥1|σ |≥1|σ
|0|ρ |0|ρ |≥1|ρ

|≥1|ρ |≥1|ρ |≥1|ρ

Fig. 1. Join tables corresponding, from left to right, to Dominating Set, Strong

Stable Set, 3-Regular Subgraph, and Total Dominating Set.

4.1 Möbius Transforms for Dominating Set and Independent
Dominating Set

For the Dominating Set problem, consider the first (leftmost) join table in
Fig. 1. Notice that this is also the join table for the Independent Dominating

Set problem.
We first consider the (non-optimisation) counting variant of Dominating

Set or Independent Dominating Set: the table entries Ai(c) represent the
number of partial solutions to (independent) dominating set in the equivalence
class represented by c (partial solutions of any size).

Lemma 7 (based on [26]). The join for the counting variant of Dominating

Set can be computed in O(3kk) arithmetic operations.

Proof. We first loop over all 2k subsets Xσ ⊆ Xi, and for each subset Xσ, we
fix the labels of vertices in Xσ in cl, cr and ci to |≥0|σ. We then consider the
subproblem that remains using only the labels |0|ρ and |≥1|ρ. Let X ′ = Xi\Xσ

be the vertices without fixed label, let k′ = |X ′|, and let A′
i, A′

l, A′
r be the

memoisation tables Ai, Al, and Ar after fixing the vertices with label | ≥ 0|σ,
i.e., A′

i, A′
l, A′

r are indexed by state colourings c′
l and c′

r on X ′
i using only |0|ρ

and |≥1|ρ-labels.
To compute the join, we now essentially want to take a coordinate-wise max-

imum of the state colourings c′
l and c′

r (identifying |0|ρ with 0 and |≥1|ρ with
1) to obtain the resulting state colouring c′

i on X ′
i. That is, to compute A′

i(c
′
i),

we want to efficiently evaluate the following formula:

A′
i(c

′
i) =

∑

c′
l∨c′

r=c′
i

A′
l(c

′
l)A

′
r(c

′
r) (12)

where ∨ is the above discussed coordinate-wise maximum (identifying Cρ with
N

k
<2). Observe that this corresponds exactly to the covering product, generalised

in Lemma 6 with P = N
k
<2 and f = A′

l, g = A′
r. Consequently, this join can be

computed in O(2k′
k′) arithmetic operations by Corollary 2. Summing up the

running time over all 2k subsets of fixed labels, we obtain a running time of:

O
⎛

⎝
∑

X′⊆Xi

2|X′||X ′|
⎞

⎠ = O
(

k∑

k′=0

(
k

k′

)

2k′
k′

)

= O
(

k

k∑

k′=0

(
k

k′

)

2k′
1k−k′

)

= O(k(2 + 1)k) = O(3kk)
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where we group the subsets X ′ = Xi\Xσ of the same size and then use the
binomial theorem. �
Corollary 3. Given a graph G with a tree decomposition T of G of width t, the
number of (independent) dominating sets can be computed in O(3ttn) arithmetic
operations on O(n)-bit numbers.

Proof. Plug Lemma 7 into Lemma 1. We can use O(n)-bit numbers as the result
is at most 2n. �

The above construction does not work directly for the minimisation version
of (Independent) Dominating Set, as then we are no longer counting com-
binations of partial solutions: we want to take the minimum over the sum of
partial solution sizes. I.e., instead of Eq. 12, we need:

A′
i(c

′
i) = min

c′
l∨c′

r=c′
i

A′
l(c

′
l) + A′

r(c
′
r) (13)

To obtain a similar result for the minimisation versions, we will embed this into
a counting structure.

Lemma 8 (based on [26]). The join for the minimisation variant of Domi-

nating Set can be computed in O(3kn(k + log(n))) arithmetic operations.

Proof. The proof is identical to the proof of Lemma7, except that we need a
different fast evaluation algorithm: one that corresponds to Eq. 13. To this end,
we expand the memoisation tables A′

i, A′
l and A′

r by having the solution size as
part of the index of the table. That is, we let:

A′
l(c

′
l, κl) =

{
1 if A′

l(c
′
l) = κl

0 otherwise (14)

and similarly for A′
r. Let A′

i(c
′
i, κi) be defined as follows, which can be computed

using Theorem 1:

A′
i(c

′
i, κi) =

∑

c′
l∨c′

r=c′
i

∑

κl+κr=κi

A′
l(c

′
l, κl)A′

r(c
′
r, κr) (15)

It is easy to see that A′
i(c

′
i, κi) > 0 if and only if there exists c′

l, κl, c
′
r, κr such

that c′
l ∨ cr = ci and A′

l(cl) = κl A′
r(cr) = κr. This allows us to obtain the

result required by Eq. 13 by setting A′
i(ci) equal to the minimum value of κi for

which A′
i(ci, κi) > 0.

