
9 Fungal Genomics

ROBIN A. OHM
1

CONTENTS

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
II. Advances in Genome Sequencing

Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
III. Genome Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A. Repeats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
B. Gene Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
C. Functional Annotation of the Predicted

Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
D. Data Visualization, Analysis, and Manual

Curation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
IV. Genomics and Biotechnology . . . . . . . . . . . . . . . . . 212

A. Secondary Metabolites or Natural Products . . 212
B. Carbohydrate-Active Enzymes . . . . . . . . . . . . . 213
C. Mushroom Development . . . . . . . . . . . . . . . . . . . 214
D. Plant Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 214

V. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

I. Introduction

In the past two decades, genomics has devel-
oped into a formidable tool to study various
aspects of fungi. In the year 1996, Saccharomy-
ces cerevisiae was the first fungal genome to be
sequenced (Goffeau et al. 1996), and since then
the number of publicly available genome
sequences has increased to 2128 in GenBank
and 1398 in MycoCosm (at the time of writing
in September 2019) (Grigoriev et al. 2014; Clark
et al. 2016). Fungal genomics as a research field
was kick-started by the sequencing efforts of
institutes and consortia, including the Fungal
Genome Initiative of the BROAD Institute of
MIT and Harvard (Cuomo and Birren 2010)
and the Fungal Program of the US DOE Joint

Genome Institute (Grigoriev et al. 2011). In
recent years, sequencing costs have decreased
considerably, placing genome sequencing and
analysis well within the reach of smaller labs.

After the first fungal genome of S. cerevisiae
(Goffeau et al. 1996) was published, genome
sequencing efforts initially focused on other
previously established model systems. Exam-
ples include Neurospora crassa (Galagan et al.
2003), various species of Aspergillus (Galagan
et al. 2005), the human pathogen Cryptococcus
neoformans (Loftus et al. 2005), the plant path-
ogen Fusarium graminearum (Cuomo et al.
2007), and Trichoderma reesei (Martinez et al.
2008). These genome sequences are still an
indispensable tool for studying these important
model systems. Among many other things, they
facilitate high-throughput experiments such as
RNA-Seq to study genome-wide gene expres-
sion or ChIP-Seq to study various aspects of
epigenetic regulation. In combination, these
approaches aim to assign functions to regions
of the genome and are called Functional Geno-
mics.

Moreover, the increasing number of avail-
able genome sequences (including those of
non-model organisms) allowed for a compara-
tive genomics approach. By comparing gen-
omes of related species, new insights can be
gained into genome evolution, gene evolution,
gene association with a particular lifestyle, as
well as phylogeny (examples of this are
described below).

In general, a genome sequencing project
starts with sequencing the genomic DNA
using next-generation sequencing technologies.
This is followed by genome assembly, which
aims to computationally reconstruct the
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genome from the (relatively short) sequence
reads. Next, the genome assembly is annotated.
This entails the identification of repetitive
sequences, genes, and other functional ele-
ments in the genome. The predicted genes are
subsequently annotated by assigning a putative
function, usually based on homology to known
genes and domains.

This chapter will describe advances in tech-
nologies underlying fungal genome sequencing,
annotation, and analysis. Furthermore, the
impact of fungal genome sequencing is illu-
strated using examples from several fields of
biotechnology.

II. Advances in Genome Sequencing
Technologies

In the past decade, sequencing technologies
have improved dramatically, radically changing
the landscape of fungal genome sequencing.
Sanger sequencing was the first sequencing
technique that was used for genome sequencing
(Sanger et al. 1977b). It was used to sequence
landmark genomes such as the first bacterio-
phage jX174 (Sanger et al. 1977a), the first
bacterium Haemophilus influenza (Fleisch-
mann et al. 1995), the first eukaryote (and first
fungus) Saccharomyces cerevisiae (Goffeau
et al. 1996), the first plant Arabidopsis thaliana
(Arabidopsis Genome Initiative 2000), the first
animal Caenorhabditis elegans (The C. elegans
Sequencing Consortium 1998), as well as the
human genome (International Human Genome
Sequencing Consortium 2001). The sequencing
of these genomes was generally a multi-year
undertaking and was performed by large con-
sortia of collaborating labs. Sequencing reads
that were obtained with Sanger technology were
relatively long (up to approximately 1500 bp)
and were relatively straightforward to assemble
using assembly software such as Jazz (Aparicio
et al. 2002) or Arachne (Batzoglou et al. 2002).

