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Abstract. In this paper, we study knot diagrams for which the under-
lying graph has treewidth two. We give a linear time algorithm for the
following problem: given a knot diagram of treewidth two, does it repre-
sent the trivial knot? We also show that for a link diagram of treewidth
two we can test in linear time if it represents the unlink. From the algo-
rithm, it follows that a diagram of the trivial knot of treewidth 2 can
always be reduced to the trivial diagram with at most n untwist and
unpoke Reidemeister moves.
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1 Introduction

A knot is a piecewise linear closed curve S1 embedded into the 3-sphere S3 (or
the three-dimensional Euclidean space R

3). Two knots are said to be equivalent
if there is an ambient isotopy between them. In other words, two knots are
equivalent if it is possible to distort one knot into the other without breaking
it. The basic problem of knot theory is the following unknotting problem: given
a knot, determine whether it is equivalent to a knot that bounds an embedded
disk in S3. Such a knot is called the trivial knot or simply the unknot.

Despite a significant progress, the computational complexity of the unknot-
ting problem remains open. Even the existence of any algorithm for this problem
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Fig. 2. Reidemeister moves

is a highly non-trivial question. As was stated by Turing in 1954 in [17], “No
systematic method is yet known by which one can tell whether two knots are
the same.” The first algorithm resolving this problem is due to Haken [6]. By
the celebrated result of Hass, Lagarias, and Pippenger [8], unknot recognition is
in NP. The problem is also in co-NP, see Lackenby [12]. However, no polynomial
algorithm for the unknotting problem is known.

It was understood already in 1920s that the question about equivalence of
knots in R

3 is reducible to a combinatorial question about knot diagrams [1,14].
Knot diagrams are labeled planar graphs representing a projection of the knot
onto a plane. Thus every vertex of the graph in knot diagram is of degree 4 and
edges are marked as overcrossing and undercrossing, see Fig. 1 and Sect. 2.

It is one of the most fundamental theorems in knot theory from 1920s that
any two diagrams of a knot or link in R

3 differ by a sequence of Reidemeister
moves [14], illustrated in Fig. 2. We refer to these moves as (I) twist moves, (II)
poke moves, and (III) slide moves, with the reverse operation of a twist move
the untwist, and the reverse operation of a poke the unpoke.

With help of Reidemeister moves, see Fig. 2, we obtain an equivalence rela-
tion on knot diagrams: if a diagram can be obtained from another by zero or
more Reidemeister moves, then these diagrams are equivalent. In our paper, we
allow subdivision vertices (i.e., vertices of degree two), and extend the notion
of equivalence in the following trivial way: diagrams are equivalent if they can
be obtained from another by zero or more Reidemeister moves and additions or
removals of subdivisions.

In particular, the diagram of every unknot can be reduced to the trivial
diagram (a circle) by performing Reidemeister moves. While each of the Rei-
demeister moves can be performed in polynomial time, it is very unclear how
many of these moves are required to transform an unknot to the trivial diagram.
The problem is that sometimes a successful unknotting sequence of Reidemeis-
ter moves is not monotone, that is, it has to increase the number of crossings
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(vertices) in the knot diagram, see e.g. [9]. Bounding the number of required Rei-
demeister moves by any function on the number of vertices in the knot diagram
was a long-standing open question in the area. The answer to this question was
given by Hass and Lagarias [7] who gave the first (exponential) upper bound on
the number of Reidemeister moves. Later Lackenby in [11] improved the bound
significantly by showing that any diagram of the unknot with n crossings may
be reduced to the trivial diagram using at most (236n)11 Reidemeister moves.
Let us note that this also implies that the unknotting problem is in NP.

In this work we consider the unknotting problem when the given knot dia-
gram has treewidth at most 2. Our main algorithmic result is Theorem1.

Theorem 1. Deciding whether any diagram with n crossings and treewidth at
most 2 is a diagram of the unknot can be decided in time O(n).

Our proof yields also the following combinatorial result about the number of
Reidemeister moves. It is interesting to note that in Theorem 2 we do not use
any slide moves.

Theorem 2. Any diagram of treewidth 2 of the unknot with n crossings may be
reduced to the trivial diagram using at most n untwist and unpoke Reidemeister
moves.