Observe that κi can range between 0 and n. Therefore, when we apply Theo-
rem 1 with N = N<n+1, we can perform the join in O(3kn(k+log(n))) arithmetic
operations. �
Corollary 4. Given a graph G with a tree decomposition T of G of width t,
Independent Dominating Set can be solved in O(3tn2(t+log(n))) arithmetic
operations on O(t + log(n))-bit numbers.
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Proof. Plug Lemma 8 into Lemma 1. We need log(n) bit numbers for the sizes of
partial solutions, while the sums in Eq. 15 can require up to O(k)-bit numbers.

�
We can gain linear dependence on n for Dominating Set by using a replace-

ment property (see also [26]) that holds both for Dominating Set and Total

Dominating Set.

Definition 7 (replacement property for partial solutions). An optimisa-
tion problem P has the replacement property if the difference in size between the
smallest and the largest partial solution for non-dominated equivalence classes is
at most k.

Mostly this holds for a problem P when, if given two partial solutions, one can
add or subtract all vertices in Xi from either one to obtain a solution that is at
least as good as the other. This is the case for Dominating Set as adding all
vertices in Xi to a partial solution D dominates all vertices any partial solution
can dominate, thus being less restrictive than any other partial solution.

Corollary 5. Given a graph G with a tree decomposition T of G of width t,
Dominating Set can be solved in O(3tt2n) arithmetic operations on O(t +
log(n))-bit numbers.

Proof. We further modify the algorithm used in Lemma8 (based on Lemma 7).
Let ξl and ξr be the minimum values from A′

l(c
′
l) and A′

r(c
′
r). If we restrict the

ranges of κi, κl, κr in Eq. 15 to [0, 1, . . . , k], then Theorem 1 allows us to evaluate
the equation in O(2k′

k′2) arithmetic operations. We can do so by subtracting
ξl from all values in A′

l and ξr from all values in A′
r before adding the size-

parameter to the index of the table. After the join, we can add ξl + ξr to the
results in A′

i. It is not hard to see that this does not influence the result of
the algorithm, but now allows an O(3kk2)-time join operation. The result then
follows from plugging this result into Lemma1. �

4.2 Count and Filter: Strong Stable Set, Perfect Code and Perfect
Dominating Set

To obtain fast joins for the next set of problems, we now introduce a filtering
trick based on counting. The algorithm we use here, is in essence the fast subset
convolution algorithm by Björklund et al. [2]. Our different presentation is chosen
so that we can use the same trick in the sections to follow.

First notice that the three problems mentioned in this section’s title have
essentially the same join table (the second table in Fig. 1): even though Per-

fect Dominating Set uses the |≥0|σ-label while the others use the |0|σ-label,
the structure of the join tables is identical. Compared to the join table for Dom-

inating Set, the difference in terms of Eq. 12 is that we now want to compute:

A′
i(c

′
i) =

∑

c′
l+c′

r=c′
i

A′
l(c

′
l)A

′
r(c

′
r) (16)
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That is, where in Eq. 12 we sum over three combinations to obtain a | ≥ 1|ρ-
label in c′

i, we may now only sum over two combinations (|0|ρ + |1|ρ = |1|ρ,
|1|ρ + |0|ρ = |1|ρ).
Lemma 9. The join for the maximisation variant of Strong Stable Set can
be computed in O(3knk(k + log(n))) arithmetic operations.

Proof. We use the same construction as in Lemma 7 enumerating all subsets
Xσ ⊆ Xi, X ′ = Xi\Xσ, k′ = |X ′|; and for each subset Xσ, we fix the labels of
the vertices in Xσ in cl, cr and ci to |≥0|σ. For the remaining subproblem, let
A′

i, A′
l, A′

r be the memoisation tables Ai, Al, and Ar after fixing the vertices
with label | ≥ 0|σ, i.e., they are indexed by state colourings c′

l and c′
r on X ′

i

using only |0|ρ and |1|ρ-labels. Next, we add the solution size to the index of
these tables as in the proof of Lemma 8: A′

l(c
′
l, κl) = 1 if and only if A′

l(c
′
l) = κl.

Observe that now the join can be computed by letting A′
i(c

′
i) be the minimum

value κi for which A′
i(c

′
i, κi) > 0, where:

A′
i(c

′
i, κi) =

∑

c′
l+c′

r=c′
i

∑

κl+κr=κi

A′
l(c

′
l, κl)A′

r(c
′
r, κr) (17)

To compute the result of Eq. 17 efficiently, we add yet another parameter to the
index of the tables. This parameter counts the number of |1|ρ-labels in the state
colouring c. In other words:

A′
l(c

′
l, κl, ιl) =

{
A′

l(c
′
l, κl) if #|1|ρ(cl) = ιl

0 otherwise (18)

where #|1|ρ(cl) = ιl is our notation for stating that cl contains exactly ιl |1|ρ-
labels. We claim that A′

i(c
′
i, κi) as defined in Eq. 17 equals A′

i(c
′
i, κi,#1(c′

i)),
where A′

i(c
′
i, κi, ιi) is defined as:

A′
i(c

′
i, κi, ιi) =

∑

c′
l∨c′

r=c′
i

∑

κl+κr=κi

∑

ιl+ιr=ιi

A′
l(c

′
l, κl, ιl)A′

r(c
′
r, κr, ιi) (19)

where c′
l ∨ c′

r = c′
i is again defined coordinate-wise and by identifying Cρ with

N<2.
Notice that ιl and ιr track the number of |1|ρ-labels used. Therefore, the

total number of |1|ρ-labels in a pair (c′
l, c

′
r) used as c′

l ∨ c′
r = c′

i in a summand
of the sum for A′

i(c
′
i, κi, ιi) is exactly ιi. Since we need at least one |1|ρ-label in

c′
l or c′

r to realise each |1|ρ-label in ci, we know that A′
i(c

′
i, κi,#|1|ρ(c′

i)) uses
#|1|ρ(c′

i) |1|ρ-labels in total, and hence equals A′
i(c

′
i, κi) from Eq. 17.