More recently, since the mid-2000s, several
new sequencing platforms were developed that
are collectively known as “next-generation
sequencing” (NGS). Initially, these techniques
included the now mostly defunct technologies

Roche 454 (Margulies et al. 2005), IonTorrent
(Life Technologies) and SOLiD (Applied Bio-
systems). Currently the most prominent short
read sequencing technology, however, is Illu-
mina (Bennett 2004). Although the sequences
generated by Illumina technology were initially
too short for efficient genome sequencing (up
to 25 bp), this has increased to currently
2 � 300 bp on an Illumina MiSeq machine.
New assembly approaches and software were
developed for these short reads, such as Velvet
(Zerbino and Birney 2008), ABySS (Simpson
et al. 2009), SOAPdenovo (Luo et al. 2012),
and SPAdes (Bankevich et al. 2012).

Rather paradoxically, the assemblies gener-
ated from early NGS techniques were not nearly
as good as the ones generated from Sanger
reads, with respect to assembly fragmentation.
Especially repetitive genomic regions (e.g., ori-
ginating from transposable elements) were
challenging to assembly using short reads.
However, crucial advantages of NGS technolo-
gies are that they are considerably faster and
cheaper than Sanger sequencing (Ghurye and
Pop 2019). This meant that genome sequencing
became affordable to core facilities and even
individual researchers, as opposed to the large
sequencing consortia that were required for
Sanger-based genome sequencing. This is illu-
strated by the following back-of-the-envelope
calculation: sequencing a typical fungal genome
of 30 Mbp with 100-fold coverage (each bp
sequenced on average 100 times) currently
costs less than 250 euro per genome on an
Illumina NextSeq500 machine (if 35 genomes
are pooled onto one lane). This is a stark differ-
ence with the multi-million euro Sanger
sequencing efforts of the past (Goffeau et al.
1996).

Since the early 2010s, new technologies
have become commercially available that pro-
duce considerably longer reads than Illumina.
Pacific Biosciences (PacBio) is based on single-
molecule sequencing and can produce reads of
on average 5 kbp and a maximum of 20 kbp
(Eid et al. 2009). Oxford Nanopore further
revolutionized sequencing by vastly reducing
the size of the machine to a mere USB flash
drive (Jain et al. 2016). This MinION machine
produces reads of over 100 kbp. However, both
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PacBio and Oxford Nanopore reads have a con-
siderably higher error rate (up to 15% errors)
than Illumina technology (Mardis 2017).
Although this error rate will likely improve as
new protocols become available, it is problem-
atic for accurate genome sequencing and
assembly. Approaches for assembly using
these long reads are either high coverage
sequencing (Chin et al. 2013) or a hybrid
approach that uses Illumina reads to correct
sequencing and assembly errors (Walker et al.
2014). As these long-read NGS technologies
mature further, it is likely that obtaining
genome assemblies with telomere-to-telomere
chromosomes will become trivial and afford-
able within a few years.

III. Genome Annotation

Sequencing a genome is only the first step, and
the even more important next step is to anno-
tate the genome. This process generally
includes the identification of regions of repeti-
tive DNA, the prediction of genes, and a func-
tion prediction for these genes and domains.
These individual steps can be strung together
into a pipeline. Several pipelines exist for
eukaryotic genome annotation, and two exam-
ples of frequently used pipelines for fungal
genome annotation are MAKER (Cantarel
et al. 2008) and the pipeline used by the US
DOE Joint Genome Institute (Haridas et al.
2018). This section describes the steps of
genome annotation in more detail.

A. Repeats

The term “repeat” may refer to various types of
sequences: “low-complexity regions” (some-
times called “simple repeats”) such as a homo-
polymeric run of nucleotides, as well as
transposable (mobile) elements (transposons)
(Kapitonov and Jurka 2008). These transposa-
ble elements can essentially copy themselves
and thus spread throughout the genome. They
can be subdivided into two classes, depending
on their mode of proliferation (Wicker et al.
2007). Class I elements use an RNA-

intermediate (reminiscent of a retrovirus) and
move via a “copy-paste” mechanism. They
include long interspersed nuclear elements
(LINEs), short interspersed nuclear elements
(SINEs), and long terminal repeats (LTRs).
Class II elements move via a DNA intermediate
and include helitrons and terminal inverted
repeats (Kapitonov and Jurka 2001, 2008).