Actually, the techniques developed to prove Theorems 1 and 2 can be used to
solve a slightly more general problems about links with diagrams of treewidth 2.

Related Work. To the best of our knowledge, the question whether the unknot-
ting problem with diagrams of bounded treewidth can be resolved in polynomial
time is open. Makowsky and Mariño in [13] studied the parametrized complexity
of the knot (and link) polynomials known as Jones polynomials, Kauffman poly-
nomials and HOMFLY polynomials on graphs of bounded treewidth. For the
Jones and HOMFLY polynomials no example of a non-trivial knot with trivial
polynomial is known [4]. Therefore, if e.g. the Jones polynomial recognizes the
unknot, then the algorithm from [13] also recognizes the unknot in time FPT in
the treewidth.

Rué et al. [16] studied the class of link-types that admit a K4-minor-free
diagram (which is of treewidth at most 2). They obtain counting formulas and
asymptotic estimates for the connected K4-minor-free link and unknot diagrams.
While Rué et al. [16] do not discuss algorithms in their work, the combinatorial
tools developed in their paper can also be used to obtain Theorem1. Our app-
roach is more direct, and gives a fairly simple algorithm which is very straight-
forward to implement. We believe that the notion of double edge is an interesting
concept of separate interest. Also, our work was done independently from the
work by Rué et al. [16].

Approach. Our main approach is the following. We introduce the notion of gen-
eralized knot diagrams—these extend knot diagrams with the notion of double
edges (see Sect. 2). The algorithm starts making the graph simple by adding
subdivision vertices. By repeatedly applying safe reduction rules (see Sect. 3),
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we obtain a series of generalized knot diagrams, that all are equivalent to the
input knot diagram, have treewidth at most two, and are simple. This continues
till we have classified the (generalized) diagram as knot, unknot, link or unlink.
The safe reduction rules come from a well known insight of graphs of treewidth
two (Theorem 3), and a case analysis for different types of vertices and edges in
the generalized knot diagram. The main algorithm is explained in Sect. 4.

2 Graphs and (Generalized) Knot Diagrams

2.1 Graphs

A subdivision in a graph G = (V,E) is a vertex of degree two. The operation
to add a subdivision is the following: take an edge {v, w}, and replace this edge
by edges {v, x} and {x,w} with x a new vertex. The operation to remove a
subdivision is the following: take a vertex of degree 2, add an edge between its
neighbors and then remove the vertex and its incident edges.

We do not need to give the definition of treewidth [15], but instead rely on
the following well known results on treewidth.

Theorem 3 (Folklore, see e.g., Theorem 33 and Lemma 90 in [2]).

(i) If G has treewidth at most two and is not the empty graph, then G has a
vertex of degree at most two.

(ii) If G has treewidth at most two, and G′ is obtained from G by removing a
vertex, removing an edge, adding a subdivision or removing a subdivision,
then the treewidth of G is also at most two.

2.2 Generalized Knot Diagrams

Our algorithm is based upon a generalization of knot diagrams, which we call
generalized knot diagrams. The main ingredient is a new type of edges, which
are created in the course of the algorithm. While a single edge in a knot diagram
represents a piece of a single string, a double edge in a generalized knot diagram
represents two pieces of strings between two pairs of vertices of degree two.
Specifically, consider any two pieces of strings not intersected by any other piece
of string. Let the two pieces of strings have the (four) endpoints at vertices of
degree two. Moreover, let the strings alternate at every two consecutive crossings
with respect to over- and under-crossing, i.e., if string s is over-crossing string
s′ at a crossing, then at the next (consecutive) crossing s′ is over-crossing s. In
accordance with Reidemeister terminology, we refer to these alternating crossings
as twists. Such two strings with twists between two pairs of vertices of degree
two are referred as double edges.

For each double edge we create an integer label that gives the number of
twists/crossings in the double edge. If the two pieces of string do not cross, the
label is zero. With labelings of endpoints of the strings with u (up) and d (down),



84 H. L. Bodlaender et al.

=
d

u d

u

3

Fig. 3. A three-twist double edge and its string representation

we can distinguish between overcrossings and undercrossings; details are given
later in this section.