By Theorem 1, Eq. 19 can be evaluated in O(2k′
nk′(k′ + log(n))) arithmetic

operations. Summing the running time over all 2k subsets Xσ ⊆ Xi of vertices
for which we fixed the label, this leads to the claimed running time in exactly
the same way as in the proof of Lemma 7. �
Corollary 6. Given a graph G with a tree decomposition T of G of width t, the
optimisation variants of Strong Stable Set, Perfect Code and Perfect

Dominating Set can be solved in O(3tn2t(t + log(n))) arithmetic operations
on O(t + log(n))-bit numbers.
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Proof. Plug Lemma 9 into Lemma 1. We need log(n)-bit numbers for the sizes of
partial solutions, while the sums in Eq. 19 can require up to O(k)-bit numbers.

�

4.3 Fourier Transforms for Induced Bounded Degree or p-Regular
Subgraph

The results of the previous section can also be obtained using counting and
filtering on top of Fourier transforms instead of on top of Möbius transforms. The
resulting construction also results in fast joins for Induced Bounded Degree

Subgraph and p-Regular Subgraph: these we present in this section. The
join table for 3-Regular Subgraph is given in Fig. 1: notice that it is identical
to the join table for Induced Bounded Degree Subgraph with degree bound
three.

We should note that the results in this section can also be obtained using
Cygan and Pilipczuk’s method [17] where they encode solutions as a polynomial
and use FFT-based fast polynomial multiplication. The approach below is allows
for easier combination with Möbius transforms (as we will see in Sect. 5), and
saves a factor of t in the polynomial factors of the running time5.

We start in the same setting as before: we fix the vertices with label |≥0|ρ by
looping over all subsets Xρ ⊆ Xi (now we fix states from Cρ, previously from Cσ)
and let X ′ = Xi\Xρ and k′ = |X ′|. Let A′

i, A′
l and A′

r be the memoisation tables
after fixing the vertices with the |≥0|ρ-label indexed by state colourings c′

i, c′
l,

c′
r using labels from Cσ = {|0|σ, |1|σ, . . . , |� − 1|σ, |�|σ}.

Define the projection function π on labels in Cσ as to be π(|l|σ) = l. Also,
define addition on state colourings as follows: c′

l + c′
r = c′

i if and only if, for all
j, π((c′

l)j) + π((c′
r)j) = π((c′

i)j). Computing A′
i(c

′
i) for the counting variant of

the problem, or computing A′
i(c

′
i, κi) for the optimisation variant of the problem

using the solution size κ as part of the index, now comes down to evaluating:

A′
i(c

′
i) =

∑

c ′
l
+c ′

r=c ′
i

A′
l(c

′
l)A

′
r(c

′
r) A′

i(c
′
i, κi) =

∑

c ′
l
+c ′

r=c ′
i

∑

κl+κr=κi

A′
l(c

′
l, κl)A′

r(c
′
r, κr)

(20)

Observe that this looks very similar to the statement of Lemma 3. However, to
obtain a non-cyclic convolution for c′

l +c′
r = c′

i, a direct application of Lemma3
would require O∗((� + 1)k2k) arithmetic operations to evaluate either version of
Eq. 20. We will use cyclic convolution with counting and filtering to obtain the
result in O∗((�+1)k) arithmetic operations, resulting in an O∗((�+2)k) = O∗(sk)
time join operation.

Lemma 10. The join for the counting variant of Induced Bounded Degree

Subgraph can be computed in O((� + 2)kk2� log(� + 1)) arithmetic operations.

5 The approach in [17] uses a factor k3 (compared to our k2) by performing k2 FFT-
based polynomial multiplications that each cost O((� + 1)k log((� + 1)k)) = O((� +
1)kk log(� + 1)) arithmetic operations.
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Proof. For a state colouring c′
i ∈ Ck′

σ , define Σ(c′
i) =

∑k′

j=1 π((c′
i)j). Now, simi-

lar to the proof of Lemma9 where we added the number of 1-labels to the index
of the table, we now add the sum of the labels Σ(c′

i) to the index of the table.
That is, for both A′

l and A′
r, we set:

A′
l(c

′
l, ιl) =

{
A′

l(c
′
l) if Σ(c′

l) = ιl
0 otherwise (21)

