
The Information Systems Modeling Suite

Modeling the Interplay Between
Information and Processes

Jan Martijn E. M. van der Werf1(B) and Artem Polyvyanyy2

1 Department of Information and Computing Science,
Utrecht University, Utrecht, The Netherlands

j.m.e.m.vanderwerf@uu.nl
2 School of Computing and Information Systems,

The University of Melbourne,
Parkville, VIC 3010, Australia

artem.polyvyanyy@unimelb.edu.au

Abstract. According to our recent proposal, an information system is a
combination of a process model captured as a Petri Net with Identifiers,
an information model specified in the first-order logic over finite sets with
equality, and a specification of how the transitions in the net manipulate
information facts. The Information Systems Modeling (ISM) Suite is an
integrated environment for developing, simulating, and analyzing models
of information systems, released under an open-source license. This paper
presents the basic features of the ISM Suite.

Keywords: Information systems ⋅ Modeling ⋅ Simulating ⋅ Tools

1 Introduction

An information system (IS) is an integrated system of components that aim to
collect, store, organize, manipulate, process, and disseminate data, information,
and knowledge, often in the form of digital products. Finding the right balance
between static and dynamic aspects is essential when designing an IS. As shown
in [8], existing modeling languages often focus only on one of the two aspects.
Therefore, we introduced in [8] the Information Systems Modeling Language
(ISML), which focuses on expressing both these aspects and their interplay. An
ISML model captures information aspects of using first-order logic with finite
sets and equality and describes dynamic aspects that govern the information
using Petri nets with Identifiers (PNIDs). Due to this symbiosis, ISML models
feature:

1. CRUD operations over information facts and arbitrary information
constraints;

2. Process dependencies that extend to infinite-state processes; and
3. Formal foundation which enables automated verification, e.g., one can decide

if the system can evolve from its initial state into some other state of interest.
c© Springer Nature Switzerland AG 2020
R. Janicki et al. (Eds.): PETRI NETS 2020, LNCS 12152, pp. 414–425, 2020.
https://doi.org/10.1007/978-3-030-51831-8_22

The Information Systems Modeling Suite 415

This approach to modeling and analyzing information systems promises
advantages in educating future Information Systems professionals. Some ben-
efits reported by students include the immediate experience of the conse-
quences of design decisions and traceability between abstract and implemented
concepts [11].

This paper focuses on presenting the Information Systems Modeling Suite
(ISM Suite), an integrated collection of programs and tools for designing, exe-
cuting, testing, simulating, and analyzing models of information systems cap-
tured in ISML. The next section describes a motivating scenario of a small yet
comprehensive information system. Then, Sect. 3 exemplifies ISML by giving
an in-depth presentation of an ISML model that captures the motivating sce-
nario. Section 4 presents the ISM Suite and its features. The paper closes with
conclusions.

2 Motivating Example

Consider the following running example, which we employ throughout the paper.
A small organization uses a process-aware information system to support the
management of its purchase orders. The organization works with a bidding sys-
tem for its suppliers. If the organization wants to order a Product, it requests a
bid from each of its Suppliers. At least two Suppliers need to respond with their
bids, before the organization can select the best bid, and order the Product at
the chosen Supplier.

Fig. 1. BPMN model of the Purchase Order system.

The BPMN model that describes the dynamics of the IS is depicted in Fig. 1.
First, an employee at the organization creates an Order. Next, several Suppliers
bid for the Order, implemented via a “multi-instance activity” [2]. Finally, the
best Supplier is selected and receives the Order, after which the Supplier delivers
the ordered Product.

The information model of the IS is shown as an Object-Role Model (ORM) [3]
in Fig. 2. According to this model, Suppliers supply Products. An Order always
contains exactly one Product (c1, c4). Supplier can bid on an Order. From the
bids, a Supplier is selected, and receives the Order (c5). At most one Supplier

416 J. M. E. M. van der Werf and A. Polyvyanyy

Fig. 2. Information model of the Purchase Order system.

receives the Order (c2). Eventually, the selected Supplier can deliver the Order
(c6). Note that at most one Supplier can deliver the Order (c3).

The organization faces a problem with the IS: no progress can be made for
many orders. Both the process model and the information model do not expose
any error: the process model is sound and the constraints of the information
model do not contradict. However, it is the interplay of these models that causes
the problem: if at most one Supplier supplies a requested Product, the process
cannot progress. In the remainder of this paper, we show how our tool, the Infor-
mation Systems Modeling Suite (ISM Suite), can assist the modeler to analyze
the interplay between the process and data.

