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Abstract
The past 15 chapters provide an overview of the technological development and cost reductions

achieved from a number of major energy technologies that are expected to be deployed as part of the

ongoing energy transition. At the same time, these chapters highlight how future cost reductions and

subsequent deployment of these technologies may shape the future mix of the electricity, heat, and

transport sectors. In this final chapter, we discuss both methodological issues that appeared throughout

the book and present a synthesis of the outlook of the technologies investigated. We discuss amongst

others general lessons and recommendations for policy makers, industry, and academics, focusing on

what technologies may require further policy support in the short term to have a major impact later

on, which investments will be needed, and what scientific knowledge gaps remain for future research.
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16.1 Introduction

The past 15 chapters provide an overview of the technological development and cost

reductions achieved from a number of major energy technologies that are expected to be
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deployed as part of the ongoing energy transition. At the same time, these chapters

highlight how future cost reductions and subsequent deployment of these technologies may

shape the future mix of the electricity, heat, and transport sectors.

In this final chapter, we discuss both methodological issues that appeared throughout the

book and present a synthesis of the outlook of the technologies investigated. We discuss

amongst others general lessons and recommendations for policy makers, industry, and

academics, focusing on what technologies may require further policy support in the short

term to have a major impact later on, which investments will be needed, and what scientific

knowledge gaps remain for future research.

16.2 Methodological considerations

Many papers have been published in the past on the methodological limitations of

experience curves. This section does not aim to summarize these findings, but mainly

focuses on issues emerging from the current book.

16.2.1 Cost of capacity versus LCOE and other metrics

A common theme emerging from various technology chapters is the need for metrics that

focus on the feature of a technology for which optimization is carried out. This is for most

energy supply technologies the ability to deliver energy (electricity, heat, or transport fuels)

at the lowest possible cost. For demand-side technologies, other factors typically play a role

as well (e.g., safety, reliability, and comfort of use, see the example of LED lamps later).

Still, for most technologies, the upfront investment cost was used as a proxy to reflect the

technological learning and associated cost reductions of the energy delivered. While this

yielded acceptable results in the past [especially for situations where the capital

expenditures (Capex) remained a substantial part of the levelized cost of electricity

(LCOE), such as photovoltaics (PV)] for many other technologies, increasingly the need is

emerging to focus more on the assessment of LCOE in order to accurately capture and

forecast cost trends. In this book, this need was particularly identified for onshore and

offshore wind, where the increasing capacity factor but also lower weighted average cost of

capital (WACC) and Opex have contributed to the overall reduction of LCOE, and

experience curves solely based on Capex are increasingly less suitable to provide

accurate trends.

Also for hydrogen production the levelized cost of hydrogen (LCOH) would be a more

appropriate metric than stack costs. For electric cars, studies beyond battery pack costs

focusing on total cost of ownership and cost per passenger-kilometer traveled will also help

better understand diffusion and adoption of electric vehicles. Similarly, for heat pumps, the

increases in coefficient of performance (COP) have led to substantial reductions in the cost
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of heat delivered compared to the reductions in the investment cost alone. However, as

discussed above, data availability limits the possibilities to take these developments

adequately into account.

Last but not the least, for LED lamps (as a typical consumer product), a correct assessment

depends on many factors: the rapid evolution in LED lighting products also introduced a

wide variety of new product features that also affect price, posing a challenge for

determining a single, well-defined price at any given point in time, and confounding efforts

to measure the underlying learning dynamics for the base technology. For instance, the

earliest LED lighting products intended for general illumination had relatively low light

output, while over time, products with higher output were introduced in the market at a

substantial price premium (that eased with time). It is thus essential for any price-trend

analysis to control for lumen output, to account for the varying maturity, and market

penetration of bulbs with different output. Additional features that can impact the price of

LED lighting products, of which relative market penetration varied significantly during the

2010s, include lifetime, color temperature, color rendering, dimmability, color tunability,

remote controllability, and the esthetic appearance of the light bulb itself.

16.2.2 Component-based assessments

As was highlighted in Chapter 5, for photovoltaic systems, experience curves for a system,

which is an aggregate of several components, should ideally be based on separate

experience curves for each component of this system. We observed that the learning rate for

PV modules was substantially higher than that for the so-called balance-of-system

components. Future price extrapolations should be made on the basis of using separate

experience curves for these components, rather than based on a single experience curve for

the whole system. As we highlighted in Chapter 5, using this single system-based

experience curve will likely lead to an overestimation of future cost reductions. A similar

discussion is also made in Chapter 8, where an overview is given of the components of a

battery storage system. From this discussion, it is clear that the potential for cost reduction

varies for each component; hence, it is argued that it is feasible to assume the aggregate

learning rate for battery systems will decrease over time as the relative cost shares of

components with high learning rates decrease more quickly.

