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Abstract

The language of the early calculus was much more geometrical than the analytic
and algebraic style that was pioneered by Euler and still dominates today. For
instance, functions such as sin(x) and log(x) were largely absent from the early
calculus, with geometric paraphrases used in their place. From a modern stand-
point, one may be inclined to assume that the eventual triumph of the more
analytic perspective was a straightforward case of progress, and that the geomet-
ric aspects of the early calculus were a historical artifact ultimately hampering this
development. Interestingly, however, in private notes, the pioneers of the calculus
showed a readiness to disregard traditionalism and operate freely in a more proto-
modern style than they allowed themselves in their publications. This suggests
that the adherence to the geometrical mode in published works was a deliberate
choice selected with full awareness of the analytic alternative. Indeed, the geo-
metrical paradigm was no mere blind conservatism or lip service to classical
foundations; rather, it arguably had genuine merits, for example, as an intuition-
boosting heuristic strategy.
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This aspect of the early calculus can serve as a case study that illuminates the
relation between official expression and informal thought in mathematics more
generally. For one thing, it complicates the common historiographic assumption
that fidelity to historical thought is best achieved by following the original text’s
mode of expression as closely as possible.

Keywords
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1 Introduction

When studying a historical mathematical text, should we attempt to interpret it in
terms of later mathematical concepts? Rampant anachronism can be a mark of
insensitivity and a closed mind; it can drown out subtleties and rob us of one of
the greatest rewards of studying history in the first place – that of expanding our own
mindset and perspective. But banning all anachronistic analysis as illegitimate risks
making historical scholarship conceptually impoverished and pathologically preoc-
cupied with incidental details. The question is ultimately one that not only the
historian but also the philosopher of mathematical practice must grapple with: Can
a mathematician’s written word be taken as constitutive of their underlying thought?

The early development of the infinitesimal calculus in the late seventeenth
century provides a rich store of case studies for these questions. In addition to
interesting differences between the original and modern forms of the calculus, we
are fortunate that extensive personal manuscripts by the pioneers of the calculus have
been preserved (and in many cases recently published for the first time), helping us
further triangulate the relations between thought and expression, tradition and
innovation.

2 Absence of Trigonometric Functions in Early Calculus

The early practitioners of the calculus virtually never used any trigonometric expres-
sions such as sin(x) in their calculus. Neither Newton nor Leibniz ever wrote sin(x) in
any calculus formula in any of their published works. They and many others did
write expressions like this in purely geometric contexts, such as referring to sine
tables. But they never treated sin(x) or any other trigonometric expression as a
function in a calculus context. Unlike us, they did not see the differentiation and
anti-differentiation of such expressions as among the most basic and commonly used
calculation rules. They never described curves or solutions to differential equations
in terms of such expressions.
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How can this be, when any modern calculus textbook is packed with those kinds
of uses of trigonometric functions? How can one have a functioning calculus without
this tool? In fact, the early practitioners of the calculus were not in any way
handicapped by this choice. Let us look at a few examples of how they managed
without trigonometric functions. Let us consider some examples of problems where
the treatment in a modern calculus textbook seems most essentially based on
trigonometric functions, and see how Newton and Leibniz managed to treat these
problems just as well, if not better, in other terms.

Simple harmonic motion – such as the bobbing motion of a weight on a spring – is
a prototype example of a physical phenomenon described by a sine curve. The
harmonic motion of a spring follows from Hooke’s law that force is proportional to
extension, F / x. Combined with Newton’s law F ¼ ma ¼ m€x, this means that the
differential equation for the motion of the weight on the spring is x ¼ �k€x. Today,
we would express the solutions to this equation in terms of sine and cosine functions.
Yet in the seventeenth century people managed without it.

Newton dealt with this problem. Let’s see how he did it. Newton considered a
more general situation: motion in a force field where the force is proportional to
distance from the origin, and directed toward the origin. This is analogous to a
gravitational force field, but with a different force law. For any given starting
position, a body can be launched into a circular orbit if it is given just the right
sideways velocity. If the speed is increased or diminished by any amount, this would
cause a deviation from the circular path (Fig. 1). Thus a specific orbital speed is
naturally and intrinsically associated with this force field and this starting position.

Fig. 1 Uniqueness of circular
orbit through a given point in
a F ¼ � kr force field

Algebraic Versus Geometric Thought and Expression in the Early Calculus 3



By taking this speed as a reference, one can describe harmonic motion in this field in
a natural and precise way without the need for formulas.