3 Information Systems Modeling Language

Modeling a process-aware information system requires at least three aspects
(cf. [1,7,8]): an information model for the structure of the information, a process
model describing the possible activities and their order, and a specification that
defines how activities manipulate the information model. To model such systems,
we proposed the Information Systems Modeling Language (ISML) in [8]. In the
remainder of this section, we exemplify ISML using the motivating scenario from
Sect. 2.

3.1 Information Modeling

An information model consists of a set of entity types, relations – characterized
by finite sequences of entity types – and a set of constraints, specified in first-
order logic. Given a sequence or tuple σ, by σ(i), i ∈ N, we denote the element
at position i in σ. Let I and Λ be a universe of identifiers and a universe of
labels, respectively.

Definition 1 (Information model)
An information model is a 5-tuple (E,R, ρ, η, Ψ), where:

– E ⊆ P(I) is a finite set of entity types;

The Information Systems Modeling Suite 417

– R ⊆ Λ is a finite set of relation types;
– ρ ∶ R → E∗ is a relation definition function that maps every relation type onto

a finite sequence of entity types;
– η ∶ E → R is an entity relation definition function that maps every entity type

onto a relation type such that η is injective and for every e ∈ E it holds that
ρ(η(e)) = ⟨e⟩, η(e) is called the entity relation of e;

– Ψ is a collection of statements in first-order logic that for every r ∈ R, n =
∣ρ(r)∣, (i) can use predicate r over the domain In, called the relation predicate
of r, and (ii) contains the statement:

∀ i ∈ In ∶ (r(i(1), . . . , i(n)) ⇒ (
n

⋀
k=1

η(ρ(r)(k))(i(k)))) ,

called the relation predicate statement of r. ⌟

Definition 1 refines the corresponding definition presented in [8]. It introduces
function η that explicitly defines entity relations. In addition, it requires that
the predicates induced by the relation types, i.e., relation predicates, are named
after the corresponding relation types, i.e., for every relation r ∈ R statements
in Ψ can use predicate r of the corresponding arity. Finally, for every relation
type, it introduces one relation predicate statement to the theory that establishes
dependencies between the truth values of the relation predicates. Note that a
relation predicate statement of an entity relation is a tautology. The information
model of the Purchase Order system is shown in Example 1.

Example 1 (Information model of the Purchase Order system)
The information model of the Purchase Order system as depicted in Fig. 2 is
captured as the 5-tuple (E,R, ρ, η, Ψ), where:

– E = {Es,Ep,Eo};
– R = {supplier ,product ,order ,supplies,receives ,bids,delivers,contains};
– ρ = {(supplier , ⟨Es⟩), (product , ⟨Ep⟩), (order , ⟨Eo⟩), (supplies, ⟨Es, Ep⟩),
(receives ,⟨Es,Eo⟩),(bids,⟨Es,Eo⟩),(delivers,⟨Es,Eo⟩),(contains ,⟨Eo,Ep⟩)};

– η = {(Es,supplier),(Ep,product),(Eo,order)}; and
– {ψ1,. . . ,ψ11} ⊂ Ψ , such that:
● ψ1⇔∀i ∈ I ∶ (supplier (i) ⇒ (¬product (i) ∧ ¬order (i)));
● ψ2⇔∀i ∈ I ∶ (product (i) ⇒ (¬supplier (i) ∧ ¬order (i)));
● ψ3⇔∀i ∈ I ∶ (order (i) ⇒ (¬supplier (i) ∧ ¬product (i)));
● ψ4⇔∀o ∈ Eo∀p1 ∈ Ep∀p2 ∈ Ep ∶ ((contains (o, p1) ∧ contains (o, p2)) ⇒ (p1 = p2));
● ψ5⇔∀s1 ∈ Es∀s2 ∈ Es∀o ∈ Eo ∶ ((receives (s1, o) ∧ receives (s2, o)) ⇒ (s1 = s2));
● ψ6⇔∀s1 ∈ Es∀s2 ∈ Es∀o ∈ Eo ∶ ((delivers (s1, o) ∧ delivers (s2, o)) ⇒ (s1 = s2));
● ψ7⇔∀o ∈ Eo∃p ∈ Ep ∶ contains (o, p);
● ψ8⇔∀s ∈ Es∀o ∈ Eo ∶ (receives (s, o) ⇒ bids (s, o));
● ψ9⇔∀s ∈ Es∀o ∈ Eo ∶ (delivers (s, o) ⇒ receives (s, o));
● ψ10⇔∀s ∈ Es∀o ∈ Eo ∶ (∃p ∈ Ep ∶ (bids (s, o) ⇒ (supplies (s, p) ∧ contains (o, p))));
● ψ11⇔∀s1 ∈ Es∀o ∈ Eo ∶ (bids (s1, o) ⇒ (∃s2 ∈ Es ∶ (s1 ≠ s2 ∧ bids (s2, o)))). ⌟