16.2.3 Two- and multifactor experience curves

In Chapters 5 and 8, the concept of multifactor experience curves is discussed. Multifactor

experience curves attempt to expand the single-factor experience curve, by including

additional parameters aside from cumulative production. These parameters commonly

include R&D activities, by means of a variety of proxy datasets, and input material prices.

We observed in Chapter 5, that the price of silicon is highly correlated with the observed
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cost developments of crystalline silicon PV modules, while it is difficult to separate the

effects of cumulative production and R&D efforts, as the developments over time of these

two parameters are highly correlated. For battery storage systems (Chapter 8), material

input prices show little correlation with the observed cost reductions, a result of battery

designs being highly diversified in terms of material compositions and having design

features that are resilient to strong short-term price changes in, for instance, lithium and

cobalt.

The use of multifactor experience curves in price extrapolations and energy modeling

activities would address several issues that arise from the application of single-factor

experience curves, for example, it would be possible to take into account changes in input

material prices, the effects of policy measure that enhance R&D efforts, and possibly also

take into account knowledge (and production experience) spillover activities from one

product to the other. This would especially be true if a combination is made of component-

based and multifactor experience curves. Endogenous implementation of multifactor curves

in energy modeling is however still a developing field. The successful implementation faces

some tough methodological challenges, as the data requirements for multifactor and

component-based experience curves are much larger compared to single-factor curves. First,

much more detailed data needs to be collected, validated, and verified. Second, the

endogenous application of multifactor and component-based experience curves in energy

models requires that these models produce a much larger set of input data for the curves,

such as raw material prices, R&D activities, and cumulative production for each separate

component of a product. Still, if further research were to be successful in addressing these

issues, multifactor experience curves have the potential to improve the accuracy of

modeling future cost trajectories of technologies.

16.2.4 Environmental experience curves and social learning

As pointed out both in Chapter 4, and in the chapter on electricity storage (Chapter 8),

monitoring cost developments may not be the only application of the experience curve.

There are clear indications that with decreasing use of materials, next to cost, also the

environmental impacts during the production phase of, for example, solar cells or wind

turbines, decrease. Likewise, higher efficiencies of demand-side technologies reduce the

demand for fuels or electricity, and thus lower again the environmental impacts in the use

phase of many technologies. So far, deploying the experience curve concept to both assess

the historical environmental impacts and extrapolate such trends for future projections has

been very limited, partly also due to data limitations. One promising technology where a

historical analysis may be promising is onshore wind (given data availability), but also

other technologies could be scrutinized. After all, with massive deployment of these
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technologies, assessing environmental impacts is equally important as describing the overall

cost of deployment.

Another application of the concept of technological learning is discussed in Chapter 4,

where social learning mechanisms are investigated in a case study on the market diffusion

of electric vehicles. By taking into account a set of social dynamics, a more realistic model

can be derived on the uptake of these novel technologies in society, which includes more

than only fully rational decisions a consumer would make based on total cost of ownership

of a technology. Here, social learning represents the change in risk perception consumers

have of novel technologies, for instance, due to first adopters buying into these novel

technologies and essentially demonstrating the technologies’ value and capability to replace

incumbent technologies.

16.2.5 Application in energy and climate models

Implementation of technological learning processes in energy modeling is nowadays

common, yet not without its issues and drawbacks. As discussed in Chapter 3, a variety of

model characteristics can hamper endogenous implementation. Many energy models are

restricted in geographical scope, while technological progress is most often considered a

global process. In these cases, it is likely that an (at least partly) exogenous cost trajectory

based on experience curves is necessary, but a feedback between development within the

model under study and technological learning is in this case only possible to a limited

extent.

Other issues are encountered relate to technical or practical considerations in energy

modeling, such as the mathematical layout of the model, computation time, or the ability of

models to produce the required input parameters for endogenous (multifactor) experience

curves. When comparing an endogenous versus exogenous approach of implementing

technological learning in different energy system models, it appears that especially top-

down models allow easier implementation.