This is precisely what Newton does in the Principia, Book I, Prop. 38, which is
about the simple harmonic motion of a dropped object in a F / r force field. He
expresses everything in terms of the associated circular-orbit motion. Table 1 puts
this approach side by side with the modern approach using formulas. Newton’s way
has a number of advantages. For instance, the equivalence of the three different
results shown is immediately evident from the geometric descriptions but takes some
algebra to derive from the formulas. Furthermore, Newton’s mode of expression uses
language intrinsic to the system itself: the naturally associated orbital motion. The
formula approach, on the other hand, becomes ugly and opaque precisely because it
uses extrinsic frames of reference. The constants k and R depend on our choice of
units of force and position, and the trigonometric functions assume a unit radius and
hence have to be scaled in various ways. Those are conventions that are external to
the specific scenario at hand, yet they dominate the formulas. This is why the
formulas are opaque and hide the simple dynamics of the system: the formulas are
primarily focused on accommodating the system to a fixed external reference frame
rather than on describing the system in the clearest and most intuitive terms.

Another example where modern calculus textbooks make trigonometric functions
seem indispensable is the cycloid. “The only convenient way of representing a
cycloid is by means of parametric equations,” one standard textbook proclaims
(Simmons 1996, 592). In the discussion that follows, the expressions sin and cos
occur 40 times in the space of two pages, making the cycloid a good candidate for the
most trig-intensive example in the standard calculus repertoire.

Leibniz did not think this was “the only convenient way of representing a
cycloid.” In fact, the very opposite is the case: Leibniz explicitly and repeatedly
used the cycloid as his prime example of how “perfectly” the calculus could
represent curves, but his representation is very different from the “only convenient”
one of modern textbooks. In his very first paper on the integral calculus, he stresses
that his “equation expresses the relation between the ordinate y and the abscissa x

Table 1 Behavior of a body being dropped from (x, y) ¼ (0, R) in a F ¼ � kr force field

Position at given time
Time to reach given
position Speed at given position

In terms of
formulas

y tð Þ ¼ R cos
ffiffiffi
k

p
t

� �
t yð Þ ¼ arccos y

Rð Þffiffi
k

p _y yð Þ ¼
�

ffiffiffi
k

p
R sin arccos

y
R

� �� �
In terms of the
associated
circular-orbit
motion

y-position of the
orbital motion at that
time

=

Time in which orbital
motion reaches that y

=

y-direction speed of
orbital motion at that y
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perfectly” and “from it all the properties of the cycloid can be derived” (Blåsjö
2017, 65).

Leibniz’s “perfect” way of expressing the cycloid involves no trigonometry and
no parametric equations. It is based instead on a simple geometrical property of the
cycloid shown in Fig. 2: The three dashed lengths are all equal, since the arc s
measures both the amount of rotation needed to bring the tracing point from the top
position down to (x, y), and the amount of arc that has been in contact with the
ground during this rotation, that is, the distance traveled, or the horizontal displace-
ment X � x. Therefore an equation for the cycloid is X ¼ x + s. This equation can be
expanded, if desired, by expressing x using the Pythagorean Theorem and s as an
arc-length integral. Assuming that the generating circle has unit radius, this gives

X yð Þ ¼ xþ s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
þ
ð1
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dx

dy

� �2
s

dy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
þ
ð1
y

dyffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p

This is essentially Leibniz’s “perfect” equation for the cycloid, except he centers
his coordinate system on our y ¼ � 1, so he gets the equivalent

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y� y2

p
þÐ

dy=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y� y2

p
instead.

Leibniz does not spell out how “all the properties of the cycloid can be derived”
from this equation, but this can indeed be done. Let us consider how such an
approach can lead to the same results that are derived using trigonometric expres-
sions in modern textbooks such as Simmons (1996).

What is the area A of the cycloid, in terms of the area a of the generating circle?
Integrating the equation X ¼ x + s, we get

A
2
¼
ð1
�1

Xdy ¼
ð1
�1

xdyþ
ð1
�1

sdy ¼ a
2
þ ys½ �y¼1

y¼�1 �
ð1
�1

y
ds
dy

dy ¼ 3a
2
þ
ðπ
0

yds

¼ 3a
2
þ x½ �s¼π

s¼0 ¼
3a
2

so the area of the cycloid is three times the area of the generating circle, A ¼ 3a. We
see that Leibniz’s equation for the cycloid indeed lends itself very well to calculation.
The steps of this calculation do not correspond to the standard modern solution and

(X,Y)(x,y)
x

y

s
=s

=s

ΔY

ΔX

Fig. 2 The cycloid
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arguably compare favorably to it. A key ingredient of the modern proof is the use of
a trigonometric addition formula to express cos2(θ) in terms of cos(2θ). The Leib-
nizian proof does not need this technical machinery. The modern approach ulti-
mately reduces the integral to the standard antiderivative

Ð
cos (θ)dθ ¼ sin (θ). The

Leibnizian approach does the same thing in the step
Ð
yds¼ x, which is nothing but a

different way of saying
Ð
cos (θ)dθ¼ sin (θ). Thus, the Leibnizian calculus contains

the exact equivalent of our standard trigonometric derivatives and antiderivatives,
but expresses them in other terms.