See Fig. 3 for an illustration how a double edge represents two pieces of string
with three twists.

In the generalized knot diagram we identify a pair of degree two vertices
associated with an endpoint of a double edge as one double vertex, thus creating
a new simple graph with a mix of knot diagram (single) vertices, double vertices,
single and double edges, where double edges are labeled with numbers of twists.

Types of vertices. During the algorithm, we maintain that at each vertex of the
diagram, either two or four pieces of string meet. Thus, we have the following
types of vertices:

– A vertex of degree one, incident to one double edge (Type 1)
– A vertex of degree two, incident to two double edges (Type 2D)
– A vertex of degree two, incident to two single edges (Type 2S)
– A vertex of degree four, incident to four single edges (Type 4)
– A vertex of degree three, incident to one double edge and two single edges

(Type 3)

Type 1, 2D and 3 vertices are called double vertices. Each of these is incident
to a double edge. It is important to note that we do not have a crossing at a
double vertex, i.e., all crossings either are at Type 4 vertices or at double edges
with a non-zero label.

Each double edge whose integer label is non-zero has u and d-labelings
attached to it, that determine the over- and undercrossings for the part of the
diagram modelled by this edge. Each endpoint of the edge has a pair consisting
of a u and a d attached to it; one of these comes clockwise directly before the
edge, and one directly clockwise after the edge. (This can be represented by one
bit.)

Thus, the two endpoints at a double vertex of the strings represented by
a double edge have labels u and d, respectively. This models that the string
labeled by u starts with an overcrossing and the string labeled by d starts with
an undercrossing. See Fig. 4 at vertices v, w and x.

In this way, to each generalized knot diagram we can associate a knot dia-
gram: we replace each double edge by a subgraph. If the double edge has integer
label i, then we have i vertices of degree four. The u and d labels at these vertices
are determined by the d and u labels at the endpoints of the double edge, as
explained above. We add where necessary subdivision vertices of degree two to
ensure that the graph is simple. We say that two generalized knot diagrams are
equivalent when their associated knot diagrams are equivalent.
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Fig. 4. A knot diagram and a corresponding generalized knot diagram. v is Type 1; w
is Type 2D; x is Type 3; y is Type 2S; z is Type 4.

3 Safe Reduction Rules

In this section we introduce a number of reduction rules for generalized knot
diagrams. The result of a rule is always again a generalized knot diagram. Note
that we always remove one (single or double) vertex of degree at most 2, and
possibly add an edge between the neighbors of a removed vertex of degree 2.
Thus, when any of these rules is applied, the size of the generalized knot diagram
is decreased by at least one vertex.

A rule is safe, if whenever we obtain the generalized knot diagram G′ from
G by applying the rule, we have that:

– The knot diagram associated with G is equivalent to the knot diagram associ-
ated with G′. (I.e., it can be obtained from the other by applying Reidemeister
moves and adding or removing subdivision vertices.)

– If the treewidth of G is at most two, then the treewidth of G′ is at most two.

Note that safeness of a rule implies that application of the rule preserves the
ambient isotopy of the original and the resulting knots.

We will show that for all vertices of degree at most two, when G has at least
three vertices, we have a safe rule that decreases the number of vertices by at
least one, or we can resolve the problem. We have seven cases: vertices of Type 1,
2S, and 2D, where for the latter, their neighbors can be non-adjacent, adjacent
by a single edge, or adjacent by a double edge.

Several of the rules have a straightforward case analysis for the markings of
double edges. Many of these details can be found in the full version, see [3].

3.1 Vertices of Type 1

The first case is a vertex of Type 1: a vertex incident to one double edge. We
can remove this vertex with its incident edge. Safeness follows by observing that
the twists on this double edge can be removed with Reidemeister untwists. By
removing subdivision vertices, we obtain a knot diagram represented by the
diagram obtained by removing v and its incident double edge (Fig. 5).
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Fig. 5. Removing a Type 1 vertex.

Rule 1. Let v be of Type 1, incident to double edge {v, w}. Remove v and its
incident edge.