418 J. M. E. M. van der Werf and A. Polyvyanyy

To visualize an information model, we use the Object-Role Modeling (ORM)
notation. For each Entity Type e ∈ E, we draw an ORM Entity Type, for each
relation types that are not an entity relation, we draw an ORM Fact Type with
r as its caption. Some constraints are supported in ORM notation. For example,
uniqueness constraints (e.g. ψ4, visualized as c1 in Fig. 2), mandatory constraints
(e.g. ψ7 visualized as c4), and subset constraints (e.g. ψ8 visualized as c5).

An information model can be populated with facts. If a population satisfies
all constraints, it is called valid.

Definition 2 ((Valid) Population, Fact)
A population of information model (E,R, ρ, η, Ψ) is a function
π ∶ R → P(⋃n∈N I

n) such that every element in the population is correctly typed,
i.e., for every r ∈ R it holds that π(r) ∈ P(∏

∣ρ(r)∣
i=1 ρ(r)(i)). An element in π(r)

is called a fact. The population is valid, denoted by π ⊧ Δ, only if π ⊧ Ψ , given
that for every r ∈ R, n = ∣ρ(r)∣, it holds that ∀(i1, . . . , in) ∈ In ∶ (r(i1, . . . , in) ⇔
(i1, . . . , in) ∈ π(r)); otherwise π is invalid, denoted by π /⊧ Δ. ⌟

To manipulate populations, we define two operations for inserting and remov-
ing a fact from a relation. Operations can be concatenated, resulting in a
transaction.

Definition 3 (Transaction)
Let D = (E, R, ρ, η, Ψ) be an information model and let π be a population of
D. An operation is a tuple o ∈ O(D), where O(D) = (R × {⊕,⊖} ×⋃n∈N I

n).

– Operation o = (r,⊕, v) inserts fact v of type r into π iff π′ = (π∖{(r, π(r))})∪

{(r, π(r) ∪ {v})} is a valid population of D, denoted by (D ∶ π
r⊕v
�→ π′).

– Operation o = (r,⊖, v) removes fact v of type r from π iff π′ = (π∖{(r, π(r))})∪

{(r, π(r) ∖ {v})} is a valid population of D, denoted by (D ∶ π
r⊖v
�→ π′).

A transaction s ∈ (O(D))∗ is a finite sequence of operations such that every
subsequent operation is performed over a population resulting from the previous
operation. A transaction is valid if the initial and resulting populations are both
valid. ⌟

Example 2 (Transaction in the Purchase Order system)
A transaction in the Purchase Order system to add some Order o1 for Product
p can be expressed as follows: ⟨(order,⊕, (o1)); (contains,⊕, (o1, p))⟩. For any
valid population π such that o1 /∈ π(order), this transaction is valid. ⌟

3.2 Process Modeling with Petri Nets with Identifiers

For modeling the activities and their order we use Petri nets with Identifiers
(PNID) [4,8]. PNIDs can be seen as an extension of ν-Nets [9]. In a PNID,
tokens carry a vector of identifiers. These vectors have the advantage that a single
token can represent multiple entities at the same time. In this way, a token may

The Information Systems Modeling Suite 419

represent a (composed) fact from a population of an information model. Each
place is typed with a vector of identifiers, i.e., all tokens in a place have the
same vector length, called the cardinality. Arcs are annotated with vectors of
variables. Its size is implied by the cardinality of the place it is connected to.
Let Σ denote the universe of variables.

Definition 4 (Petri net with Identifiers)
A Petri net with Identifiers (PNID) N is a 5-tuple (P, T, F, α, β), where:

– P and T are two disjoint sets of places and transitions, resp., i.e., P ∩ T = ∅;
– F ∶ ((P × T) ∪ (T × P)) → N

0 is the flow function;
– α∶P → N

0 defines the cardinality of a place, i.e., the length of the vector of
identifiers carried on the tokens residing at that place; its color is defined by
C(p) = Iα(p);

– β defines the variable vector for each arc, i.e., β ∈ ∏{f ∣F (f)>0)} Vf , where
V
(p,t) = V

(t,p) = Σα(p) for p ∈ P, t ∈ T .