What is the tangent of the cycloid at any given point? In fact, the tangent passes
through the top point of the rolling circle. This too is derived with quite elaborate
trigonometric machinery in Simmons (1996) and other standard textbooks. From
Leibniz’s equation, we can get this result without any trigonometry. For we find that

d
dy

X ¼ d
dy

xþ sð Þ ¼ d
dy

ffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
þ
ð1
y

dyffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
 !

¼ �yffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p � 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p ¼� 1þ yð Þffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p ¼� 1þ yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
1� y2

¼�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
1� y

¼ �x
1� y

which indeed corresponds to ΔX
ΔY in the triangle in Fig. 2, as claimed. So, in this case

too, the Leibnizian calculus handles the problem quite elegantly without any need
for trigonometric functions. (In modern terms the differentiation of the integralÐ 1
y dy=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
is nothing but the derivative of the arccosine, but re-expressing it

in such terms adds nothing of value or substance.)
These examples show that although the calculus of Leibniz and Newton is

different from ours, it should not be assumed inferior. Modern calculus books
leave us with the impression that “the only convenient way of representing a cycloid
is by means of parametric equations” involving trigonometric functions, and so on
for various other problems such as harmonic oscillation. Seeing, then, that Newton
and Leibniz used other methods, one may be inclined to assume that their methods
are inherently clumsier, and that these historical mathematicians would have recog-
nized as much on the spot if we explained it to them; the only reason they didn’t take
this step must have been that they were conceptually limited by old ways of thinking,
one naturally assumes. But the above examples suggest that the sense of superiority
of the anachronistic modern perspective is hubristic. There are in fact ways in which
the older approach can not only readily match what the modern approach can do, but
even has a number of outright advantages over it. This suggests that Newton and
Leibniz may very well have adhered to their style of calculus as a matter of conscious
choice, with full awareness of the possibility of a more formula- or function-based
approach.

In fact, there is even one intriguing bit of direct textual support for this interpre-
tation. Although trigonometric formulas are completely absent from all calculus
publications for several decades from the inception of the calculus onwards, there is
one obscure early manuscript in which Newton does precisely what the hypothesis of
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a conceptual limitation postulated that he could not conceive: namely, he does use
trigonometric formulas in calculus calculations, very much in the style of Euler or a
modern textbook. In this manuscript from around 1680, Newton repeatedly writes “fl
Cos A” – the fluxion of the cosine of the variable angle A – in the course of one
particular problem (MS Add.3963.7, 55r; MP.IV.459). Despite seemingly never
working with such expressions before or since, Newton handles them effortlessly
and incorporates them in his calculations without ado. It seems that Newton opted
for this mode of expression in this particular problem because of its complexity; the
more geometric phrasing he normally used (including in the other problems in this
very manuscript) would be very verbose in this case, which would probably impede
the clarity and overview of the calculations. Thus, Newton seems to have treated “fl
Cos A” as a trivial shorthand. This shows that there was certainly no conceptual
obstacle that held Newton back from using such expressions more extensively.
Clearly, he realized that calculus could be built on such expressions, but consciously
opted against it.

3 Introduction of Trigonometric Functions by Euler

Trigonometric functions were eventually introduced into the standard calculus
repertoire by Euler. As late as 1754, this was still referred to as the “new calculus
of sines” (Katz 1987, 316; Euler Opera 1.14.543). The context that led Euler (1739)
to introduce this “new calculus” was the differential equation

2a€sþ s
b
þ a
g
sin

t
a

� �
¼ 0,

a periodically forced harmonic oscillator, whose solution is

s tð Þ ¼ D cos
tffiffiffiffiffiffiffiffi
2ab

p
� �

þ C sin
tffiffiffiffiffiffiffiffi
2ab

p
� �

� a2b sin t
a

� �
g a� 2bð Þ ,

unless 2b ¼ a, in which case

s tð Þ ¼ D cos
t
a

� �
þ C sin

t
a

� �
þ at
4g

cos
t
a

� �
:

Thus, unlike the simple harmonic oscillator that had long been handled by
geometric paraphrase, the solutions of this differential equation involve combina-
tions of trigonometric functions with different periods and trigonometric compo-
nents multiplied by a nonconstant function (Fig. 3). The complexity of these
solutions makes it very difficult to replace them with a geometrical description or
to do without formulas of this type. As Euler put it, “there appear . . . motions so
diverse and astonishing that one is unable altogether to foresee until the calculation is
finished” (Katz 1987, 318). Just as Newton had been led to use cosine formulas more
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than half a century earlier in a particularly convoluted problem, so also to Euler the
need to introduce such functions arises due to the complexity of the problem. In this
way, it is possible to regard Euler’s step not as a change in outlook, but merely as a
consequence of the same priorities that were present even in Newton’s time: the
same outlook, consistently applied, leads to different styles in different contexts.