To compute the join efficiently, we use that A′
i(c

′
i) as defined in Eq. 20 (left

equation) equals A′
i(c

′
i, Σ(c′

i)), where A′
i(c

′
i, ιi) is the result of the following

summation:
A′

i(c
′
i, ιi) =

∑

c′
l+c′

r≡c′
i

∑

ιl+ιr=ιi

A′
l(c

′
l, ιl)A′

r(c
′
rιi) (22)

where c′
l + c′

r ≡ c′
i is now defined as, for all j, π((c′

l)j) + π((c′
r)j) ≡ π((c′

i)j)
modulo � + 1, and ιl + ιr = ιi is the standard addition without modulus. To
see that this is correct, notice that the parameters ιl and ιr track the sum of
the labels in c′

l and c′
r, and ιl + ιr = Σ(c′

i) implies that each of the individual
components of c′

l + c′
r cannot cycle as that would result in ιl + ιr > Σ(c′

i).
By Lemma 3, Eq. 22 can be evaluated in O((�+1)k′

k′2� log(�+1)) arithmetic
operations as the ι parameters range from 0 to �k′. The claimed running time
follows by summing this running time over all Xρ ⊆ Xi for which we fixed the
label (similar to in the proof of Lemma 7). �
Corollary 7. Given a graph G with a tree decomposition T of G of width t, the
counting variant of Induced Bounded Degree Subgraph can be solved in
O((� + 2)t+1t2n� log(� + 1)) arithmetic operations on O(n)-bit numbers.

Proof. Plug Lemma 10 into Lemma 1. We can use O(n)-bit numbers as the result
is at most 2n. Since � is a variable (not a consant), we need t+1 in the exponent
as t ≥ k − 1 (see Definition 1). �
Adapting the above lemma and corollary to the problem’s optimisation variant
is a simple exercise.

4.4 Möbius Transforms with a Different Partial Order for Total
Dominating Set

In the previous sections, we fixed the vertices with a |≥0|σ-label (or |≥0|ρ-label)
and used a fast transform only on vertices with a label from Cρ (or Cσ). Here,
we give an example of a fast transform that deals with vertices with different
labels from both Cσ and Cρ simultaneously.

Consider the label set C = {|0|σ, |≥1|σ, |0|ρ, |≥1|ρ} associated to the Total

Dominating Set problem. On this label set, we impose the following partial
order: all labels are incomparable except that, we impose |0|σ ≤ | ≥ 1|σ and
|0|ρ ≤ |≥ 1|ρ. Notice that, using this partial order, Ck does not form a lattice,
e.g., in C3 the join [|0|σ, |0|ρ, | ≥ 1|σ] ∨ [| ≥ 1|ρ, | ≥ 1|ρ, |0|σ] is undefined due
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to the first coordinate. However, it is not hard to see that, for every x ∈ Ck,
{y ∈ P k|y ≤ x} forms a join-semilattice: either xi equals |0|σ or |0|ρ and then
yi must be equal to xi, or xi equals |≥1|σ or |≥1|ρ and then yi has two choices
which are comparable, and thus the join is defined (actually this is a lattice as
the meet is also defined).

Proposition 6. Let C and its partial order be defined as above. There are algo-
rithms for the zeta and Möbius transform for functions f : Ck → Fp that require
O(4kk) arithmetic operations.

Proof. If k = 1, the zeta and Möbius transforms are:

ζ(f)(|0|σ) = f(|0|σ) μ(f)(|0|σ) = f(|0|σ)
ζ(f)(|≥1|σ) = f(|0|σ) + f(|≥1|σ) μ(|≥1|σ) = f(|≥1|σ) − f(|0|σ)

ζ(f)(|0|ρ) = f(|0|ρ) μ(f)(|0|ρ) = f(|0|ρ)
ζ(f)(|≥1|ρ) = f(|0|ρ) + f(|≥1|ρ) μ(|≥1|ρ) = f(|≥1|ρ) − f(|0|ρ)

The result follows from Lemma 5 as these require a constant amount of arithmetic
operations. �
Lemma 11 (based on [26]). The join for the minimisation variant of Total

Dominating Set can be computed in O(4kk2) arithmetic operations.

Proof. Given Al and Ar, we can compute Ai by evaluating the following equation
that is equivalent to Eq. 13 (notice that this corresponds exactly to the rightmost
join table in Fig. 1):

Ai(ci) = min
cl∨cr=ci

Al(cl) + Ar(cr) (23)

To obtain our result, we expand the memoisation tables Ai, Al and Ar by
having the solution size as part of the index of the table. That is, we let:

Al(cl, κl) =
{

1 if Al(cl) = κl

0 otherwise (24)

and similarly for Ar. Then, we compute Ai(ci, κi) as defined below, computed
using Theorem 1:

Ai(ci, κi) =
∑

cl∨cr=ci

∑

κl+κr=κi

Al(cl, κl)Ar(cr, κr) (25)

Since Ai(ci, κi) > 0 if and only if there exists cl, κl, cr, κr such that cl ∨ cr = ci

and Al(cl) = κl Ar(cr) = κr, this allows us to obtain the result required by
Eq. 23 by setting Ai(ci) equal to the minimum value of κi for which Ai(ci, κi) >
0.

