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Abstract
To analyze the transition toward a low-carbon energy system and to develop appropriate policy

measures toward this goal, large efforts are currently taking place to model future layouts of our

energy system. In this context, it is important to consider the technological progress in energy-system

technologies to take into account how this progress affects technology cost and deployment. In this

chapter, we discuss the implementation of experience curves in energy modeling. Experience curves

allow for endogenous modeling of cost reductions resulting from technological progress and are,

therefore, widely applied in energy modeling. Several issues with implementation of experience curves

in energy modeling are discussed, as well as possible solutions.

Chapter outline
3.1 Introduction 34

3.2 Energy modeling approaches: bottom-up versus top down 34
3.2.1 Integrated assessment models 36

3.3 Implementation of experience curves in energy models 36
3.3.1 Technical discussion on model implementation of experience curves 37

3.4 Practical implications in different types of models 39
3.4.1 Endogenous technological learning 39

3.4.2 Exogenous technological learning 41

3.5 Issues, caveats, and drawbacks of experience-curve implementation in energy models 42
3.5.1 Geographical scope of model 42

3.5.2 Technological learning in an energy modeling system 43

3.5.3 Technical issues 43

3.5.4 Technology deployment constrained by modeling scenario and policy targets 44

3.5.5 Other issues 44

3.6 Concluding remarks 45

References 45

33
Technological Learning in the Transition to a Low-Carbon Energy System.

DOI: https://doi.org/10.1016/B978-0-12-818762-3.00003-0

© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-818762-3.00003-0


3.1 Introduction

In the past few decades the development of climate change mitigation and adaptation

strategies are key issues of national and international discussions in policy, economy, and

science. Therefore large efforts are currently taking place to model the energy transition and

future pathways toward a low-carbon energy system across several sectors. In this context,

assessing the impact of technological improvements is important to determine which

technologies will increase their expansion and which technologies will be phased out in

coming years (Louwen et al., 2018). Thus future cost developments of incumbent and new

or premature technologies are influencing results of energy-system models significantly. To

consider technology cost reductions with increased experience in energy models,

mathematical formulations as learning curves or experience curves are implemented in the

modeling code. The approach of incorporating the correlation between technology

deployments and costs provides a framework for evaluating whole-system effects caused by

and initiating further technology cost reductions (Heuberger et al., 2017). Hence, with

consideration of technological learning in energy-system models through experience curves,

scientists and policy makers can identify least-cost pathways and alternative pathways to

encourage a low-carbon energy system and achieve CO2 reduction levels at low costs.

Furthermore, the consideration of cost-learning effects shifts periods for optimal

investments to earlier planning years, which influences the competitiveness of technologies

(Junginger et al., 2010). However, the implementation of experience curves in energy-

system models still has some disadvantages and therefore chances and barriers encountered

for modelers need to be discussed.

3.2 Energy modeling approaches: bottom-up versus top down

In general, energy-system models can be distinguished between top-down models

(macroeconomic models) and bottom-up models (detailed techno-economic or process-

oriented models). For both types of energy models, main aims are to examine deployment

of energy technologies, the effects of energy policies, and the interplays between the

economy, environment, and energy system.

Top-down models are applied to depict the whole economy on a national or regional level.

Therefore effects of energy as well as climate change policies are generally assessed in

monetary units. Further, macroeconomic models equilibrate market developments by

maximizing consumer welfare, applying feedback loops between economic growth,

employment, and welfare as well as by using production factors (Herbst et al., 2012). As

shown in Fig. 3.1, a variety of modeling approaches exist under the umbrella of top-down

models. Commonly in top-down modeling, general equilibrium modeling is applied

(Junginger et al., 2010).

34 Chapter 3



In contrast, bottom-up models are applied to depict energy sectors and the economy in an

aggregated perspective by simulating economic developments, energy demand and supply

as well as employment. Bottom-up models are much more detailed in terms of

technological parameters, as compared to top-down models, and are often focused on

separate sectors of the energy system. In the REFLEX project, bottom-up models separately

model the transport sector, industry, and residential-energy demand, the electricity sector,

and the heat sector. Bottom-up models can be generally distinguished into optimization

models, simulation models, and multiagent or agent-based models.