Since repetitive regions are markedly dif-
ferent from gene-coding regions, it is common
practice to “mask” the repetitive regions before
commencing gene prediction. Masking ensures
that any spurious open reading frames that may
be present in the repeats will not confound (the
training of) the gene predictor. Repeats can be
identified in a newly sequenced genome using
either homology-based or de novo tools.
Homology-based tools rely on a database of
known repetitive elements such as Repbase
(Jurka et al. 2005) and a search algorithm such
as RepeatMasker (Smit et al. 2015). Novel or
genome-specific repeats can be identified using
de novo tools such as Repeatscout (Price et al.
2005), which looks for sequences that occur
repeatedly throughout the genome. Since trans-
posable elements tend to be relatively AT-rich,
their proliferation can result in large AT-rich
regions. Those regions can be distinguished
from gene-coding GC-rich regions by tools
such as OcculterCut (Testa et al. 2016).

The repetitive content of the genome varies
widely between fungi. For example, the very
compact 13.6 Mbp genome of the fern pathogen
Mixia osmundae has a repetitive content of
<1% (Toome et al. 2014), whereas the
177.6 Mbp genome of the mycorrhizal ascomy-
cete Cenococcum geophilum consist for 81% of
repetitive sequences (Peter et al. 2016). Repeti-
tive sequences are usually predominantly found
in centromeric and sub-telomeric regions but
may be spread throughout the assembly. Gen-
erally, self-replicating repeats are considered
deleterious since their spread may interrupt
genes. Fungi have evolved a defense mechanism
that recognizes repeats and inactivates these by
causing point mutations (repeat-induced point
mutations, or RIP) (Clutterbuck 2011; Casta-
nera et al. 2016). Intriguingly, genome sequenc-
ing of several plant pathogens has revealed that
pathogenesis-related genes frequently co-
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localize with repetitive sequences in these spe-
cies. A potential evolutionary benefit of this co-
localization is a higher rate of mutation due to
RIP, which in turn may lead to a higher rate of
evolution. This may allow these pathogens to
adapt more quickly to the host plant’s defenses
(Rouxel et al. 2011; Ohm et al. 2012).

B. Gene Prediction

Genes are (arguably) the most important func-
tional elements in a fungal genome. However,
their accurate identification is non-trivial. The
presence of introns in fungal genes precludes
simple scanning for open reading frames
(ORFs), which is a common initial approach
in gene prediction in prokaryotes. The struc-
ture of protein-coding genes varies widely
between eukaryotes (Yandell and Ence 2012)
and even between fungi. Differences include
GC content of the coding regions, splicing
acceptor and donor sites, intron length, num-
ber of introns per gene, gene length, etc. For
example, the ascomycete yeast S. cerevisiae has
6576 predicted genes with a median gene length
of 1071 bp, of which 4.2% contain an intron
(Goffeau et al. 1996). In contrast, the basidio-
mycete mushroom-forming fungus Schizophyl-
lum commune has 16204 predicted genes with a
median gene length of 1517 bp, of which 86.3%
contain an intron (Ohm et al. 2010). Therefore,
the gene-finding approach needs to be tailored
to each organism individually.

Gene prediction algorithms can be divided
into two categories: evidence-driven and ab
initio approaches. Evidence-driven predictors
take external evidence to identify the locations
of protein-coding genes. This evidence usually
takes the form of sequenced cDNA (Haas et al.
2003) or homology with known proteins of
related species (Birney et al. 2004). Sequenced
cDNA (in this context usually referred to as
Expressed Sequence Tags or ESTs) are aligned
to the assembly, and exons and intron splice
sites are inferred. This approach has the advan-
tage that it uses evidence specific to the organ-
ism but has the disadvantage that unexpressed
genes are less likely to be identified correctly.
Homology-based gene predictors rely on the

alignment of known proteins from related
organisms to identify exons. Advantages of
this approach are that it is cheap (since no
cDNA sequencing is required) but has the dis-
advantage that organism-specific genes are less
likely to be identified correctly. An ab initio
approach uses a mathematical model of the
gene structure to predict genes. These algo-
rithms require training, which means that they
need to learn what a gene looks like (e.g., typi-
cal gene length, intron length, GC content of
coding regions, etc.) from a subset of known
genes. This poses a problem, since for most
fungal genomes there is no prior knowledge
available. Modern approaches use a hybrid
strategy in which RNA-Seq data is used as evi-
dence to train an ab initio gene predictor. The
algorithm BRAKER, for example, only requires
aligned RNA-Seq reads and a genome assembly
and no other prior knowledge (Hoff et al. 2016).
It uses these data to train the ab initio predic-
tors GeneMark (Lomsadze et al. 2014) and
Augustus (Stanke and Waack 2003) and subse-
quently generates a high-quality gene predic-
tion.