Testing the impact of the uncertainty of learning rates in in three different bottom-up

models (see Chapter 14) revealed that the diffusion of different technologies is not

impacted equally: heat pump diffusion for residential heating is only moderately affected,

as installation rates are also dependent on, for example, technology preferences independent

of pure cost parameters and policy preferences (e.g., support of centralized vs decentralized

systems). On the other hand, assuming higher learning rates for batteries may significantly

determine the diffusion of electric vehicles (see Chapter 15) in the transport sector and may

shift new investments from gas turbines to redox-flow batteries (see Chapter 14) in the

power sector. Similarly, the assumption whether CCS technologies do or do not learn

largely determines investment in CCS plants by 2050. Unfortunately, there is considerable
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uncertainty for many of the learning rates applied in these models, amongst others, due to

the limited availability of reliable learning rates and experience curves for many new

energy technologies such as CCS. Thus these model results should also be handled

with care, and sensitivity of the models to variation in learning rates should always

be tested.

16.2.6 Data availability and future data collection

Based on the nine technology chapters, we conclude that data availability and quality differ

strongly between the individual technologies investigated. For some technologies, data

availability is excellent, such as onshore wind, offshore wind, solar PV, and batteries.

Especially for the electricity supply technologies, data availability is high for the United

States and Europe, often due to excellent long-term publicly funded bodies that

systematically collect these data.

For other technologies, there is surprisingly little public data available. For example, LEDs

have been around for many years, are currently rapidly gaining market share, and are

generally considered as the lighting technology for the coming decades. Yet, other than the

data presented in this chapter, there are surprisingly little time series on LED price

developments available—possibly due to the large amount of data to be collected in order

to correctly assess and compare LED lamps. Likewise, heat pumps for space heating and

cooling have been deployed for decades (and in the form of air conditioning units on

massive global scale) and are generally seen as one of the most promising technologies to

provide low-temperature heat for residential buildings—yet, systematic collection of data on

capital costs and COP is largely missing. Hydrogen production through electrolysis has

been carried out on a large scale in the middle of the 20th century, but documentation of

the declining cost of hydrogen has been minimal. Given the fact that these technologies are

expected to play a major role in coming years, more comprehensive data collections on

Capex and other variables (see earlier) is of vital importance to better monitor and asses

future cost trends.

Similarly, there is also an actual lack of experience and data to make quality forecasts for

electricity storage technologies. The rapid pace of advances on the battery chemistry front

introduces new challenges that are novel and cannot be compared with other technologies

such as hydropower dams or natural gas combined cycle plants. Technological learning

studies should also incorporate alternative indices related to the life cycle of greenhouse gas

emissions from storage options, materials availability of emerging battery chemistries, and

cost indicators that incorporate multiple services and applications provided by storage. Also

here, we call for transparency, and public access of data remains key to validating new

learning curve models.
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On green hydrogen production through alkaline electrolysis—one of the key technologies to

decarbonize the energy system—relatively little public data is available, and often the data

is incomplete or unclear (e.g., what parts are included, the size of the system). For future

data collection, we recommend collecting data for the separate components of electrolyzers

(stack, gas dryer, compressor, etc.) and generating experience curves for each component

that makes up the system, similarly as performed for PV (see Chapter 5). This may be

particularly useful for proton exchange membrane (PEM) electrolyzers. PEM—due to is

flexibility with dynamic operation—might play an important role in hydrogen production in

the future.

16.3 Technology outlook till 2030

This section provides an outlook for the various technologies covered in this book until

2030, including likely cost reduction levels.

At the time of writing, three out of four electricity production technologies covered in this

book (solar PV, onshore wind, and offshore wind) reported that production cost levels could

(at least in some instances) outcompete the fossil reference technology:

• Given the already low cost of PV systems, especially for large-scale systems, the LCOE

from PV is already competitive with fossil generation in high irradiance locations and

has achieved grid parity for private consumers years ago in a much larger geographical

region. Chapter 5, shows that there is still substantial room for further system cost

reductions, and so it is likely that electricity generation with PV will be cost-

competitive in many more locations, even those with relatively low solar irradiance.

• Also, onshore wind is rapidly gaining market share and pushing out incumbent fossil

generation in many parts of the world. As shown in Chapter 6, onshore wind has shown

cost reductions for more than three decades, but the importance of underlying factors

has varied over time. Next to lower upfront Capex, the capacity factor has also

increased significantly. While Capex and LCOE have also temporarily increased

between 2005 and 2011, the overall learning rate for LCOE for data between 1990 and

2017 is 11.4%. Combining this learning rate with anticipated growth in global onshore

wind deployment yields a projected LCOE of about 33h/MWh by 2030, a reduction of

approximately 25% from 2018 levels, making it highly competitive with expected

prices of new coal and natural gas generation.