Optimization models generally aim to minimize the cost of supplying some exogenous

energy demand, while taking into account the available portfolio of energy technologies,

including their technical and economic performance. Investment decisions are made based

on, for example, total cost of ownership (TCO) or levelized cost of energy, but often, the

whole timeframe of the modeling scope is optimized at once, meaning the models have

perfect foresight.

Simulation models have a substantially different approach. Rather than finding a cost-optimal

solution for a whole sector, over the whole modeling timeframe, simulation models attempt to

more realistically capture behavior of actors in energy systems. Starting from a set of

preexisting conditions, different actors in the modeled energy system make investment

decisions based on TCO principles at each point in time. Often, these types of models employ

algorithms that prevent technologies gaining a 100% market share, to ensure heterogeneity in

market shares and simulate nonrational behavior (Herbst et al., 2012).

Figure 3.1
Overview of energy system modeling approaches. Source: Based on Herbst et al. (2012). Credit: Steffi

Schreiber.
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Finally, agent-based models, which can be considered a type of simulation model, are

comprised of a set of autonomous “agents,” who individually make decisions about

deployment of technologies and their activities in the energy system. In contrast with other

simulation models, there are several market players interacting in agent-based models, each

making decisions and technology choices from a portfolio of available technologies, rather

than an overall bottom-up simulation of an energy system as a whole. With this in mind,

agent-based modeling is said to give a more natural description of (energy) systems, has the

ability to include emergent phenomena, and should be more flexible compared to other

modeling techniques (Bonabeau, 2002).

3.2.1 Integrated assessment models

A different category of models is the integrated assessment models (IAMs). These models,

as their name indicates, integrate a variety of natural and economic processes. The aim of

IAMs is to assess the effects of human activities on the Earth’s system (van Sluisveld et al.,

2018), with outcomes being effects on economy, greenhouse gas emissions, the energy

system, and land use. IAMs are often applied to assess the effect of policy measures on

climate change mitigation (Weyant, 2017; van Sluisveld et al., 2018). The models aim to

inform policy makers about the requirements and consequences of limiting global-

temperature increase (van Sluisveld et al., 2018).

IAMs, thus, extend their scope far beyond energy sectors, are often global models, and

include representations of the economy, the land and climate system, and the energy

system. Key model drivers include population growth, economic developments, policies,

resources, and technological change. The prominent IMAGE model uses experience curves

to model technological change in especially energy supply technologies (Stehfest et al.,

2014), and many models incorporate technological learning endogenously (Stanton et al.,

2009). Well-known models aside from IMAGE are (van Sluisveld et al., 2018): AIM/

Enduse (Hibino et al., 2003), GCAM (Calvin et al., 2019), MESSAGE (Huppmann et al.,

2019), REMIND (Luderer et al., 2015), and WITCH (Bosetti et al., 2006).

3.3 Implementation of experience curves in energy models

Modeling transitioning pathways for future energy systems requires precise cost

estimations for several technologies across different sectors. The costs for technologies

are changing over time regarding their technological improvements that can result in

higher efficiency, reliability, or lower investment, operation, and maintenance costs

(Junginger et al., 2010). By miscellaneous methods the decrease in technology costs due

to learning mechanism as learning-by-doing, learning-by-researching, product upscaling

(larger products), or production upscaling (economies of scales) can be estimated. One of
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these few methods are experience curves, which consist of empirical data that derive in

mathematical functions to relate cumulative production experiences to cost decreases of

technologies (Louwen et al., 2018). This chapter points out why it is necessary to

implement experience curves into energy-system models. Further, the technical

implementation of experience curves in energy models is described, followed by practical

implications in different types of models. As experience curves have some limitations, the

issues encountered for both endogenous and exogenous implementation are discussed at

the end of this section.

3.3.1 Technical discussion on model implementation of experience curves

Costs are the key drivers for technology diffusion; however, estimating future costs is

difficult and afflicted by uncertainties. Therefore experience curves are one of the few

methods to allow evidence-based cost projections. In order to devise experience curves, two

empirical datasets need to be gathered: data about the development of technology-

production costs and about the development of cumulative production of the technology

over a certain period (Louwen et al., 2018). The unit of the datasets depends on different

types of applications. For instance, the production-cost data for energy supply technologies

are given per unit of electrical capacity (e.g., EUR/MWel) and the cumulative production in

terms of total capacity (e.g., MWel). According to these gathered data, the devised

experience curves are the reduction of total product costs as a function of cumulative

production (Boston Consulting Group, 1970).