Various gene prediction algorithms may
predict different genes at the same locus.
Although these sometimes represent alternative
splicing variants (especially when the gene pre-
dictor uses expression data as evidence), it is
more likely that only one variant is correct.
Various methods have been published that
aim to select the correct gene prediction at
each locus; examples include MAKER (Cantarel
et al. 2008), the US DOE Joint Genome Institute
pipeline (Haridas et al. 2018), and FunGAP
(Min et al. 2017).

The quality and completeness of the set of
predicted genes can be assessed by determining
the percentage of highly conserved eukaryotic
genes that are found in the predicted gene set.
Since these highly conserved genes (histones,
DNA polymerase, etc.) are expected to be pres-
ent among the genes of the newly sequenced
fungus, their absence can be indicative of an
incompleteness of the genome assembly or the
gene prediction. CEGMA (Core Eukaryotic
Genes Mapping Approach) was initially a pop-
ular tool to determine completeness (Parra
et al. 2007). However, a key issue with CEGMA
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was that the conserved genes were identified
from only six eukaryotic species. BUSCO takes
a clade-specific approach that is based on more
eukaryotic genomes, and fungi-specific con-
served gene sets are available (Simão et al.
2015). More recently, FGMP (Fungal Genome
Mapping Project) was developed that provides
a computational framework and sequence
resource specifically designed to assess the
completeness of fungal genomes (Cissé and
Stajich 2019). It is based on 246 fungal genomes
and can be used to assess assembly and anno-
tation completeness as well as suggest assembly
improvements.

C. Functional Annotation of the Predicted
Genes

Once a reliable set of genes has been predicted,
the next step is to determine the putative role of
the encoded proteins. This is referred to as
functional annotation of the predicted proteins.
It is important to note, however, that auto-
mated function predictions should be inter-
preted with care. Lab experiments may be
required to definitively confirm the function
of individual genes (e.g., an enzyme activity
assay to confirm the predicted activity of a
putative enzyme).

Functional annotation usually starts with
homology searches in a database of known
proteins, for example, using Blast (Altschul
et al. 1990) to search for homologs in GenBank
(Clark et al. 2016) or UniProt/Swiss-Prot (Bate-
man et al. 2017). Moreover, conserved protein
domains can be identified using InterPro
(Hunter et al. 2009), which comprises a collec-
tion of domain databases that includes PFAM
(Finn et al. 2016). Cellular localization of the
proteins can be predicted using SignalP (Peter-
sen et al. 2011), TMHMM (Krogh et al. 2001),
and WoLF PSORT (Horton et al. 2007). Pro-
teases/peptidases can be identified by homol-
ogy to known enzymes in the MEROPS
database (Rawlings et al. 2014). More generally,
Gene Ontology (GO) aims to provide a hierar-
chical functional annotation of the predicted
proteins, based on their molecular function,
cellular localization, and the biological process

they are involved in Ashburner et al. (2000).
Similarly, KEGG (Kyoto Encyclopedia of
Genes and Genomes) provides a classification
system into metabolic pathways, including pre-
dicted enzyme activities based on the Enzyme
Commission (EC) system (Kanehisa and Goto
2000).

Several functional annotation approaches
have been developed that aim to identify
genes that are involved in the lifestyle of fungi.
The CAZy (carbohydrate-active enzymes) data-
base focuses on enzymes that assemble, modify,
or break down polysaccharides (Lombard et al.
2014). CAZymes are especially important in the
context of plant biomass breakdown, for exam-
ple, in lignocellulose degradation and plant dis-
ease (further discussed below). Fungi are
known to produce a wide variety of secondary
metabolites and other natural products (further
discussed below). The genes involved in this
process are frequently clustered in the genome,
and these biosynthetic gene clusters can be
identified by tools like AntiSMASH (Blin et al.
2017) or SMURF (Khaldi et al. 2010).