A direct application of Theorem 1 would allow us to evaluate Eq. 25 in
O(4kn2(k + log(n)) arithmetic operations. However, if we restrict the ranges
of κi, κl, κk to [0, 1, . . . , k], then Theorem 1 allows us to evaluate Eq. 25 in
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O(4kk2) arithmetic operations. We can do so because, just as in Corollary 5,
Total Dominating Set satisfies the replacement property (Definition 7): take
the minimum value from Al and Ar and subtract this from all values in Al and
Ar before adding the size-parameter to the index of the table. After the join,
we can again add the sum of both minima to the results in Ai. The result now
follows. �
Corollary 8. Given a graph G with a tree decomposition T of G of width t,
Total Dominating Set can be solved in O(4tt2n) arithmetic operations on
O(t + log(n))-bit numbers.

Proof. Plug Lemma 11 into Lemma 1 and observe that we need log(n)-bit num-
bers for the sizes of partial solutions, while the sums in Eq. 25 can require up to
O(t)-bit numbers. �

5 Bringing It Together: Faster Algorithms
for [σ, ρ]-Domination

In the previous section, we have surveyed a number of approaches to realise
fast joins operations and have given some concrete examples. In this section,
we will integrate several of these approaches into a new result obtaining the
currently fastest algorithm for [σ, ρ]-domination in its general form. The worst-
case running time of the new algorithm is of the form O(st(nts)O(1)), where the
previously fastest algorithm by Van Rooij et al. [25,26], has s as an exponent in
the polynomial part of the running time, i.e., O(st+2(tn)s(nts)O(1)). Here, we
write s = |C|, where C is the set of labels used in the dynamic programming
algorithm for a specific [σ, ρ]-domination problem (as in Sect. 2.2). To limit the
(already heavy) notational burden, we give our result for a [σ, ρ]-domination
problem with cofinite σ and finite ρ. It is not hard to modify the proofs for the
other cases.

For state colourings cl, cr of Xi with labels from C, we define the operator
cl ⊕ cr = ci as the coordinate-wise addition operator that keeps addition within
both parts of the label set. This operator is only defined if cl and cr agree on
which vertices are labelled with labels from Cσ and from Cρ and if the result
again is in Cσ or Cρ. More formally, when we write cl ⊕ cr = ci and if (cl)j =
|xl|ρ, (cr)j = |xr|ρ, then (ci)j = |xl + xr|ρ if |xl + xr|ρ ∈ Cρ and otherwise
it is undefined. And, if (cl)j = |xl|σ, (cr)j = |xr|σ, then (ci)j = |xl + xr|σ if
xl +xr < �σ and (ci)j = |≥�|σ otherwise. Observe that this corresponds exactly
to the structure of how a join for a [σ, ρ]-domination problem with cofinite σ
and finite ρ should be performed. Besides the ⊕-operator, we will also use the
standard +-operator on state colourings: cl + cr = ci. Here, the underlying
operation is the standard addition operator within each half of the label set,
which is undefined if any |≥�|σ or |≥�|ρ-label is involved. That is, if (cl)j = |xl|ρ,
(cr)j = |xr|ρ, then (ci)j = |xl + xr|ρ, which is defined only if |xl + xr|ρ ∈ Cρ.
Addition with the +-operator is similar for the σ-labels.
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Let again Al and Ar be indexed by both the state colouring and the solution
size (similar to Eqs. 14 and 24). Performing the join for the minimisation variant
of a [σ, ρ]-domination problem can now be done by extracting, for each ci, the
minimum value of κi for with the following expression is non-zero:

Ai(ci, κi) =
∑

cl⊕cr=ci

∑

κl+κr=κi

Al(cl, κl)Ar(cr, κr) (26)

To obtain a fast evaluation algorithm for Eq. 26, we use both zeta/Möbius
transforms and Fourier transforms. To do so, we impose the following partial
order p on the label set C: all labels are incomparable except that, because σ is
cofinite, we impose for all |l|σ ∈ Cσ: |l|σ ≤ |≥�|σ.

Given a state colouring ci of the vertices in Xi with labels from C = Cσ ∪Cρ,
we write ci = [cσ

i , cρ
i ] = [c≥�σ

i , c<�σ
i , cρ

i ] to differentiate between the vertices with
label from Cσ and Cρ, and also to further differentiate between vertices with the
label |≥�|σ and vertices with a label from {|0|σ, |1|σ, . . . , |�−1|σ}. By splitting ci

in this way we notationally split the different coordinates. This is just notation:
we do not reorder anything in the dynamic programming table (e.g., cρ

i can
contain the first coordinate of ci and the last, while cσ

i contains the ones in
between).