C Qð Þ5C1�Qb (3.1)

where CðQÞ is the cost C of a technology at cumulative production Q. Here, C1 is the cost

of the first unit produced and b is the experience curve parameter. The experience curve

can be formulated in a linear equation by expressing it in a logarithmic form:

log C Qð Þ5 log C1 1 b � log Q (3.2)

The experience curve parameter b is the incline of the linear function represented in a

double-logarithmic graph. The parameter b indicates at which rate the technology’s costs

decrease. Two parameters are connected to the experience curve parameter b: the learning

rate (LR) and the progress rate (PR).

LR5 12 2b (3.3)

PR5 2b (3.4)

These two parameters are more meaningful than the experience curve parameter b since the

LR (5 12 PR) describes the decrease in costs of a product for every doubling of

cumulative production Q (Louwen et al., 2018).
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The equations above describe single-factor experience curves. However, technology cost

reductions are influenced by different learning mechanisms (e.g., learning-by-researching

and economies of scales) as well as by multiple, independent input material prices.

Consequently, single-factor experience curves have to be extended to multifactor

experience curves to describe the cost developments of a technology in more detail and

devise the learning curves accurately (Yu et al., 2011; Heuberger et al., 2017; Kittner

et al., 2017). According to the consideration of multiple, independent input variables, the

extension to multifactor experience curves requires more empirical data input compared

to single-factor experience curves. Furthermore, technologies can consist of several

components with different costs and LRs, which also lead to higher data requirements.

Energy-system models generally do not supply the required input variables for multifactor

experience curves and thus normally use only single-factor experience curves (Louwen

et al., 2018).

The implementation of experience curves in energy-system models by including the

equations mentioned above directly into the modeling code allows the endogenous

modeling of technological progress. For the endogenous implementation the model needs to

implement the development of cumulative production. However, the endogenous

implementation of experience curves is not feasible for all types of energy-system models.

Amongst others, possible reasons are that the mathematics or optimization approach of a

model does not allow for endogenous implementation, another reason can be that the

geographical scope is limited or that the model does not calculate the cumulative

production data in the required unit (Louwen et al., 2018). For models that do not use

experience curves for endogenous learning, the exogenous implementation of experience

curves can be an alternative by taking future cost reductions into account. The technology

costs are changing over time by following an autonomous and exogenous cost-decline path

(Junginger et al., 2008).

The technical implementation of endogenous and exogenous experience curves in energy-

system models is presented in Fig. 3.2 in a simplified overview, where the gray boxes with

the dotted frame represent external data sources, the blue boxes illustrate the model

functions, and the transparent boxes stand for model-produced data. The direct endogenous

implementation (left) is indicated by calculating the required data of the cumulative

production in the energy-system model. The data is transferred into the experience curve

function. Consequently, the technology costs are calculated, feedback looped, and applied

in the energy model. With the dotted arrows, alternative routes of endogenous

implementation of experience curves are illustrated. The endogenous calculated technology

demand or technology penetration is converted into the required data and unit of cumulative

production and further transferred into the experience-curve function. This can be defined

as a direct approximation that can still be considered as endogenous calculation. Following

the exogenous implementation route (right), the model provides only the year for which the
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technology costs should be calculated, while external data are describing the cumulative

production over time, which is converted into the right unit and implemented into the

experience curve function.

3.4 Practical implications in different types of models

3.4.1 Endogenous technological learning

The importance of considering endogenous technological learning in energy-system

models is addressed by Weyant and Olavson (1999). The authors highlight that the

response of technological learning to economic incentives is of crucial importance for

designing appropriate energy and environmental policy measures. A comprehensive

review of large-scale models employing endogenous learning curves is given in the

Fourth Assessment Report of the IPCC (2007) in Junginger et al. (2010) by Lensink et al.

(2010). While energy-system models often display long-term perspectives, the effect of

Figure 3.2
Overview of possible endogenous and exogenous experience-curve implementation routes in

energy-system models. Source: Based on Louwen et al. (2018). Credit: Steffi Schreiber.
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technological learning and innovation can have a large effect on the cost-competitiveness

of different technologies and therefore a significant effect on the general model results.