4 Logarithmic Functions

Just as trigonometric functions were absent from the early calculus, so was the
logarithm function log(x). Despite explicitly dealing with the solution to the differ-
ential equation dy

dx ¼ a
x and referring to logarithmic curves by name in this connection,

early calculus works by, for example, Leibniz (1684) and Johann Bernoulli (1692)
refrain from using any kind of expression such as log(x) in a calculus setting. This
could be interpreted as a shortcoming that hampered these works (Jahnke 2003, 111;
Kowalewski 1914, 169). Interestingly, however, manuscript evidence shows that the
reluctance to treat log(x) as one of the fundamental functions of the calculus cannot
be attributed to an inability to conceive of the possibility of doing so. For Leibniz
demonstrably did conceive of it years before, when he wrote “Log y” in a calculus
formula in a 1675 manuscript (AA.VII.5.325). Clearly, then, his decision not to write
any formulas involving log(x) even when dealing with problems involving loga-
rithms must be considered a conscious choice rather than unreflective adherence to
older modes of expression.

Despite these notable early absences, the logarithm function entered official
calculus discourse much sooner than trigonometric functions. The first published
use of a logarithm expression in a calculus formula appears to be Leibniz (1694,
369), who writes “log. x.” Despite never having used this notation before in print,
Leibniz simply starts using it in media res without any indication that he has
expanded the core repertoire of calculus functions, and with no qualms about taking
its properties (such as “log. x ¼ Ð

dx : x”) for granted as if they were common
knowledge. This makes sense if he regarded “log. x” as a trivial shorthand for what
was already well known in other (primarily verbal) terms.

Explicit uses of the logarithm function in calculus formulas did not catch on very
quickly. Leibniz himself only used it passingly on one other occasion in print
(Leibniz 1695, 314). Manfredi (1707), in what is effectively the first published
integral calculus textbook, used the logarithm function quite extensively. Manfredi’s

a=3 b=1 g=1 s(0)=0 s'(0)=1 a=1 b=3 g=1 s(0)=0 s'(0)=1 a=1 b=1 g=3 s(0)=0 s'(0)=1 a=2 b=1 g=1 s(0)=0 s'(0)=1

Fig. 3 Examples of solutions to the periodically forced harmonic oscillator considered by Euler
(1739)

8 V. Blåsjö



notation is “lx” for log(x). Johann Bernoulli also used this notation on a number of
occasions, yet as late as 1716 he still felt the need to explain that “by lx I understand
the logarithm of that x” (Bernoulli 1716, 228). Thus, even two decades after its first
appearance in print, Johann Bernoulli evidently considered the logarithm as a
calculus function still not fully established as an elementary part of the standard
vocabulary and notation of the calculus.

To conclude, trigonometric and logarithmic functions are seen as an indispens-
able part of calculus today, but historically the calculus was up and running for a
decade before the logarithm function was used in a calculus context, and half a
century before trigonometric functions followed suit. This was not for lack of
occasion to use such functions: on the contrary, plenty of situations in which we
would use these functions were encountered, and often explicitly recognized as
concerning trigonometric or logarithmic relations. But this was expressed in verbal
and geometric prose, rather than by explicit formulas.

From a modern point of view, this may strike us as potentially a sign of a
cognitive limitation: perhaps these early practitioners of the calculus were inhibited
by an older geometrical and prosaic paradigm of mathematical thought that pre-
vented them from embracing the power of a more modern formal and purely analytic
approach. If we knew only the published works of these mathematicians, then the
historical record could be construed as fitting this hypothesis. After all, the calculus
community relatively soon decided to favor the analytic style rather than the original
approach.

Nevertheless, a strong case can be made that this anachronistically tempting
hypothesis misses the mark. Manuscript evidence shows that the analytic approach
– in the form of explicit use of trigonometric and logarithmic expressions in calculus
formulas – was in fact considered by the creators of the calculus at a very early date,
even though they generally opted against this approach in their published works.
Indeed, one could argue that the approach they did take was the one best suited for
their purposes. The strength of the modern analytic approach over the older style lies
especially in handling complicated relationships with many components and param-
eters. So instead of seeing the transition from geometric to analytic expression as one
from ignorance to enlightenment, one can interpret it as the natural outcome of sound
preferences that remained consistent throughout: the analytic approach was intro-
duced precisely when the occasion called for it – that is, when the efficiency and
generality of formula-crunching outweighed the intuitive appeal of geometric
expression.