3.2 Vertices of Type 2S

For a vertex of Type 2S, we have three cases, depending on whether its neighbors
are not adjacent, adjacent by a single edge, or adjacent by a double edge. The
next Rule 2 is trivially safe as we just remove an edge subdivision. See Fig. 6.

Rule 2. Let v be incident to two single edges {v, w} and {v, x}, where w and
x are not adjacent. Remove v and the edges {v, w} and {v, x}, and add a single
edge {w, x}.

w v x xw

Fig. 6. Removing a vertex with two single edges and non-adjacent neighbors.

The second case is when the neighbors of v are connected by a single edge.
This case has a number of different subcases. All are illustrated in Fig. 7.
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Fig. 7. The cases of Rule 3.
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Rule 3. Let v a Type 2S vertex with neighbors w and x, and suppose {w, x} is
a single edge.

1. If w and x are also Type 2S vertices, then G is a simple cycle of length three,
and we do not apply any further rules as the diagram represents the unknot.

2. If w is of Type 2S and w of Type 3 or 4, then delete vertices v and w together
with their incident edges.

3. If w and x are both Type 4 and the {u, d}-labels of the edge {w, x} at vertices
w and x are the same, we delete vertex v together with edges {v, w}, {v, x}
and {w, x}, and we create a double edge {w, x} with label 0.

4. If w and x are both Type 4 and the the {u, d}-labels of the edge {w, x} at ver-
tices w and x are different, we delete vertex v together with edges {v, w}, {v, x}
and {w, x}, and we create a double edge {w, x} of label 2.

5. If w is of Type 4 and x is of Type 3, we delete vertex v together with edges
{v, w}, {v, x} and {w, x}, and create a double edge {w.x} with label 1.

6. If both x and w are of Type 3, we delete vertex v together with edges {v, w},
{v, x} and {w, x}, and we create a double edge {w, x} with label 0.

Equivalence of the diagrams before and after the reduction step is easy to
see. In Case 2, when w is of Type 4, we do one untwist removing the crossing
at w; in Case 3, we do one unpoke. In the other cases, we do not perform Rei-
demeister moves, but by removing subdivisions, we can replace the generalized
knot diagram by one with fewer vertices that represents the same knot diagram.

We now look at the third case. Suppose v is adjacent by two single edges to
two double vertices, w and x, and there is a double edge between w and x with
label i, i.e., having i twists.

Rule 4. Suppose v is of Type 2S with neighbors w and x, and there is a double
edge between w and x with i twists.

1. If i = 0, then the generalized knot diagram represents an unlink. We recurse
on the generalized diagram obtained by removing v and incident edges, and
making the edge {w, x} a single edge.

2. If i �= 1 is odd, the generalized knot diagram represents a non-trivial knot;
3. If i �= 0 is even, the generalized knot diagram represents a non-trivial link.
4. If i = 1, then delete vertex v together with adjacent edges and delete double

edge {w, x}, make w and x single vertices adjacent by a single edge.

The cases are illustrated in Fig. 8. Correctness of the first three cases is
evident. Safeness of the fourth case follows as this step represents a single Rei-
demeister untwist with subsequent contraction of subdivision.

3.3 Vertices of Type 2D

For vertices of Type 2D (incident to two double edges), we have again three
cases: the neighbors are not adjacent, the neighbors are adjacent by a single
edge, or the neighbors are adjacent by a double edge.
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Fig. 8. The cases of Rule 4.
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Fig. 9. Rule 5 with agreeing (left) and disagreeing (right) labels at v.

Rule 5. Let v be of Type 2D where neighbors w and x are not adjacent. Suppose
{v, w} has label i, and {v, x} has label j. Remove v and the edges {v, w} and
{v, x}, and add a double edge {w, x}.
1. If i = 0 (j = 0), the double edge {w, x} gets label j (i), and the {u, d}-labels

are as for the edge {v, x} ({v, w}).
2. If the {u, d}-labels at v are at both sides equal (the left case in Fig. 9), then

the double edge {w, x} gets label |i − j|. If i �= j, keep the {u, d}-labels at the
side of the larger number i or j, and switch them at the other side.