Endogenous technological learning is widely used in macroeconomic top-down models,

for example, in RICE (Castelnuovo et al., 2005), MIND (Edenhofer et al., 2006), or

E3MG (Barker et al., 2006) as well as in bottom-up energy models, for example,

MESSAGE (Messner, 1997), MARKEL�TIMES (Loulou et al., 2004), or ESO�XEL

(Heuberger et al., 2017). In general, two types of models can be defined that employ

experience curves endogenously—the general equilibrium models (top-down model) and

the partial equilibrium models (bottom-up model). In the case of top-down models,

usually the general equilibrium models are used because of their simple representation of

the energy sector including all other sectors of the economy. Hence, the general

equilibrium models are able to estimate the relationship between research and

development investments in energy technologies and their opportunity costs. The partial

equilibrium models are appropriate because of their reasonable quantity of technological

detail and as its mathematical formulation allows the incorporation of the nonlinear

experience-curve function (Rubin et al., 2015).

The endogenous technological-learning model produces internally consistent technology-

cost trajectories, which enables the evaluation of policy measures on realizable future cost

reductions. However, with increasing complexity of a model, the interpretation of the model

results becomes more difficult (Junginger et al., 2010). Thus the endogenous incorporation

of technological learning in energy-system models has some threats to mention. While the

relationship between investment costs and installed capacity is nonlinear, binary variables

have to be implemented in energy models, which lead to a significant increase of

computational burden. Furthermore, as technological learning occurs in almost all

technologies, learning asymmetries have to be avoided by applying endogenous learning

consistently among all relevant technologies (DeCarolis et al., 2017). Seebregts et al. (2000)

and Anandarajah et al. (2013) are using clustering of technological learning for similar

technology modules, whereas the learning is applied across a set of technologies with

similar components. In addition, technological improvements can be driven by a modeled

country or region, but indeed, technological learning is a global phenomenon. Therefore

modelers and policy makers should be careful while structuring the model and interpreting

its results that are influenced by endogenous experience curves (DeCarolis et al., 2017).

Another caveat related to the implementation of endogenous learning is that LRs are not

trivial to estimate and that they are not remaining constant over time (McDonald and

Schrattenholzer, 2001). Further, LRs for a certain technology vary between studies as

different datasets are used, for example, different gross domestic product (GDP) deflator

rates (Rubin et al., 2015). The variation of LRs over time must also be faced by considering

exogenous cost assumptions, as a small change in the assumptions leads to substantial

different optimal investment decisions (DeCarolis et al., 2017). Energy-system models with
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perfect foresight assumptions can place enormous investments in nonmature technologies

with high LRs without failure. Hence, the investment patterns can differ significantly from

the probable reality.

Several studies indicate that models with endogenous learning curves demonstrate benefits

from the early adoption of a new technology as it encourages greater cost reductions over

the long term (Mattsson and Wene, 1997; van der Zwaan et al., 2002; Nordhaus, 2009).

Hence, in models with endogenous experience curves the cost of delays in introducing a

new or enhanced technology can be extremely high compared to models that are not

considering technological learning (Bosetti et al., 2011). Applying the

MESSAGE�MACRO model, Riahi et al. (2004) investigated the effect on the global

carbon dioxide abatement levels with and without technological learning for carbon capture

and storage (CCS) technologies. The findings show that in the scenario with endogenous

technological learning, the overall CCS costs are lower, resulting in higher CO2 abatement

levels compared to other mitigation methods and in lower opportunity costs of global CO2

abatement in contrast to the scenario without endogenous technological learning. Thus the

results evince that CO2 mitigation policies are less costly in models with endogenous

technological learning than in models without learning. Divergent from the expected reality,

CCS technologies are playing a crucial role in the future energy system when experience

curves are implemented in the analyses (Heuberger et al., 2017).

To summarize, the implementation of endogenous learning curves in energy-system models

is complex but of crucial importance and enables modelers to determine the effectiveness of

technology improvements and the supporting policy measures. However, the interpretation

of modeling results should be done carefully, as the models with endogenous experience

curves are not predicting policy impacts but achievable outputs. Thus for some specific

cases, it can be more transparent to identify changes in technology costs exogenously over

time and verify it by sensitivity analyses (DeCarolis et al., 2017).