5 Dimensional Homogeneity

Requiring equations to be dimensionally homogenous was another geometrically
motivated choice persistent in the early calculus but at odds with later analytic
practice (Bos 1974, 7). Thus a “length” such as y cannot equal an “area” such as
x2, for instance, so one would rather write ay ¼ x2 to get a dimensionally balanced
equation. This goes hand in hand with an emphasis on geometric interpretation
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rather than analytic formulas. Thus, for example, Johann Bernoulli, in his calculus
lectures of 1692, writes the differential equation for the exponential curve as
ydx ¼ ady, and when he separates the variables to dx ¼ ady : y he then proceeds,
for the sake of geometrical interpretation, to explicitly multiply by a to get
adx ¼ aady : y, which he then interprets visually as an equality of areas (Johann
Bernoulli Opera III.421; Blåsjö 2017, 84). Bernoulli describes the resulting curve
verbally and geometrically as a “Logarithmica,” but has no symbolic notation for
this at this time. By contrast, Euler, in his calculus textbook, happily works with
dimensionally unbalanced equations such as dy¼ dx/x (Euler 1755, § 180) and treats
them purely analytically.

But again it would be a mistake to think of the geometric conservatism of the
early calculus as a limitation of thought. Just as Leibniz privately used analytic
notation for logarithm functions, so also in early manuscripts he was much more lax
about working with equations violating dimensional homogeneity than in his later
published works (Bos 1974, 12; Leibniz AAVII.5.xxxvi). A 1694 letter by Johann
Bernoulli (Leibniz AA III.6.167) is explicit about what was probably widespread
practice: working with a differential equation, he finds that a certain expression
“¼dy” but then immediately adds: or for the sake of dimensional homogeneity
“¼bdy” where b is a new constant introduced solely to balance the equation
dimensionally. That is to say, Bernoulli evidently had no problems working in an
analytic mode that ignored formal geometric convention when expedient, only to
then translate the end result into official form as a veritable afterthought. One finds
the same type of reasoning in Leibniz’s letters as well (Leibniz AA III.5.188).

This suggests that the convention of dimensional homogeneity was consciously
adopted for the positive insights it could bring, without prejudice to other modes of
reasoning. Indeed, dimensional analysis is a useful heuristic tool to this day (Pólya
1957, 202–205). Leibniz explicitly points out its usefulness as a check on calcula-
tions (AAVII.5.292). It was also very useful for purposes of geometric interpretation
(the two examples from Bernoulli just mentioned are instances of this), which was
often sensibly pursued in the early calculus as we have seen.

A related respect in which informal private practice was more flexible than formal
expression was with regard to curve plotting. Impressively, accurate figures are quite
common in the early calculus, but accompanying text is often couched in formal
language quite aloof from the concrete, hands-on perspective that must have gone
into producing the figures. Again, private manuscripts reveal a greater flexibility of
thought than official discourse. Leibniz’s description of the catenary y¼ (ex + e�x)/2,
for example, is in its published form rather stiltedly formulated in terms of the
classical language of ratios. Privately, however, he operated with a more free-
wheeling numerical approach, including using a decimal representation of e that
he never revealed in print (Raugh and Probst 2019).

A similar example concerns how Jakob Bernoulli corrected his mistaken belief
that the radius of curvature of any curve must be infinite at an inflection point. On
intuitive grounds, Leibniz and Bernoulli had believed this to be a general principle.
Indeed, it holds for simple inflection points, but there are exceptions. For instance,
x3 ¼ y5 has an inflection point at the origin, yet the radius of curvature there is zero.

10 V. Blåsjö



This is because there are really multiple singularities in one at that point. Bernoulli
deals with this by resolving the singularity. Instead of x3¼ y5, consider x3¼ y5� b2y3

for small b. This pulls the singularities apart. Now, the inflection point at the origin is
simple again and the general rule holds: infinite radius of curvature. Bernoulli
published this finding, but it is interesting to compare his manuscript notes with
the published account (Bernoulli 1999, 151–154, 255–258). First of all, it is striking
that Bernoulli writes his equations in dimensionally homogenous form (aax3 ¼ y5

and aax3 ¼ y5 � bby3) in his published article, but uses unbalanced equations
(x3 ¼ y5 and x3 ¼ y5 � bby3) in his private notes. Furthermore, in his notes Bernoulli
used detailed numerical calculations to plot the curve and explore its behavior. A
table of x and y values, computed to two decimal places, occurs right next to the
figure. This is suppressed or deemed unworthy of inclusion in the published version,
where the figure appears without such supporting calculations and the formal
presentation gives the impression that the conclusions were reached by abstract
reasoning in eminently classical form. The look behind the scenes, at the numerical
curve plotting and visual checks in Bernoulli’s private notebook, reminds us once
again that official published expression can give a misleading impression of the
underlying thought process.