Using this notation, the zeta transform of a memoisation table Ai indexed
by both a state colouring ci = [c≥�σ

i , c<�σ
i , cρ

i ] and additional indices xi (whose
purpose will become clear later) becomes:

ζ(Ai)(ci,xi) =
∑

d≤ci

Ai(di,xi) =
∑

d1≤c
≥�σ
i

Ai([d1, c<�σ
i , cρ

i ],xi) (27)

Proposition 7. Given the memoisation table Ai(ci,xi) indexed by state colour-
ings ci ∈ Ck over the label set C (|C| = s) and some additional indices xi with
domain I, the zeta transform ζ(Ai) of Ai based on the partial order p can be
computed in O(skk|I|) arithmetic operations. Also, given ζ(Ai), Ai can be recon-
structed in O(skk|I|) arithmetic operations.

Proof. We will show that for k = 1 and hence ci ∈ C1, we have zeta and Möbius
transforms on Ai(ci,xi) requiring O(s|I|) arithmetic operations. The result then
follows from Lemma 5 and the fact that the transforms operate independent of
the parameter xi.

By definition of the partial order p, the following formulas compute ζ(Ai)
from Ai and vice versa when k = 1:

ζ(Ai)(ci,x) =
{

Ai(ci,x) if ci �= [|≥�|σ]∑
z∈Cσ

Ai([z],x) if ci = [|≥�|σ]

Ai(ci,x) =
{

ζ(Ai)(ci,x) if ci �= [|≥�|σ]
ζ(Ai)(ci,x) − ∑

z∈Cσ\{|≥�|σ} ζ(Ai)([z],x) if ci = [|≥�|σ]

Each requires O(s|I|) arithmetic operations as the sums are computed only when
ci = [|≥�|σ]. �
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Theorem 2 (bringing it all together). For an optimisation variant of
a [σ, ρ]-domination problem with s = |C|, the join can be computed in
O(sk+1kn(k log(s) + log(n))) arithmetic operations.

Proof. We want to evaluate Eq. 26 using a fast transform. Consider the what
happens to this equation if we apply the zeta transform based on the partial
order p (Eq. 27) to it:

ζ(Ai)(ci, κi) =
∑

d1≤c
≥�σ
i

Ai([d1, c<�σ
i , cρ

i ], κi) (28)

=
∑

d1≤c
≥�σ
i

∑

dl⊕dr=[d1,c<�σ
i ,cρ

i ]

∑

κl+κr=κi

Al(dl, κl)Ar(dr, κr) (29)

Continuing from here, we can decompose dl and dr coordinate-wise in the same
way as we have decomposed ci as [cσ≥�

i , cσ<�
i , cρ

i ] (to be clear: we split the coor-
dinates of dl and dr based on the labels in ci, not based on the actual labels in
dl and dr). Let dl = [d1l,d2l,d3l], dr = [d1r,d2r,d3r]. Now, observe that in
dl ⊕dr, any pair d1l and d1r on the coordinates of c≥�σ

i is summed over exactly
once because for any pair there is exactly one d1 such that d1l ⊕ d1r = d1.
Also observe that because the other coordinates of dl and dr correspond to the
vertices from the c<�σ

i and cρ
i parts of ci their ⊕-sum is the standard (non-cyclic)

+-addition on labels. As such, we obtain:

ζ(Ai)(ci, κi) =
∑

d1l,d1r≤c
≥�σ
i

∑

d2l+d2r=c<�σ
i

∑

d3l+d3r=cρ
i

∑

κl+κr=κi

Al(dl, κl)Ar(dr, κr)

(30)

We note that, in the first sum, we sum over all d1l,d1r ≤ c≥�σ

i which is consistent
with earlier notation, but by definition of p equals all d1l,d1r ∈ Cσ.

For our fast join operation, we need the sums d2l + d2r and d3l + d3r to
be cyclic in order to use cyclic convolution. Therefore, we apply the same trick
as in the proof of Lemma 10 and replace the tables Al and Ar with expanded
tables that include the sums of the labels in a state colouring as an additional
parameter in the index. Here, we do so by defining this sum of the labels of a state
colouring as the sum of the number in the labels, ignoring whether they are from
Cσ or Cρ and excluding the |≤ �|σ label. That is, let the projection function π
on labels to be π(|l|σ) = π(|l|ρ) = l. Then, for a state colouring ci ∈ Ck, define

Σ(ci) = Σ([c≥�σ

i , c<�σ
i , cρ

i ]) =
∑|c<�σ

i |
j=1 π((cσ<�

i )j) +
∑|cρ

i |
j=1 π((cρ

i )j). For example,
Σ([|0|σ, |0|ρ, | ≤ �|σ]]) = 0 and Σ([|2|σ, |1|ρ, |0|σ]]) = 3. Now, we can define the
expanded tables Al, Ar as:

Al(cl, κl, ιl) =
{

Al(cl, κl) if Σ(cl) = ιl
0 otherwise (31)

Now, we can continue from (30) replacing the sums with sums coordinate-wise
modulo �σ and �ρ + 1, using the additional parameter to prevent the modular-
cycling to happen for the result: if cycling occurs at a coordinate, the sums do
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not add up any more. That is, we now compute ζ(Ai)(ci, κi) by evaluating the
formula below using ζ(Ai)(ci, κi) = ζ(Ai)(ci, κi, Σ(ci)) where:

ζ(Ai)(ci, κi, ιi) =
∑

d1l,d1r≤c
≥�σ
i

∑

d2l+d2r≡c<�σ
i

∑

d3l+d3r≡cρ
i

∑

κl+κr=κi

∑

ιl+ιr=ιi

Al(dl, κl, ιl)Ar(dr, κr, ιr)

(32)

Where d2l + d2r ≡ c<�σ
i is modulo �σand d3l + d3r ≡ cρ

i is modulo �ρ + 1 (the
difference is due to the existence of the |≥�|σ-label).