Its set of all possible markings is defined as M(N) = ∏p∈P (C(p) → N
0). The

pair (N,m) is a marked PNID if m ∈ M(N). ⌟

To fire a transition, the variables on its arcs need to be valuated to match
identifiers the tokens carry. A valuation maps each variable to an identifier. New
identifiers can be created if a transition contains variables that only occur on
outgoing arcs. The valuation guarantees that variables occurring on an outgoing
arc each receive a new, fresh identifier. For the full semantics of PNIDs, we refer
the reader to [4,8].

Fig. 3. PNID of the Purchase Order system.

Example 3 (PNID of the Purchase Order system)
The PNID of the Purchase Order system is depicted in Fig. 3. The multiple-
instance activity is translated in a standard pattern in which two suppliers can

420 J. M. E. M. van der Werf and A. Polyvyanyy

be asked simultaneously. The net starts in the marking with three tokens in place
r, and three tokens in place s. These tokens resemble products and suppliers,
resp., i.e., m0 = {r ↦ [p, q, r], s ↦ [s, t, v]}. In this marking, transition Create
order is enabled with valuation ν1 = {order ↦ o1,product ↦ p}, where o1 is a
fresh identifier. Firing this transition results in marking m1 = {p ↦ [o1], q ↦
[o1

2], r ↦ [p, q, r], s↦ [s, t, v]}. ⌟

3.3 Semantics of the Information Systems Modeling Language

Transitions in the process model often resemble events that manipulate the infor-
mation model. For example, in the Purchase Order system, the transition Create
order resembles adding a new order fact to the information model. In ISML, each
transition is specified with an abstract transaction that describes how the tran-
sition manipulates the information model. Similar to transition firing, abstract
transactions rely on valuations to be instantiated. The set of all abstract trans-
actions over some information model D is denoted by T (D), and extends normal
operations by allowing variables in the facts.

Example 4 (Specification of the Purchase Order process)
The Purchase Order system has four transitions with a non-empty abstract
transaction. The variables used in the transactions coincide with the variables
used on the arcs.

– Transition Create order ensures an order contains exactly one product:
S(Create order) = ⟨(order,⊕, (order)); (contains,⊕, (order ,product))⟩.

– Transition Send bid resembles the activity that a supplier responds to an order:
S(Send bid) = ⟨(bids,⊕, (supplier ,order))⟩

– Transition Select best bid sends the order to the best supplier:
S(Select best bid) = ⟨(receives,⊕, (supplier ,order))⟩

– Transition Deliver models that the order is delivered by the supplier:
S(Deliver) = ⟨(deliver,⊕, (supplier ,order))⟩ ⌟

An information system model has three constituents: an information model
D, a PNID N , and a specification S. In an information system, executing a
transaction should not result in an invalid population. Therefore, given a state
(π,m), a transition can only fire if (i) it is enabled in (N,m), and (ii), its
transaction results again in a valid population. For an overview of ISML and
its semantics, we refer the reader to [8]. The information system model of the
Purchase Order system is given in Example 5.

Example 5 (ISM of the Purchase Order System)
The information system model for the Purchase Order system uses the informa-
tion model of Example 1, the PNID depicted in Fig. 3, and the specification in
Example 4. Consider the following initial population, with three products and
three suppliers:

The Information Systems Modeling Suite 421

product(p) supplier(s) supplies(s,p) supplies(t, r)
product(q) supplier(t) supplies(s, q) supplies(v , r)
product(r) supplier(v) supplies(t,p)

Hence, the tokens in place r resemble the products, and the tokens in place s
suppliers. Transition Create order is enabled in the PNID with three valuations,
one for each product. None of the valuations result in an invalid transaction on
the current population. Hence, the transition is enabled in the ISM with all three
valuations.