6 Did Barrow Prove the Fundamental Theorem of Calculus?

Isaac Barrow (1670) proved certain geometric theorems that could be interpreted as
equivalents of the fundamental theorem of calculus. Barrow was writing before the
introduction of the concepts and symbolism of derivatives and integrals. He speaks
in purely geometrical terms, such as areas and tangents of curves. Should he
nevertheless be regarded as having had an insight effectively equivalent to the
fundamental theorem of calculus? Some have answered yes (Child 1916, vii, 31;
Heath 1917, 133; Nauenberg 2014, 343), and seem to have judged that the direct
translatability of Barrow’s theorems into this modern form is in and of itself a
compelling reason to accept this conclusion. At the other extreme, some emphasize
precisely the geometric form and absence of symbolism as a conclusive reason to
deny Barrow this insight (Bos 1980, 64–65; Wagner 2001; Sonar 2018, 55). It is
advisable to steer clear of both of these extremes when trying to understand the
meaning and significance of historical texts. Though these two interpretations are
opposites, they share an excessive emphasis on the statement of theorem and proof in
isolation. A sounder approach is to investigate how these theorems functioned in
Barrow’s thought as a whole, and how he saw them fitting into a bigger picture.
Historians who have taken such a perspective have tended to came down against the
claim that Barrow’s theorems are equivalent to the fundamental theorem of calculus
(Whiteside 1961, 367–368; Mahoney 1990, 236; Katz 2009, 539).

When taking this balanced approach, the historian can use modernized notation
with benefit, as a tool for clarification and analysis, without falling into either of the
opposite traps of the “mathematician’s” anachronistic naiveté and the “historian’s”
knee-jerk rejection of all anachronistic devices. Let us take Barrow’s relation to the
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fundamental theorem of calculus as a case study illustrating this methodology. Thus,
we shall first translate Barrow’s results into modernized form, while remaining
agnostic as to whether this is a faithful representation of his thought or not. This
will enable us to see what the global organization of Barrow’s text says about how he
viewed the theorems in question.

The fundamental theorem of calculus has two parts:

d
dt

ðt
a

y xð Þdx ¼ y tð Þ ðFTC1Þ
ðb
a

y0 xð Þdx ¼ y bð Þ � y að Þ ðFTC2Þ

By choosing the coordinate system so that y(0) ¼ 0 (which corresponds to
Barrow’s geometrical treatment), and using the notation Y xð Þ ¼ Ð x

0
y tð Þdt , we can

write this as

d
dx

Y ¼ y ðFTC1Þ
ðx
0

y0 tð Þdt ¼ y xð Þ ðFTC2Þ

What we would interpret as results about derivatives, Barrow expresses in terms
of subtangents and subnormals (i.e., the distance from the point where the tangent or
normal cuts the axis to the point on the axis perpendicularly below the point on the
curve in question; Fig. 4). In modernized language, the subtangent is σ( y)¼ y/y0 and
the subnormal is η(y) ¼ yy0.

The purported equivalent of FTC1 is Barrow’s X.11. In our modernized form, it
says σ(Y ) ¼ Y/y. Using the expression for the subtangent in terms of derivatives, we
see that this is indeed equivalent to Y0 ¼ y, or FTC1. The question is: is this theorem,
in Barrow’s mind, tied to the specific geometrical configuration, or is it a more
structural and general result that it would be natural to call upon in any situation
when we seek the rate of change of any anti-derivative or accumulation function?
Barrow’s own text – and in particular his treatment of a polar version of X.11 – gives
us strong reason to favor the former rather than the latter interpretation, as follows.

σ η

Fig. 4 The subtangent σ and
subnormal η of a given curve
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Throughout his treatise, Barrow interleaves results of the above form (in effect,
assuming perpendicular rectilinear axes) with analogous results for curves defined in
polar terms. In modernized form, R θð Þ ¼ Ð θ

0
r ϑð Þð Þ2=2dϑ is the area-counting-func-

tion of the polar curve r(θ) (that is to say, R(θ) equals the area swept out by r(θ) from
0 to θ). For polar curves, the subnormal and subtangent are defined not as segments
of the x-axis, but as segments of the line perpendicular to the radial line through the
origin point (Fig. 5). The polar subtangent is ς(r) ¼ r2/r0. The polar subnormal is
ν(r) ¼ r0.