3.4.2 Exogenous technological learning

A large part of energy-system models are considering constant or exogenously driven

technology-cost reductions as a time-dependent input parameter (Gillingham et al., 2008;

Green and Staffell, 2016). Three ways exist to employ technology performance and cost

trajectories exogenously. The first method changes future technology costs and/or the

technology efficiency by an annual rate from a reference year, that is, x% per year decrease

in capital costs and/or y% increase in technology efficiency. The second method would be

to directly estimate the absolute technology costs or performance parameter over time, that

is, in EUR per capacity and net plant efficiency (Rubin et al., 2015). As a third option,

experience curves can be derived by empirical data and can emerge the future cost

developments over a specific time period, followed by the exogenous implementation of the
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data in absolute values (e.g., EUR/kWel) into the energy-system model. The exogenous

implementation of experience curves by the first two methods with its assumed quantitative

values implies the judgment of modelers that may derive from data analyses and/or

expertise. Implementing the cost reduction and performance improvements as time-

dependent variables lead to the fact that investments in new technologies are avoided until

the costs are decreasing significantly and the technology becomes competitive. Thus policy

implications are delayed to later time periods. In contrast, with endogenous technological

learning, the early adoption of a technology helps to drop down costs and makes the

deployment more attractive (Rubin et al., 2015). Hence, the choice of method to implement

endogenous or exogenous learning can have substantially different policy implications.

The fundamental difference between exogenous and endogenous technological learning is

that the exogenous technological change is only time dependent, while the endogenous

technological improvements can be influenced in several ways from past, present, and/or

future expected policies and prices (Gillingham et al., 2008).

3.5 Issues, caveats, and drawbacks of experience-curve implementation
in energy models

The implementation of technological learning in energy-system models is complex, related

to many uncertainties and, therefore, connected with some burden. In the following

sections, we will discuss several issues that can be encountered when implementing

experience curves in energy models.

3.5.1 Geographical scope of model

Only few models exist that are displaying worldwide developments. As the majority of

energy-system models are limited in their geographical scale, the technological learning

outside the system boundaries are not considered endogenously. But technological learning

is a global process. In the REFLEX project, only the developments in the European Union

are considered. However, technologies as CCS or battery storages are used and will be used

in future years worldwide. Hence, to derive consistent and reliable experience curves,

worldwide learning has to be taken into account. This could be realized by assuming that

technological learning outside the system boundaries (e.g., outside the EU) advances with

the same velocity as inside the EU. An alternative would be to base technological learning

on global energy scenarios as the World Energy Outlook. In addition, the technological

learning could partly be exogenized by modeling developments outside the model scope

with a different global model. The learning curve function will, therefore, be enhanced by

parameters as nglob—the global cumulative developments in the global model and by

nglobin—the cumulative developments in the global model for countries in the local model.
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Hence, the experience curve function to project the model costs considering exogenous

global learning in a local model is as follows (Louwen, 2018):

C Qð Þ5C1 � ðQin1Qglob2QglobinÞb (3.5)

where Qin is the cumulative developments in local model, Qglob is the global cumulative

developments in global model, and Qglobin is the cumulative developments in global model

for countries in local model.

However, this approach requires that the external global model has a compatible

geographical subdivision. Further, the level of technology detail can be insufficient in a

global model. Therefore the S-curve approach (Fleiter and Plötz, 2013; Schmidt et al.,

2017) can be applied if the global model does not consider the required technology.

3.5.2 Technological learning in an energy modeling system

Considering technological learning in an energy modeling system, where several models are

soft-linked with each other (e.g., as in the REFLEX project), can lead to model

inconsistencies as some technologies are considered by different models (e.g., heat pumps)

and thus each model represents the technology deployment individually. Hence, technology

penetration is often modeled based on different settings and criteria in each model,

sometimes even exogenously. As experience curves and cost reductions are a mathematical

function of cumulative deployment, strategies are needed to keep the deployment levels and

costs synchronized between the models (Louwen, 2018).

With the incorporation of endogenous experience curves in top-down or bottom-up models

a cost floor may be implemented to prevent the technology costs from falling below a

specific value. This would help to estimate a feasible solution and avoid that costs decrease

in an extreme path where technologies become unrealistically cheap within a certain time

period (Rubin et al., 2015).