Selecting valuation ν1 results in transaction: ⟨(order,⊕, (o1));
(contains,⊕, (o1 ,p))⟩. Firing the transition with this valuation results in mark-
ing m1 (see Example 4), and the valid population:

product(p) supplier(s) supplies(s,p) supplies(t, r) order(o1)

product(q) supplier(t) supplies(s, q) supplies(v , r) contains(o1, p)
product(r) supplier(v) supplies(t,p)

In marking m1, two transitions are enabled in the PNID: Request bid and Select
best bid. Both are enabled with three valuations, one for each supplier. Consider
valuation ν2 = {supplier ↦ v,order ↦ o1}. For transition Select best bid, this
valuation results in the transaction ⟨(receives,⊕, (v ,o1))⟩. However, this trans-
action invalidates the constraints ψ8 and ψ11, as the population contains no bids
for order o1. Hence, this transition is not enabled in the ISM for any of the valu-
ations. Only transition Request bid is enabled. Firing it with valuation ν2 results
in the marking m2 = {p ↦ [o1], q ↦ [o1], v ↦ [o1], r ↦ [p, q, r], s ↦ [s, t, v]}.
Now, transitions Time out and Send bid are enabled in the PNID, with valua-
tion ν3 = {order ↦ o1}. However, the transaction induced by Send bid yields an
invalid population, as supplies(v, p) is not a fact in our population. Hence, only
transition Time out is enabled in the current state. ⌟

4 ISM Suite

The ISM Suite is implemented as a plug-in for Eclipse and can be installed
via a publicly available Update Site.1 The ISM Suite consists of an editor and
simulator for PNIDs, and a simulator for ISMs. It heavily builds upon ePNK [6]
and is fully PNML compliant [5]. The ISM Suite has its own perspective in
Eclipse. It uses its own prover and simulation libraries, which, together with the
source code of the ISM Suite, can be found on Github.2

4.1 Editing and Simulating PNIDs

As the ISM Suite process editor is based on ePNK, it opens with a process
explorer, which displays the content of the PNML file. Initially, a net is created
of the correct type, together with a page. As the editor is PNML compliant,
all Petri net content has to be created on pages. The editor supports reference

1 See: http://informationsystem.org/ismsuite/.
2 See: https://github.com/information-systems/ISMSuite.

422 J. M. E. M. van der Werf and A. Polyvyanyy

Fig. 4. The ISM Suite. The view on the left depicts the PNID, a popup menu with
enabled valuations is shown. The panel on the right shows the current population of
the ISM.

places and reference transitions to “divide” the net over several pages. By double-
clicking on a page, the graphical editor is started. Places, transitions, and arcs
can be inserted on the canvas from the pallet.

By default, all places have the cardinality of 0, i.e., can hold “black” tokens.
Instead of working with cardinalities, the ISM Suite is structurally typed,
i.e., each constituent has its type, and variables need to be consistently typed.
The cardinality is derived from this type. A place can be typed by adding a label
to the canvas and connecting it with a “Link label”. The type is specified as a
bracketed list of entity types. Each entity type has to start with a lower case.
Similarly, the inscription of arcs can be added. Places with a non-empty type are
colored yellow in the editor. Tokens can be added by creating another label. Each
token is identified by its vector. For example, denotes three black tokens,
while resembles three “colored” tokens: two tokens carry the
vector (a, b) and one token carries the vector (c, d).

To simulate the PNID, one can start the simulator via the menu “ISM Suite”.
Before the engine is started, the net is validated and type-checked. If the net is
invalid, a warning is shown, together with the violations. The simulator is shown
in the left panel of Fig. 4. Once the simulator is started, enabled transitions are
marked with a thick red outline. On clicking on such transition, a menu is opened
with the possible valuations. After selecting a valuation, the transition fires. The
tokens residing in a place can be checked by clicking on that place. A menu is
opened with a list of all tokens.

The Information Systems Modeling Suite 423

Fig. 5. The ISM Suite. The panel on the right explains why certain transitions are not
enabled.

4.2 Simulating ISMs

To simulate an information system model, choose the “Start ISM Simulator”
option in the menu “ISM Suite”. A dialog is opened that asks for two files:
an information model and a specification. The information model needs to be
specified in the Typed First-Order Formulae (TFF) format [10]. For example,
constraint ψ11, refer to Example 1, at least two bids of different suppliers are
required, can be written in TFF as:
tff(domain_constraint_at_least_two_bids, conjecture,

! [S1: universe, O: universe] :
(receives(S1,O) => (? [S2: universe] : ((S1 != S2) & bids(S2,O))))).

A transaction is specified by a name and a set of typed variables and consists of
a sequence of operations. Different from the information model, the ISM Suite
does not “know” which entities are present in each entity type. These need to
be added explicitly in the transaction. To this end, there are four operations:

– Operation register p; adds element p to its entity type set;
– Operation deregister p; removes element p from its entity type set;
– Operation insert (a,...,z) into relation; inserts fact (a, . . . , z) to ‘relation’; and
– Operation remove (a,...,z) from relation; removes fact (a, . . . , z) from ‘relation’.