Barrow’s Proposition X.13 is a polar analog of X.11. It says: For the tangent at the
point where r(θ) and R(θ) intersect, ς(R) ¼ 2 (equivalently: R0 ¼ R2/2). (Formally,
the theorem only enables us to find the tangent at one particular point, but this is not
an essential restriction. To find the tangent at another point on the curve R(θ), say
where R ¼ kr, we can let r ¼ r=k, and apply the theorem to the point of intersection
of r θð Þ and R(θ), giving ς(R) ¼ 2/k2.) Barrow proves X.13 from first principles,
using the geometry of the polar differential triangle of R(θ). He presents X.13 as a
“theorem of the same kind” as X.11, but he makes no use of the latter in the proof
of X.13.

In modern terms, we could instead reason as follows. We know that ς(R) ¼ R2/R0

for any polar curve from the geometry of the polar subtangent. In this case, R(θ) is
the area-counting function of r(θ), which means that R θð Þ ¼ Ð θ

0
r ϑð Þð Þ2=2dϑ. We can

easily find its derivative using FTC1. It is R0(θ) ¼ r(θ)2/2. So the polar subtangent is
ς(R) ¼ 2R2/r(θ)2. In particular, when R ¼ r, this simplifies to ς(R) ¼ 2, which is
Barrow’s theorem X.13. This is a much shorter and easier proof than the elaborate
deduction from first principles used by Barrow. The fact that Barrow did not use
X.11 to prove X.13 in this way is thus quite compelling evidence that he lacked
precisely that way of thinking about X.11 that warrants the FTC1 the epithet
“fundamental.”

Let us now turn to FTC2. In Lecture XI, Barrow presents “some Theorems . . .
relating to the Mensuration of Magnitudes by Tangents or Perpendiculars to
Curves.” That is to say, this lecture explains how to find areas in terms of tangents
– or integrals in terms of derivatives. Indeed, we find a geometric equivalent of FTC2
in Barrow’s XI.19. As in the case of FTC1, Barrow’s statement and proof of

Fig. 5 The polar subtangent ς
and polar subnormal ν
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Theorem XI.19 could quite reasonably be construed as corresponding directly to
FTC2. Unless one takes a fundamentalist zero-tolerance hardline against any inter-
pretation that transcends surface expression, there is nothing in Barrow’s formulation
of XI.19 that explicitly indicates any essential conceptual difference between it and
FTC2. In other words, Barrow’s XI.19 could be thought of as a full-fledged FTC2.
But the more interesting question is: did Barrow think of it this way?

To answer this question, we must not focus on XI.19 itself, but rather look at the
context in which this theorem occurs. Much as in the case of FTC1, a contextual
perspective strongly suggests that Barrow did not think of XI.19 as fundamental or a
conceptual cornerstone of the entire chapter. Rather, he seems to have viewed it as
one particular geometrical result among many of a similar kind. Excluding polar
curves, the area results that Barrow presents in Lecture XI are shown in Table 2.

In modern terms, it is trivial to verify these results by substituting the respective
derivative expressions for η and σ and using FTC2 as well as basic “Leibnizian
algebra” with differentials such as dy

dx dx ¼ dy.
Today, we think of FTC2 as much more generic and prototypical than the other

theorems in Barrow’s Lecture XI. But in the geometrical language used by Barrow, it
does not have an evidently exceptional status. XI.19 is not any more generic than
XI.1 or XI.10 or even XI.7, which has a very direct geometrical meaning since η + x
is the distance from origin to end of subnormal and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the distance from

origin to the relevant point (x, y) on the graph of y(x).
Barrow proves these results by direct area considerations and not by verifying by

differentiation that the right-hand sides are antiderivatives of the integrands, as we
would in light of FTC2. He never uses XI.19 for such a purpose. There is no
indication that he conceived of the possibility of taking XI.19 to be the centerpiece

Table 2 Results proved by Barrow (1670) in modernized form

XI.1
Ð
ηdx ¼ y2/2

XI.2
Ð
ηydx ¼ y3/3

XI.3
Ð
ηy2dx ¼ y4/4Ð
ηy3dx ¼ y5/5

XI.4
Ð
Yydx ¼ Y2/2

XI.5 Ð ffiffiffi
Y

p
ydx ¼ 2

ffiffiffi
Y

p 3
=3

XI.7 Ð
ηþ xdx ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p 2

XI.10
Ð
σdy ¼ Y

XI.12
Ð
σydy ¼ Ð

y2dx

XI.13
Ð
σy2dy ¼ Ð

y3dx

XI.16
Ð
σ2dy ¼ Ð

σydx

XI.17
Ð
σ3dy ¼ Ð

σ2ydx

XI.19
Ð
y0dx ¼ y

XI.20
Ð
(y0)2dx ¼ Ð

y0dy

XI.21
Ð
(y0)3dx ¼ Ð

(y0)2dy
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of the theory in this sense (or any other sense for that matter). Admittedly, XI.19 and
its variations occur at the end of this sequence of results, which might suggest that it
is the key result that crowns the entire development. Conceivably, Barrow might
have perceived the fundamental nature of this result, yet opted to include and prove
the previous theorems independently, perhaps for pedagogical, illustrative, or refer-
ence purposes. This possibility can be ruled out, however, by some revealing
remarks later in the work.