Next, we continue from Eq. 32 by change the order of summation, taking the
outermost sum inwards, and by reordering the resulting inner terms:

=
∑

d2l+d2r≡c<�σ
i

∑

d3l+d3r≡cρ
i

∑

κl+κr=κi

∑

ιl+ιr=ιi

⎛

⎜
⎝

∑

d1l≤c
≥�σ
i

Al(dl, κl, ιl)

⎞

⎟
⎠

⎛

⎜
⎝

∑

d1r≤c
≥�σ
i

Ar(dr, κr, ιr)

⎞

⎟
⎠ (33)

=
∑

d2l+d2r≡c<�σ
i

∑

d3l+d3r≡cρ
i

∑

κl+κr=κi

∑

ιl+ιr=ιi

ζ(Al)([c
≥�σ

i ,d2l,d3l], κl, ιl) ζ(Ar)([c
≥�σ

i ,d2r,d3r], κr, ιr) (34)

Where in the last step, we apply the definition of the ζ-transform for p
(Eq. 27). As a result, we obtain a standard convolution sum that can be evaluated
using Lemma reflem:combinedconv given that the vertices with label | ≥ �|σ in
ci are fixed.

To be more precise, let us partition Xi into three parts X≥�σ
, X<�σ

, Xρ and
say that a state colouring ci is compatible with this partition if: all vertices
in X≥�σ

have the | ≥ �|σ-label; all vertices in X<�σ
have a label from Cσ\{| ≥

�|σ}; and all vertices in Xρ have a label from Cρ. Then, given such a partition
of Xi, Lemma 3 evaluates Eq. 34 for all ci compatible with (X≥�σ

,X<�σ
,Xρ).

Consequently, we can compute ζ(Ai)(ci, κi, ιi) for all values of ci, κi, and ιi
by enumerating all partitions of Xi into (X≥�σ

,X<�σ
,Xρ) and evaluating Eq. 34

using Lemma 3 for each subset of compatible ci values, and then taking the
results together.

As a result, we can evaluate Eq. 26 using a fast transform that takes the
following steps in the following amount of operations:

– Expand the tables Al and Ar taking the sums of the labels using Eq. 31 to
Al(cl, κl, ιl) and Ar(cr, κr, ιr). This takes O(sk+1kn) time, as cl takes O(sk)
values, κl takes O(n) values and ιl takes O(sk) values.

– Compute ζ(Al) and ζ(Ar) in O(sk+1k2n) arithmetic operations using Propo-
sition 7.
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– Enumerate all partitions of Xi into (X≥�σ
,X<�σ

,Xρ). For each such partition,
compute the part of the table ζ(Ai)(ci, κi, ιi) for all ci using Eq. 34 that are
compatible with this partition using Lemma 3. Then, combine the results to
obtain ζ(Ai)(ci, κi, ιi) for all ci, κi and ιi.
For each partition (X≥�σ

,X<�σ
,Xρ), this takes O((|Cσ| − 1)|X<�σ ||Cρ||Xρ|

nsk(k log(s) + log(n))) arithmetic operations by Lemma 3. By summing over
all partitions and using the multinomial theorem, we find O(sk+1kn(k log(s)+
log(n))) arithmetic operation for this whole step, as:

∑

(X≥�σ ,X<�σ ,Xρ)
partition of Xi

(|Cσ| − 1)|X<�σ ||Cρ||Xρ|

=
∑

x1+x2+x3
=k

(
k

x1, x2, x3

)

1x1(|Cσ| − 1)x2 |Cρ|x3 = (|Cσ| + |Cρ)k = sk

– Extract non-cycling values using ζ(Ai)(ci, κi) = ζ(Ai)(ci, κi, Σ(ci)).
– Compute the Möbius transform of the result obtaining Ai as μ(ζ(Ai)) = Ai.

This is done O(skkn) arithmetic operations using Proposition 7.

By summing over these steps we conclude that the algorithm requires
O(sk+1kn(k log(s) + log(n))) arithmetic operations. �

Above, the state colourings c are split in three components ci =
[c≥�σ

i , c<�σ
i , cρ

i ]. If both σ and ρ are finite, we need no Möbius transforms and
it would suffice to use ci = [cσ

i , cρ
i ]. If both σ and ρ are co-finite, we need

Möbius transforms for both parts of the label set and would need to use
ci = [c≥�σ

i , c<�σ
i , c

≥�ρ

i , c
<�ρ

i ], and adjust the partial order p in a way similar to as
in Sect. 4.4.