Transactions are matched with the transitions of the PNID by their identifiers.
To create an initial population, upon starting the simulator, all places that con-
tain tokens are also matched with transactions. For places, the variable names
have to match the identity types as specified in the place type. For example, to
specify the initial population, as presented in Example 5, a place is added with
five tokens, and the place is matched with the following transaction:

424 J. M. E. M. van der Werf and A. Polyvyanyy

transaction Offer.provides(supplier: universe, product: universe) {
register product; register supplier;
insert (product) into product; insert (supplier) into supplier;
insert (supplier, product) into supplies; }

If the model is fully consistent, the simulator is started, as shown in Fig. 4. On
the left, the process model is shown, the panel on the right shows the current
population. By firing transitions, the population is updated automatically. As
shown in the figure, transition Select best bid is not enabled, even though there
are sufficient tokens. To study why the transition is not enabled, the panel on
the right has a second tab, “Disabled transitions”, as shown in Fig. 5. For each
transition and valuation that is not enabled, an explanation is given why the
transition is not enabled. As shown in this figure, transition Select best bid, is
not enabled because it violates two constraints “receives subset bids” and domain
constraint “at least two bids”.

5 Conclusion

As the interplay between data and processes can be very subtle, it is not suffi-
cient to only study information and process models in isolation. In this paper,
we present the Information System Modeling Suite (ISM Suite). It is a tool
that helps to study how processes and data are related in an information sys-
tem. The tool provides editing and simulation facilities for modeling Petri Nets
with Identifiers. Furthermore, it allows simulating information system models.
It combines process models with an information model in terms of first-order
logic constraints, and a simple specification language to define how transitions
manipulate the information model. The tool provides visual aids to assist the
modeler by explaining why certain transitions are disabled in the ISM.

We envision the ISM Suite as a tool for learning modeling of information
systems. In the future, we want to perform several experiments with students to
validate the modeling approach, and how it is experienced, similar to [11]. As
the ISM Suite currently only supports visual modeling of processes, we plan to
extend it with visual facilities for information modeling, together with simulation
and analysis options.

Acknowledgment. Artem Polyvyanyy was partly supported by the Australian
Research Council Discovery Project DP180102839.

References

1. De Masellis, R., Di Francescomarino, C., Ghidini, C., Montali, M., Tessaris, S.:
Add data into business process verification: bridging the gap between theory and
practice. In: AAAI, pp. 1091–1099. AAAI Press (2017)

2. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business
Process Management. Springer, Heidelberg (2018). https://doi.org/10.1007/978-
3-642-33143-5

The Information Systems Modeling Suite 425

3. Halpin, T.A., Morgan, T.: Information Modeling and Relational Databases, 2nd
edn. Morgan Kaufmann Publishers, Burlington (2008)

4. van Hee, K.M., Sidorova, N., Voorhoeve, M., van der Werf, J.M.E.M.: Generation
of database transactions with Petri nets. Fundamenta Informatica 93(1–3), 171–
184 (2009)

5. Hillah, L.M., Kindler, E., Kordon, F., Petrucci, L., Tréves, N.: A primer on the
Petri net markup language and ISO/IEC 15909-2. Petri Net Newslett. 76, 9–28
(2009)

6. Kindler, E.: The ePNK: a generic PNML tool - users’ and developers’ guide for
version 1.0.0. Technical Report IMM-Technical Report-2012-14, DTU Informatics
(2012)

7. Montali, M., Rivkin, A.: DB-Nets: on the marriage of colored Petri nets and rela-
tional databases. In: Koutny, M., Kleijn, J., Penczek, W. (eds.) Transactions on
Petri Nets and Other Models of Concurrency XII. LNCS, vol. 10470, pp. 91–118.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55862-1 5

8. Polyvyanyy, A., van der Werf, J.M.E.M., Overbeek, S., Brouwers, R.: Information
systems modeling: language, verification, and tool support. In: Giorgini, P., Weber,
B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 194–212. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21290-2 13

9. Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability and complexity of Petri nets
with unordered data. Theoret. Comput. Sci. 412, 4439–4451 (2011)

10. Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF
to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

11. van der Werf, J.M.E.M., Polyvyanyy, A.: An assignment on information system
modeling. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP,
vol. 342, pp. 553–566. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
11641-5 44