In Appendix III to Lecture XII, Barrow offers a certain Theorem IV which he
praises as “the most Fertile of all the Propositions foregoing. The greater Part of them
being either contained in it, or deduced easily from it.” The theorem in question may
be considered a general result on change of variables. In slightly modernized terms,
it states that if y(x), g(x), h( y) are functions such that η yð Þ

y xð Þ ¼ h yð Þ
g xð Þ for all x (which in

modern terms is equivalent to g ¼ y0h) then
Ð
gdx ¼ Ð

hdy. Barrow notes the
following special cases. If h ¼ 1, we get XI.19. If h ¼ y, we get XI.1. If y ¼ g, we
get XI.10. From this Barrow concludes: “I cannot but accuse my Foresight, for not
having first laid down this Theorem . . . and then having deduced the rest from it, . . .
which I observe may be done.” This very strongly suggests that Barrow did not see
the possibility of using his FTC2-equivalent XI.19 to unify the entire sequence of
results in Lecture XI. He expressly admits that he would have loved to give such a
unified treatment if he had seen a way of doing so. Only later did he realize that this
was in fact possible, and even then he still did not see XI.19 as fundamental but
rather saw the unification as coming from another theorem altogether that does not
correspond to the modern view of the centrality of the FTC.

Thus, in the case of Barrow’s purported equivalents of both FTC1 and FTC2,
Barrow misses major opportunities to use them to do the kind of work that FTC1 and
FTC2 would do for us. This suggests that Barrow’s theorems should not be consid-
ered equivalent to FTC1 and FTC2. The mere fact that Barrow used geometrical
language does not in and of itself entail this conclusion. On the contrary, the early
pioneers of the calculus often used geometrical language similar to that of Barrow,
yet showed no signs of being constrained in their thinking when the occasion called
for formal, nongeometrical applications of calculus principles abstractly in ways that
are not visualizable in terms of tangents and areas (e.g., Engelsman 1984, Chap. 2).
Hence a similar surface form of expression can be in one case indicative of a genuine
conceptual limitation and in another case not. Rather than focusing on the surface
form in which an idea is expressed, attention to its functional role in the author’s
broader argument is a better indicator of which aspects of the form of expression are
incidental or essential to the underlying thought. Reconstructions in modernized
mathematical terms can be a useful tool for such purposes.
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7 Conclusion

The early calculus used geometrical language and shunned the analytic style that
came to predominate later. Many historians have tended to view this as a major
conceptual divide (e.g., Speiser 2008, 108, 130). More mathematically inclined
scholars, however, have been inclined to push back against this perspective and
perceive more continuity in the underlying ideas than the surface form of expression
would suggest (e.g., Fraser 2020, 198). The examples from Newton, Leibniz, and
Bernoulli analyzed above weigh in favor of the mathematical interpretation. With
regard to Barrow’s purported geometrical version of the fundamental theorem of
calculus, on the other hand, we have a reverse state of affairs. Mathematically
inclined readers have been those most ready to accept the equivalence, while the
historians’ perception of conceptual discontinuity is borne out by closer analysis.

In the former case, the mathematician’s intuition was best supported by
the historian’s methods: The mathematician’s sense that the early practitioners of
the calculus did not lack the ability to reason in a manner functionally equivalent to
the modern analytic approach is borne out by textual evidence that they indeed
explicitly used more analytic approaches in private manuscripts that in many cases
have only recently been published through meticulous efforts of specialized histo-
rians. Conversely, in the Barrow case, the historian’s intuition is arguably best
supported by the mathematician’s methods: A thoroughly modernistic reconstruc-
tion of Barrow’s reasoning, far from being tantamount to a simplistic anachronistic
fallacy, makes a compelling case against accepting the equivalence of Barrow’s
theorems and their modern counterparts. Efforts to understand past mathematical
thought are well served by drawing on the strengths of each these diverse perspec-
tives and approaches.

8 Cross-References

▶Christiaan Huygens: A XVIIth Century Mathematician Working in the Tradition
of Archimedes and Apollonius

▶Descartes’ Transformation of Greek Notions of Proportionality
▶Heuristics and Mathematical Practice
▶Historiography of Mathematics
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