Corollary 9. Given a graph G with a tree decomposition T of G of width t,
the optimisation variant of a [σ, ρ]-domination problem that involves s = |C|
labels can be solved in O(st+2tn2(t log(s) + log(n))) arithmetic operations on
O(t log(s) + log(n))-bit numbers.

Proof. Plug Theorem 2 into Lemma 1 and observe that all arithmetic operations
can be done using O(t log(s) + log(n))-bit numbers: the sum of all the entries
in Al and Ar is at most sk, hence t log(s) bits, while we need the additional
log(n) bits to store partial solution sizes (see also Corollary 4). The t + 2 in the
exponent comes from the fact that t ≥ k − 1 (the minus one in Definition 1) �

We conclude by summarising results for the other variants of the [σ, ρ]-
domination problems.

Theorem 3 (results for [σ, ρ]-domination problem variants). Given a
graph G with a tree decomposition T of G of width t, the different problem vari-
ants of a [σ, ρ]-domination problem involving s = |C| labels can be solved with
the following amount of effort:
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0 11 2 12
0 0 11 2 12
11 11 2
2 2
12 12 2

0 11 2 12
0 0 11 2 12
11 11 2 12 0
2 2 12 0 11
12 12 0 11 2

Fig. 2. The right join table is for a join for the Longest/Hamiltonian Path/Cycle

and (Parital) Cycle Cover problems, as described in the appendix of [15]. It is
obtained by using a variant of ‘counting and filtering’ (Sect. 4.2) on the left join table,
for which a fast FFT-based join exists.

– Existence: O(st+2t2n log(s)) operations on O(t log(s))-bit numbers.
– Optimisation: O(st+2tn2(t log(s)+log(n))) operations on O(t log(s)+log(n))-

bit numbers.
– Counting: O(st+2t2n log(s)) operations on O(n)-bit numbers.
– Counting optimisation: O(st+2tn2(t log(s) + log(n))) operations on O(n)-bit

numbers.

Proof. The result for the optimisation problem follows from Corollary 9, and
underlying Theorem2.

For the counting optimisation problem, we use the same construction, only
without expanding tables by solution sizes and extracting the non-zero entries: at
every step of the algorithm, we let Ai(c, κ) be the number of partial solutions of
size κ that correspond to the equivalence class identified by c. The join then also
comes down to evaluating Eq. 26, resulting in the same amount of arithmetic
operations. For the existence and counting problems, we observe that we can
remove the parameter κ at step of the algorithm, as solution sizes do not matter.
Redoing the analysis of the resulting algorithm gives in the claimed amount of
arithmetic operations.

For both counting problems variants, we need O(n)-bit numbers as there can
be O(2n) solutions to count. For the existence problem, we need O(t log(s)) as
the sum of all entries in a O(st+1) table with zero-one entries can be at most
O(st+1). �

6 Conclusion

In this paper, we have shown how Möbius and Fourier transforms can be used to
speed-up computations for dynamic programming algorithms on tree decompo-
sitions. This led us to the currently fastest algorithm for the general case of the
[σ, ρ]-domination problems on tree decompositions. Additionally, we generalised
the covering product from [2] from being defined on the subset lattice to more
general partial orders (Lemma 6 and Theorem 1).

The same algebraic transforms can, and have been, used for many differ-
ent problems. For example, the Möbius-transform-based approach has been
used for clique packing, partitioning and covering problems such as Parti-

tion Into Triangles or Minimum Cover By Cliques; see [26]. Also,
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the Fourier-transform-based approach (the variant from [17]) has been used
for Bandwidth [17] and Connected Vertex Cover [27]. The Fourier-
transform-based approach in this paper originates from [15], where it was
used together with counting and filtering to obtain the join table in Fig. 2 for
Longest/Hamiltonian Path/Cycle and (Parital) Cycle Cover.

We want to emphasise the more general observation that almost any join for
which the join table has a certain ‘max’ or ‘addition’ or ‘modulo’ structure, or
a combination of those, can be done fast using the tools from this paper. For
example, the Fourier transform and corresponding cyclic convolution theorem
can be used to obtain algorithms for problems where there is some modulo
relation in the definition of the problem’s solution set D, e.g., an odd number of
neighbours in D.

The approaches in this paper have wider use beyond tree decompositions. For
example, they can be applied to branch decomposition instead of tree decompo-
sitions, obtaining faster algorithms there as well, with faster exact O(c

√
n)-time

algorithms on planar graphs as direct corollaries [11,23].

Open Problems. What we see is that, in order to use fast algebraic transforms,
we embed the problem into algebraic structures that we further parameterise
by the solution size (κ in the algorithms in this paper). However, without the
replacement property (Definition 7), this leads to algorithms with super-linear
dependence on n, while algorithms that are exponentially-slower in t but linear
in n exists. Can we somehow remove this super-linear dependence on n?

Moreover, when we consider weighted versions of the problems, the weights
will appear in the run times of the exponentially-optimal algorithms. For the
exponentially-slower algorithms (e.g., those by Alber et al. [1]) weights play no
role in the worst-case running times. Can we somehow remove the dependence
on the weights and obtain O∗(st)-time algorithms for weighted problems?
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