• After an increase between 2000 and 2015, the LCOE of offshore wind has declined

dramatically from 190h/MWh in 2015 to about 100h/MWh at the end of 2018, with

average projections for 2021 reaching as low as 70h/MWh. Especially, the increase in

capacity factor has been a major driver in reducing the LCOE. Given the strong

fluctuations in the past and many factors influencing the LCOE of offshore wind

projects, it was not possible to derive meaningful one-factor experience curves and
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learning rates that would allow extrapolation for future cost projections, but similarly to

onshore wind and PV, it is expected that in the coming years, offshore wind will

increasingly be able to compete with fossil fuels without direct economic support.

• In contrast, while concentrated solar power has also displayed cost decline in the past

decades, current LCOE is still at an average of 210h/MWh; it cannot currently compete

with PV, wind, and natural gas for electricity production.

Overall, with further opportunities to reduce LCOE, these technologies are set to deliver the

large-scale diffusion needed in many energy scenarios (especially those with ambitious

climate�change mitigation targets), delivering a surplus of electricity to provide energy for

the mobility and heating sector. However, due to the increasingly intermittent availability of

electricity in such systems, storage options will likely play a vital role.

Therefore past and future cost reductions of electric mobility and electricity storage options

(EV, batteries, and H2) have also been assessed in this book.

• For storage technologies, by 2030, stationary systems may cost between 200 and 440h/

kWh, with pumped hydro and an electrolysis-fuel cell combination as minimum and

maximum value, respectively. When accounting for experience rate uncertainty, the

price range expands to 150�520h/kWh (min: utility-scale lithium-ion, max:

electrolysis-fuel cell). For battery-based storage technologies, this means typically a

cost reduction of more than 50% between 2018 and 2030.

• Similarly, the price of battery packs for transport applications is also expected to

decline in a similar fashion from 50 to 190h/kWh in 2030 (40�200h/kWh with

uncertainty), partly also depending on the level of diffusion of electric cars, which

might reach between 100 and 240 million vehicles on the road by 2030. With the

anticipated strong growth in uptake, our chapter suggests that by 2040, the cost could

drop an additional 50% from today’s level, ultimately reaching 50h/kWh. Such

trajectories are feasible based on costs of new lithium-ion cathode chemistries and other

battery pack materials. Meeting policy goals such as the EU’s Strategic Energy

Technology Plan cost target of 75h/kWh is feasible in both high and moderate growth

scenarios This result, based on experience rates, indicates that aggressive targets may

not be so difficult to meet, which can help as a transportation decarbonization strategy.

• For hydrogen production, a less clear picture emerged. The experience curve for

alkaline electrolysis system between 1956 and 2016 shows a learning rate of 16%6 6%

with Capex decreasing from 2100 to 750h2017/kWinput in 1956 to a range between 900

and 500h2017/kWinput in 2016 but with a poor R2 of 0.307, which can be attributed to

discrepancies in the Capex composition of the gathered data and the wide spread in

capacity (1�100 MW).

With regard to heating and cooling technologies, this book investigated both condensing

natural gas boiler (the dominant fossil fuel�based heating technology in many EU
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countries) and heat pumps. Based on Swiss and Dutch case studies, the learning rate of the

main cost components of heat pumps is 12%�22% and the one of the system as a whole

about 20%, while their utility, in terms of less noise emission, system integration, and

energy efficiency, improved over the past decades. This is equal or higher as compared to

the LR of condensing gas boiler (13%). This holds for both countries assessed, although it

should be kept in mind that the time series is quite short in the Dutch case. Moreover, a

learning rate for the coefficient of performance was found, which is 5% in the case of

ground-source heat pumps and 9% for air-to-water heat pump (HP). Thus heat pumps offer

a high potential to improve their cost-effectiveness relative to reference systems in terms of

cost of delivered heating energy, which depend on both specific investment costs and on the

energy efficiency. Given the historical production and sales of heat pumps and condensing

boilers, the cost reduction of heat pumps will likely be more dynamic as the cumulative

production (or sales) will double faster, particularly in a climate mitigation scenario.