3.5.3 Technical issues

Another issue encountered regarding learning curves in energy-system models is that

especially optimization models are not compatible with the nonlinearity and nonconvexity

of experience-curve functions. Nonconvexity can lead to local maxima or multiple global

equilibria (Messner, 1997). Therefore a global optimum cannot be guaranteed as it is

required for linear optimization problems. The development of a piece-wise linear

approximation of the exponential experience-curve function can be a solution for

optimization models as presented by Barretto (2001) and Heuberger et al. (2017).
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Another issue, especially with optimization models, is the tendency of these models to

prefer technologies with high LRs, as these models have “perfect foresight” due to their

technical definition. On the other hand, technologies with high initial costs can hardly be

overcome in simulation models, which can suffer from their myopic nature. Only when

taking into account, for example, government subsidies or other incentives do they enter

market deployment, and otherwise stagnate in end-consumer prices and thus do not enter

the market.

Aside from these technical issues, implementation of experience curves in modeling also

requires increased processing time, especially in endogenous implementations that create

certain feedback loops in the modeling computations.

3.5.4 Technology deployment constrained by modeling scenario and policy targets

Furthermore, technology diffusion can be constrained by policy targets and assumptions set

in the scenarios, which will lead to a prompt stoppage of technological learning in the

energy models. If this is the case, an ex post check of the experience curves and the results

should be performed to understand which assumptions have what influence on the

experience curves (Louwen, 2018). Another threat can occur if models are not producing

the data required for the needed input of experience curves (e.g., no calculation of

cumulative capacity for a specific technology). If this is the case, a proxy method shall be

used to convert the data into the desired input data, for example, data gathering on relation

between TWh and TW, or the data shall be used from an external model with similar

scenarios (Louwen, 2018).

3.5.5 Other issues

The most common caveat of deriving and implementing learning curves in energy-system

models is the lack of empirical data, especially for innovations and new technologies as

CCS. If empirical data is lacking proxy technologies, expert elicitations or a simplified

estimation of LRs can be used. Further, cross-sectoral or spillover effects are difficult to

take into account. Spillover effects can, for instance, describe how the technological

learning of lithium-ion batteries influences the reduction in prices of electric vehicles,

which for a large part depend on the battery system. Conversely, large deployment of

battery electric vehicles could lead to sharp price declines in stationary battery-storage

applications. To consider these effects the use of component-based experience curves are a

possible solution. However, this approach is more complex, requiring models to produce a

larger set of input parameters, and enlarging the threat of missing empirical data (Rubin

et al., 2015).
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Price developments of technologies can severely be affected by market dynamics, including

among others, different levels of market diffusion (see Chapter 2), supply and demand

balance, and input material prices. Multifactor learning curves can partly solve these issues of

market dynamics. Multifactor experience curves can take factors such as policies,

competition, R&D spending, and prices of input materials into account. Nevertheless, usually

one model does not produce all of the required multiinput parameters and considering

multifactor experience curves will thus increase modeling complexity rapidly (Louwen,

2018). Multifactor learning curves are not widely used; therefore further research is required

in context of endogenous model implementation of multifactor experience curves.

Obviously, there exists a trade-off between increasing the accuracy of modeling results and

limiting additional model complexity. Therefore each modeler should find a balance

between modeling accuracy and complexity, and analyze as well as interpret modeling

results very carefully.

3.6 Concluding remarks

Implementation of technological learning processes in energy modeling is an essential part

in analyses of future energy systems. It is critical to take into account continuous

development and improvement of new and incumbent energy-system technologies when

designing policy measures and analyzing energy-transition pathways laid out to achieve

climate targets. By using experience curves in energy modeling, technology-cost trajectories

can be modeled endogenously, creating a direct feedback between technology deployment

and associated learning processes and cost reductions.

That being said, model implementation of experience curves is not without its issues and

drawbacks. As we have discussed, a variety of model characteristics can hamper

endogenous implementation. Many energy models are restricted in geographical scope,

while technological progress is most often considered a global process. In these cases, it is

likely that an (at least partly) exogenous cost trajectory based on experience curves is

necessary, but a feedback between development within the model under study and

technological learning is in this case only possible to a limited extent. Other issues

encountered relate to technical or practical considerations in energy modeling, such as the

mathematical layout of the model, computation time, or the ability of models, to produce

the required input parameters for endogenous (multifactor) experience curves.
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