D. Data Visualization, Analysis, and Manual
Curation

Large amounts of data are generated by genome
sequencing and annotation. These can be chal-
lenging to interpret unless they are visualized.
Genome sequencing consortia and/or institutes
generally make the data accessible to the public
by means of a centrally hosted web database,
which allows users to analyze the genome
sequence, gene predictions, and functional
annotations. Examples include the genus-
specific websites Saccharomyces Genome Data-
base (SGD) and the Aspergillus Genome Data-
base (AspGD) (Cherry et al. 2012; Cerqueira
et al. 2014). MycoCosm hosts all fungal genome
portals of the US DOE Joint Genome Institute
(Grigoriev et al. 2014). FungiDB hosts numer-
ous published fungi (Basenko et al. 2018). Upon
publication of a genome, the data is generally
submitted to NCBI GenBank, which has there-
fore amassed a large collection of fungal
genome data (Clark et al. 2016).
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Typically, a genome portal contains tools to
visualize and analyze the genome data. These
tools include Blast to search for homology
(Altschul et al. 1990), a search function for
functional annotations and a genome browser.
Since the generated data will likely contain
errors in gene prediction, it is important that
these predictions can be fixed manually, based
on external evidence. Genome browsers can
facilitate this in an intuitive way. Data of vari-
ous origins can be displayed, evaluated, and (if
needed) manually corrected. This process is
referred to as manual curation. Data that can
be visualized include gene predictions, expres-
sion data, regions of homology (e.g., blast hits),
genome synteny, etc.

An early example of a web-based genome
browser was the UCSC (University of Califor-
nia, Santa Cruz) Genome Browser, which was
originally developed to visualize the human
genome (Kent et al. 2002) and is also used in
MycoCosm. Later, GBrowse was developed
(Stein 2013), which was designed to integrate
well with the Generic Model Organism Data-
base suite (www.gmod.org). Its successor
JBrowse (Buels et al. 2016) offers an intuitive
and flexible genome browser that can be easily
installed and used in small-scale genome
sequencing initiatives. Web Apollo (later
renamed to Apollo) (Lee et al. 2013) is a plugin
for JBrowse that facilitates the manual curation
(correction) of gene predictions as well as other
genomic features, making it a valuable tool for
genome visualization, analysis, and curation.
All corrections are stored in a centralized data-
base, allowing collaborators from all over the
world to simultaneously work on the same
genome.

IV. Genomics and Biotechnology

Fungi play important roles in a wide range of
fields that are interesting from a biotechnologi-
cal perspective. Genome sequencing and anno-
tation has greatly facilitated the development of
these fields by revealing the genes involved in
these processes. Examples of biotechnologically
relevant topics include secondary metabolites,

carbohydrate-active enzymes, mushroom
development, and plant interactions. Obvi-
ously, this is by no means an exhaustive list of
biotechnological topics. This section will dis-
cuss the roles genome sequencing and analysis
have played in these important fields of study.

A. Secondary Metabolites or Natural Products

Fungi can produce a wide range of secondary
metabolites, which are relatively small mole-
cules that are not directly encoded by genes.
In the context of biotechnology, they are fre-
quently referred to as natural products. These
metabolites can play an important role in pro-
cesses such as pathogenesis, defense, interac-
tions, pigmentation, etc. Often, they play an
ecological role and help the fungi to colonize a
niche. From a biotechnology perspective, they
are interesting for their antibacterial, antifun-
gal, and antitumor activities. Some well-known
examples of natural products are the antibiotic
penicillin, which is produced by species of Pen-
icillium (Bennett and Chung 2001), and the
cholesterol-lowering drug lovastatin (Downs
et al. 1998).

Secondary metabolites are not directly
encoded by genes, but instead they are generally
produced by a set of enzymes that synthesize
the metabolite in a conveyor belt-like fashion.
These enzymes include polyketide synthases
(PKS), non-ribosomal peptide synthetases
(NRPS), terpene cyclases (TC), dimethyl-allyl-
tryptophan synthetases (DMATS), and a range
of accessory enzymes including methyltrans-
ferases (Keller et al. 2005; Keller 2019). Intrigu-
ingly, the genes encoding these enzymes are
frequently clustered in the genome, which
makes them relatively easy to identify (Nütz-
mann et al. 2018). These gene clusters are
known as biosynthetic gene clusters. Anti-
SMASH is a commonly used tool to identify
these clusters (Blin et al. 2017). It first identifies
core genes (PKS, NRPS, TC, and DMATS) and
then looks for putative accessory genes involved
in the production of the secondary metabolite.
Moreover, the identified putative clusters can be
compared to known clusters in other organ-
isms. This homology and the gene families in
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the cluster are used to predict the type of sec-
ondary metabolite that may be produced,
although this is currently still rather inaccurate.