3. If the {u, d}-labels at v differ at each of the sides (the right case in Fig. 9),
then the double edge gets label i + j. Set the labels of the new double edge at
w and x in the same way as the original double edges of these vertices to v.

Lemma 1. Rule 5 is safe.

Proof. In the case of agreement on labels, see Fig. 9 (left), we proceed with
min{i, j} Reidemeister unpoke moves followed by removing the subdivision. In
case of label disagreement, see Fig. 9 (right), we keep exactly the same knot
diagram, but simplify the generalized knot diagram by removing the subdivision
on the double edge. In the latter case the number of twists on the new double
edge is exactly the sum i+ j of the numbers of twists on the two original double
edges. ��
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Rule 5 . . .Rule 4
v v

w w w
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Fig. 10. Rule 6 is reduced to rule Rule 4

Rule 6. Let v be of Type 2D, where neighbors w and x are adjacent by a single
edge. This case can be handled with help of earlier cases. First, we add a subdi-
vision of {w, x}. Then, we apply Rule 5 arriving in and applying one of the cases
of Rule 4, see Fig. 10. Therefore, we either classify the diagram or safely reduce
the graph.

Rule 7. Consider three double vertices v, w and x with three double edges,
{v, w}, {x, v} and {w, x} of labels i, j and k, respectively. Apply Rule 5 to w,
but instead of removing w, we set the new double edge (with label i+k or |i−k|,
say �) to be {v, w}, and let {w, x} be a double edge with label 0. Now, apply
Rule 5 to v, but instead of removing v, we set the new double edge (with label
j + � or |j − �|, say m) to be {v, w}, and let {v, x} be a double edge with label 0.
Depending on the value of m, we can classify the knot diagram.

1. If m = 0, then the generalized knot diagram represents the unlink.
2. If m �= 1 is odd, the generalized knot diagram represents the (m, 2)-torus knot,

for definition and notations see [18].
3. If m �= 0 is even, the generalized knot diagram represents the (m, 2)-torus

link.
4. If m = 1, then the generalized knot diagram represents the unknot as a single

Reidemeister untwist turns the diagram to a circle (see Fig. 11, right.)

v v v

w w wx x x

i j

k 0

j

0

0� m m = 1

Fig. 11. Illustration to Rule 7

4 Main Algorithm

The main algorithm starts by subdividing where necessary edges to obtain a
simple graph. Then, while there are at least three vertices, we repeatedly take
a vertex that is incident to at most two edges, and apply a safe rule. Each
rule application decreases the number of vertices, so after O(n) such steps we
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resolve the problem. Standard techniques (for details see [3]) give a linear time
implementation. Note that the safe rules only execute untwists and unpokes, but
no other Reidemeister moves. Each untwist and unpoke decreases the number
of twists by at least one. Thus we have shown Theorems 1 and 2. Next to these
main results we have the following two straightforward corollaries.

Corollary 1. Any knot/link having a diagram of treewidth 2 is a knot sum of
(·, 2)-torus knots/links.

Corollary 2 (See [3]). Given two knot diagrams of treewidth 2, the equivalence
of the knots is verifiable in linear time (by simply comparing the resulting torus
knots in Rules 4 and 7).

5 Conclusions

We conclude with the following questions.

– We gave a linear time algorithm deciding whether any diagram with n cross-
ings and treewidth 2 is a diagram of the unknot. The question arises: Is it
possible to extend our result to graphs of treewidth t ≥ 3? Even the existence
of a polynomial time algorithm for t = 3 is open. Extension of our results to
the graphs of treewidth t = 3 requires new arguments and techniques: Our
algorithm monotonically decreases the number of crossings in a treewidth 2
diagram as only untwist and unpoke Reidemeister moves are performed, while
there are unknot diagrams of treewidth 3 requiring increase of the number of
crossings for unknotting, e.g., the Culprit, the Goeritz unknot and some other
small but hard unknots [9].

– Koenig and Tsvietkova [10] conjectured and de Mesmay et al. [5] proved
that deciding if a diagram of the unknot can be untangled using at most
k Reidemeister moves (where k is part of the input) is NP-hard. Could this
problem be solved in polynomial time on knots with diagrams of treewidth 2?
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