Moreover, there is still a considerable technical potential to improve peak performance and

energy efficiency (as opposed to gas condensing boilers where the technical potential is

basically tapped). Therefore competitiveness particularly will be improved from a

life-cycle-cost perspective, and from this perspective, heat pumps are already

competitive for different use cases in many countries, also depending on the framework

conditions.

Last but not the least, the progress achieved with LED lamps has been scrutinized. The 2010

decade saw a steady and rapid decline in price for LED lighting products, with prices falling

several folds from the high initial market-entry prices observed in 2010. For LED A-line

lamps sold in the US market, a steady decline of 20%�30% per year was observed through

the first half of the decade, in conjunction with fast growth in consumer uptake, resulting in a

manyfold increase in cumulative production in the same period. This situation presented an

unusual opportunity to observe significant technological learning effects in near real time as

they occurred over a period of only a few years. For A-line lamps in the United States, a

learning rate of 18% was found using only 2�3 years of data on price and lamp sales. With

such a limited time period, this learning rate should be handled with care: manufacturers

projected a 40% decline in costs from 2015 to 2020, while the price-based forecasts point to a

fourfold price drop over the same period. The discrepancy may partly also be explained by

changing margins for manufacturers. On the other hand, learning rates for PV modules

(another modular technology) of between 18% and 21% have been observed for a period of

over 50 years (see earlier); hence, this learning rate does not seem overly optimistic.

16.4 Final conclusions and recommendations

When reading through the previous section, it becomes clear that technological learning and

associated cost reductions for most technologies covered have been impressive over the past
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two decades and are now important drivers for further large-scale diffusion as part of the

transition to a low-carbon energy system. In many cases (onshore and offshore wind

energy, PV, and LED lamps), these technologies have reached the stage where they are able

to directly compete with some (e.g., coal, nuclear) or virtually all fossil/traditional energy

technologies and thus are now entering the phase where society will reap learning benefits,

that is, both lower costs (and thus economic benefits), lower greenhouse gas (GHG)

emission, and thus lower environmental (and in consequence again economic) impacts.

Even in the absence of stringent climate policies, these technologies now have the potential

to rapidly displace fossil-based and inefficient technologies. This is mainly due to persistent

learning investment by countries such as Denmark, Germany, the United States and Japan,

but more recently also China.

In other cases, there is still a long way to go before this stage is reached. Green hydrogen

production is seen by many as the ultimate way to decarbonize large parts of our energy

system and has shown clear progress over the past decades, yet the production costs are still

significantly higher than those of gray or blue hydrogen, and significant investments in both

R&D and deployment will be needed to bring down the production costs, much like those

of solar PV 50 years ago. The heat pump, as the technology to provide low-temperature

heat using electricity, is already cost-competitive in some market segments; but the need for

additional building insulation and the sheer size of the building stock to be covered implies

that this will still be a process over decades.

Thus we do repeat a key lesson from the LED-lighting chapter: an appreciation for the

effects of technological learning is essential for sound decision-making with regard to

emerging technologies, both for market actors and for policymakers. Decisions that

may seem bold, or even foolhardy, in the context of status quo market conditions may in

fact appear wise and beneficial once the full effects of technological learning are

considered.

Last but not the least, in this book, a selected number of technologies, which are deemed

crucial for the ongoing transition to a low-carbon energy system, were highlighted.

However, not all relevant technologies were covered: conversion technologies using fossil

fuels and nuclear energy were barely touched upon, even though they will continue to play

a major role for decades, and are also still learning. Carbon capture, utilization, and storage

technologies of both fossil and biogenic carbon may be crucial in keeping global mean

temperature increases below 2�C but were not included either. Advanced biofuels and solar

fuels may provide a renewable fuel for aviation and shipping where little alternatives exist

on the short term, but again did not feature in this book. This was partly based on time and

resource constraints, partly on the fact that the deployment of fossil fuels will hopefully be

phased out, but largely also because for many of these technologies, there is barely any

public data available and/or little actual progress and deployment has been achieved. For
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example, both carbon cature, utilisation and storage (CCUS) and advanced biofuels have

only seen marginal deployment in the past decade (for differing reasons), making it difficult

to deploy experience-curve-based assessments. While many may favor technologies, such as

wind, solar, and energy savings through efficiency measures, it remains very likely that we

will have to rely on a wide portfolio of technological options to fully transition to a low-

carbon energy system. Thus investing in these technologies to “push them down the

experience curve” is likely equally important as pursuing deployment of those that have

reached commercial maturity.
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