The wide diversity among members of the
fungal kingdom is also reflected in the wide
range of natural products they produce, making
fungi an interesting source for novel drugs.
Genome sequencing has resulted in a large cat-
alog of biosynthetic gene clusters (Keller 2019).
Unfortunately, most natural products are not
produced under lab conditions, complicating
their identification in high-throughput screens
(Keller et al. 2005). Several companies (e.g.,
Hexagon Bio, USA) are currently using high-
throughput genome sequencing to identify
novel natural products, purely based on their
gene content. Interesting candidate gene clus-
ters are then heterologously expressed in pro-
duction species using a synthetic biology
approach, thus circumventing the problem of
low production of the natural products in their
natural host. S. cerevisiae and Aspergillus nidu-
lans are examples of production species (Bill-
ingsley et al. 2016; Clevenger et al. 2017; Harvey
et al. 2018). This approach illustrates the power
of large-scale genome sequencing and analysis.

B. Carbohydrate-Active Enzymes

Fungi are heterotrophs: they feed on organic
matter. A large source of organic matter is
plant biomass, or, more specifically, polysac-
charides in lignocellulose (including cellulose,
hemicellulose, and pectin). Fungi have evolved
a wide range of extracellular enzymes to break
down these recalcitrant polysaccharides into
smaller compounds (monosaccharides and oli-
gosaccharides) that can be transported over the
cell membrane. Collectively, these enzymes are
known as carbohydrate-active enzymes
(CAZymes) and are organized in a special data-
base, the CAZy database. CAZy describes the
families of structurally related catalytic and
carbohydrate-binding modules (or functional
domains) of enzymes that degrade, modify, or
create glycosidic bonds (Lombard et al. 2014).
More generally, CAZymes are enzymes
involved in the breakdown, biosynthesis, and
modification of carbohydrates.

Based on their domain structure CAZymes
are classified into glycoside hydrolases (GH),
glycosyl transferases (GT), polysaccharide
lyases (PL), carbohydrate esterases (CE), and
enzymes with auxiliary activities (AA). Each of
these categories is subdivided into numerous
families with predicted enzyme activities (Lom-
bard et al. 2014). Although their identification
is based on sequence homology (and therefore
relatively straightforward), it is important to
note that even within families there can be a
range of predicted enzyme activities. It may
therefore be necessary to confirm the enzyme
activity of the predicted CAZyme with lab
experiments.

From a biotechnology perspective,
CAZymes are interesting due to their ability to
break down (unfermentable) polysaccharides
into oligosaccharides and monosaccharides
that can be fermented into ethanol by S. cerevi-
siae. As such, CAZymes play an important role
in converting plant biomass into biofuel. More-
over, fungal pathogens of plants use CAZymes
as an important weapon in their arsenal to
attack their host. In the case of pathogens of
important agricultural crops, the CAZyme con-
tent of fungal genome can lead to important
insights (discussed below).

Initial genome sequencing efforts focused
on established model systems used to study
CAZymes. Examples include Aspergillus niger
(Pel et al. 2007) andNeurospora crassa (Galagan
et al. 2003). This resulted in a wide range of
well-characterized enzymes (Coutinho et al.
2009). Furthermore, several key regulators
involved in the regulation of CAZyme gene
expression were identified (Benocci et al.
2017). Later, large-scale sequencing efforts
focused on fungi that break down plant poly-
saccharides. An important sequencing effort is
the 1000 Fungal Genomes Project by the Joint
Genome Institute (Grigoriev et al. 2014), result-
ing in a large number of genomes from across
the fungal kingdom, including many plant bio-
mass degrading fungi. More targeted sequenc-
ing efforts have focused on groups of fungi,
such as the genus Aspergillus (Vesth et al.
2018) or the class Agaricomycetes (Floudas
et al. 2012; Ohm et al. 2014), which includes
potent degraders of lignocellulose.
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The combined genome sequencing efforts
have resulted in a large catalog of putative
CAZymes, maintained in the CAZy database
(Lombard et al. 2014). Similar to how it was
described above for secondary metabolism,
this catalog can be screened using a high-
throughput synthetic biology approach. Puta-
tively interesting CAZymes can be expressed in
a production host, and the enzyme activity can
be assayed. This approach precludes the need
to grow the original host fungus.

C. Mushroom Development

Mushrooms are the sexual reproductive struc-
tures of fungi (predominantly) of the phylum
Basidiomycota or, more specifically, the class
Agaricomycetes (Kües and Liu 2000; Kües and
Navarro-González 2015). Mushrooms are a
nutritious and sustainable food source for a
growing world population. They can be
cultivated on low-quality agricultural waste
streams (e.g., manure, saw dust or straw),
which they convert into high quality food. As
such, they contribute to a circular economy
(Grimm and Wösten 2018) and are interesting
from a biotechnology perspective. Examples of
edible mushrooms include the white button
mushroom (Agaricus bisporus), the oyster
mushroom (Pleurotus ostreatus), and shiitake
mushroom (Lentinula edodes).

Few mushroom-forming fungi are geneti-
cally accessible, but notable exceptions are Schi-
zophyllum commune and Coprinopsis cinerea,
both of which have been used as model systems
for decades (Kües and Navarro-González 2015).
This has resulted in the identification of struc-
tural proteins involved in mushroom develop-
ment, such as hydrophobins (Wösten 2001),
as well as multiple developmental regulators
(Terashima et al. 2005; Ohm et al. 2011, 2013).

The number of available genomes of
mushroom-forming fungi has dramatically
increased in recent years, although it should
be noted that most mushroom-forming fungi
were sequenced due to their capacity to degrade
lignocellulose (Ohm et al. 2014). Comparative
genomics studies have given important new
insights into the phylogeny of mushroom-

forming fungi (Varga et al. 2019), showing
that morphological diversification occurred
especially in the Cretaceous and Paleocene.
Moreover, numerous novel gene families have
been identified that may be involved in mush-
room development (Sipos et al. 2017; Krizsán
et al. 2019; Almási et al. 2019), based on their
conservation in mushroom-forming species as
well as their gene expression profile during
mushroom development. These genes are cur-
rently studied in more detail, which is facili-
tated by the recent development of CRISPR/
Cas9 genome editing tools (Sugano et al. 2017;
Vonk et al. 2019).

D. Plant Interactions

Many fungi interact with plants in one way or
another. This can be beneficial for the host
plant, for example, in the case of mycorrhizal
fungi that form a symbiosis with plant roots. In
contrast, fungal pathogens can be detrimental
to plant health. Both these fungal lifestyles are
important from a biotechnology perspective,
since they can strongly impact the yield of agri-
cultural crops.

Although plant pathogens are found across
the fungal kingdom, many destructive patho-
gens belong to the phylum Ascomycota. Exam-
ples include various species of Fusarium and
Verticillium, which were early targets of
genome sequencing (Cuomo et al. 2007; Ma
et al. 2010; Klosterman et al. 2011). Compara-
tive genome analysis allowed the reconstruc-
tion of gene evolution of pathogenesis-related
genes, which are generally called effector genes.
More recently all Verticillium species were
sequenced, and the subsequent analysis
revealed frequent chromosomal rearrange-
ments as well as gene family losses. Moreover,
in these species only about 200–600 species-
specific genes occurred, which are markedly
different from the conserved genes and are
likely candidates for host specificity (Shi-
Kunne et al. 2018). The class Dothideomycetes
harbors many pathogens, including the wheat
pathogen Zymoseptoria tritici (formerly known
as Mycosphaerella graminicola), tomato patho-
gen Passalora fulva (formerly known as Clados-
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porium fulvum), pine pathogen Dothistroma
septosporum, and maize pathogen Bipolaris
maydis (formerly known as Cochliobolus het-
erostrophus) (Goodwin et al. 2011; de Wit et al.
2012; Condon et al. 2013). P. fulva and D. sep-
tosporum are closely related but have very dif-
ferent host plants (tomato and pine,
respectively) and lifestyles (hemibiotroph and
necrotroph, respectively). Genome sequencing
revealed the evolution of a gene cluster
involved in the production of dothistromin
toxin by D. septosporum, as well as effector
genes specific to P. fulva. Comparing the two
genomes suggests that these pathogens had a
common ancestral host but have since diverged
into different hosts and lifestyles by a differen-
tiation in gene content, pseudogenization, as
well as gene regulation (de Wit et al. 2012).
More generally, a comparative analysis of mem-
bers of the class Dothideomycetes showed that
genome evolution follows a pattern of frequent
short intra-chromosomal inversions and few
inter-chromosomal rearrangements (Hane
et al. 2011; Ohm et al. 2012).

In contrast to plant pathogens, mycorrhizal
fungi form a symbiosis that is beneficial to the
plant host. Generally, during this symbiosis the
fungus provides micronutrients to the plant,
while the plant provides carbohydrates (sugars
produced by photosynthesis) to the fungus.
This mycorrhizal lifestyle evolved indepen-
dently several times across the fungal kingdom,
in species as diverse as the mushroom-forming
Basidiomycete Laccaria bicolor, the Dothideo-
mycete Cenococcum geophilum, and the Péri-
gord black truffle Tuber melanosporum
(Martin et al. 2008, 2010; Peter et al. 2016).
Although there are many differences between
these mycorrhizal fungi, a general pattern is
that (compared to their non-mycorrhizal rela-
tives) the number of plant cell wall degrading
CAZymes decreased, while the number of
lineage-specific genes increased (especially
genes that were differentially expressed during
symbiosis). Nevertheless, mycorrhizal fungi
have retained a unique set of CAZymes, which
suggests that they are still capable of degrading
lignocellulose and therefore are not fully reliant
on their plant host (Kohler et al. 2015; Martino
et al. 2018).

The genus Trichoderma contains several
mycoparasitic species that promote plant
growth. To some extent this can be explained
by the fact that they parasitise on deleterious
plant pathogens. However, several strains also
induce root branching and increase shoot bio-
mass (Kubicek et al. 2011; Druzhinina et al.
2011; Contreras-Cornejo et al. 2016).

V. Conclusions

This chapter described recent improvements in
sequencing technologies that are used to
sequence fungal genomes. As these sequencing
technologies mature further, it will soon be
trivial and affordable to obtain a high-quality
telomere-to-telomere assembly. Accurate gene
prediction and data analysis is still a challenge,
although algorithms and pipelines continue to
improve. Currently fungal genome sequencing
is already affordable to small labs and individ-
ual researchers. For those who are interested in
starting with fungal genome sequencing, the
following pipeline has proven to work very
well in my lab (as an example): we routinely
sequence fungal genomes using Illumina (occa-
sionally supplemented with long read from
Oxford Nanopore) and genome assembly is
done with SPAdes (Bankevich et al. 2012).
Gene prediction is preferably done with
BRAKER in combination with RNA-Seq
expression data (Hoff et al. 2016). Basic func-
tional annotation is done with InterProScan
(Hunter et al. 2009) and supplemented with
other algorithms, depending on the scientific
questions.

Important next steps include a functional
genomics approach, which relies heavily on an
accurate genome sequence. In functional geno-
mics, high-throughput (sequencing-based)
techniques are used in an effort to assign func-
tion to elements of the genome (usually genes).
These techniques may include RNA-Seq (to
study gene expression), ChIP-Seq (to study var-
ious aspects of epigenetics), as well as high-
throughput gene inactivations. Gene inactiva-
tions and other genome editing approaches
have been greatly facilitated by the develop-
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ment of CRISPR/Cas9 across the fungal king-
dom (Shi et al. 2017). I expect that in the com-
ing years, large improvements will be made in
techniques related to functional genomics, fur-
ther accelerating discoveries across the fungal
kingdom.

Fungal genome sequencing, comparative
genomics and functional genomics are Big
Data sciences and require a specific skill set:
most bioinformatics tools run in a Linux envi-
ronment and programming skills (e.g. in
Python and R) are essential for advanced ana-
lyses. Most universities now include these
aspects in their curriculum, ensuring that the
next generation of researchers will be skilled in
both experimental lab work and computational
biology.
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Almási É, Sahu N, Krizsán K, Bálint B, Kovács GM, Kiss
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Deshpande N, von Döhren H, Ebbole DJ, Esquivel-
Naranjo EU, Fekete E, Flipphi M, Glaser F, Gómez-
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manova I, Kiss B, Kocsubé S, Kotiranta H, LaButti
KM, Lechner BE, Liimatainen K, Lipzen A, Lukács
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