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Abstract. When two quantifiers Q1 and Q2 satisfy the scheme
Q1x Q2y φ → Q2y Q1x φ, we say that Q1 is scopally dominant over Q2.
This relation is central in analyzing and computing entailment relations
between different readings of ambiguous sentences in natural language.
This paper reviews the known results on scope dominance and mentions
some open problems.

1 Basic Definitions

An arbitrary generalized quantifier of signature 〈n1, ..., nk〉 over a non-empty
domain E is a relation f ⊆ ℘(En1) × ... × ℘(Enk), where k ≥ 1, and ni ≥ 1 for
all i ≤ k (e.g. Peters and Westerst̊aaahl , 2006, p.65). In short, we say that f
is a quantifier when it is of signature 〈1〉, a determiner (relation) when it is of
signature 〈1, 1〉, and a dyadic quantifier when it is of signature 〈2〉. When R is
a binary relation over some domain E (not necessarily E), we denote for every
X ,Y ∈ E :

(1) a. RX = {Y ∈ E : R(X ,Y)}
b. RY = {X ∈ E : R(X ,Y)}

In theories of natural language semantics, determiner relations are useful in
describing the meaning of determiner expressions as in (2).

(2) every: every = {〈A, B〉 ⊆ E2 : A ⊆ B}
some: some = {〈A, B〉 ⊆ E2 : A ∩ B 	= ∅}
more than half: mth = {〈A, B〉 ⊆ E2 : |A ∩ B| > |A ∩ B|}

It is well-known (Peters and Westerst̊aaahl , 2006, p.469) that meanings of natu-
ral language determiners – e.g. of the expression more than half – may be beyond
what is expressible in first order logic.

We assume that nouns denote sets A ⊆ E. Noun phrase meanings are then
described as in (3) using a quantifier DA, where the noun denotation is the left
argument of the determiner relation D (cf. (1a)).

(3) every student: everyS = {B ⊆ E : S ⊆ B}
some teacher: someT = {B ⊆ E : T ∩ B 	= ∅}
more than half of the students: mthS = {B ⊆ E : |S ∩ B| > |S ∩ B|}

Truth values of simple sentences with intransitive verbs are derived as in (4),
using the membership statement that the set denotation of the verb is in the
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quantifier denotation of the subject, or, equivalently, that the pair of sets denoted
by the noun and the verb are in the determiner relation.

(4) every student smiled: SM ∈ everyS ⇔ 〈S, SM〉 ∈ every ⇔
S ⊆ SM

some teacher cried: C ∈ someT ⇔ 〈T, C〉 ∈ some ⇔
T ∩ C 	= ∅

The iteration of two quantifiers Q1 and Q2 is the dyadic quantifier Q1−Q2

defined in (5). Iteration is used as in (6b) for describing meanings of simple
sentences like (6a), with transitive verbs that denote binary relations.

(5) Q1−Q2
def
= {R ⊆ E2 : {x ∈ E : Rx ∈ Q2} ∈ Q1}

(6) a. some teacher praised every student
b. P ∈ someT−everyS ⇔

{x ∈ E : Px ∈ everyS} ∈ someT ⇔
T ∩ {x ∈ E : S ⊆ Px} 	= ∅

The statement in (6b) is equivalent to the predicate calculus formula (7a). How-
ever, a well-known problem in linguistics (Ruys and Winter, 2008) is that tran-
sitive sentences like (6a) also have an “inverse scope” reading (7b).

(7) a. ∃x[T (x) ∧ ∀y[S(y) → P (x, y)]]
b. ∀y[S(y) → ∃x[T (x) ∧ P (x, y)]]

A way to use (generalized) quantifiers Q1 and Q2 for deriving the meaning
of formula (7b), is to define an operator ‘∼’ of inverse iteration. The dyadic
quantifier Q1 ∼Q2 defined in (8) is used in (9b) for obtaining an alternative
analysis of (9a) (=(6a)).

(8) Q1∼Q2
def
= {R−1 : R ∈ Q2−Q1}

= {R ⊆ E2 : {y ∈ E : Ry ∈ Q1} ∈ Q2}
(9) a. some teacher praised every student

b. P ∈ someT∼everyS ⇔
{y ∈ E : P y ∈ someT } ∈ everyS ⇔
S ⊆ {y ∈ E : T ∩ P y 	= ∅}

A trivial fact of first order logic is the entailment (7a)⇒(7b). In natural lan-
guage semantics, this is reflected in the logical relation between the two readings
of sentences like (9a). To describe the general phenomenon, we define a notion
of scope dominance (in short, “dominance”) between quantifiers.

Definition 1. A quantifier Q1 is scopally dominant over a quantifier Q2, if
Q1−Q2 ⊆ Q1∼Q2.

In cases of determiners D, D′, where the quantifier DA is dominant over D′
B

for any two sets A and B, we say that D is dominant over D′. For example,
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the classical entailment (7a)⇒(7b) amounts to the fact that for all S, T ⊆ E,
the quantifier someS is dominant over everyT . In short: some is dominant
over every. Furthermore, as can be easily verified, some is also dominant over
mth, where the latter quantifier is not first-order definable. The latter scope
dominance is reflected in the relation between the two readings of sentence (10).

(10) A guard is standing in front of more than half of the churches.

The likely reading of sentence (10), in which more than half of the churches have
a guard in front of them (potentially different guards), entails the less likely
reading, in which more than half of the churches are associated with the same
guard.

To describe such cases of scope dominance in natural languages, the general
task is:

Characterize the quantifiers Q1, Q2 such that Q1 is dominant over Q2.

In this paper we give a review of previous results about this question, and point
to some open problems.

2 Results on Scope Dominance

2.1 Scope Dominance and Duality

The complement Q of a quantifier Q is the set ℘(E) \ Q, whereas Q’s postcom-

plement is the set Q− def
= {A ⊆ E : E \A ∈ Q}. The dual Qd of a quantifier Q

is the complement of Q’s postcomplement:

Qd def
= (Q−) = (Q)− = {A ⊆ E : E \ A /∈ Q}.

Obviously, these three relations between quantifiers are symmetric, and (Q)d =
Q−. This is naturally described using figure 1, which generalizes the Aristotelian
square of opposition.

Whenever two determiner relations D and D′ form complement (postcomple-
ment, dual) quantifiers DA and D′

A on every set A, we say that the determiners
are each other’s complements (postcomplements, duals) and write that D′ = D
(D′ = D−, D′ = Dd, respectively). The classical square of opposition is between
the four determiner expressions every, some, no and not every. More generally,
the opposition holds between the following determiners, which form the classical
square in the special case n = 0.

(11) D = all but at most n = {〈A, B〉 ⊆ E2 : |A \ B| ≤ n}
Dd = more than n = {〈A, B〉 ⊆ E2 : |A ∩ B| > n}
D− = at most n = {〈A, B〉 ⊆ E2 : |A ∩ B| ≤ n}
D = not(all but at most n) = {〈A, B〉 ⊆ E2 : |A \ B| > n}

The relation between quantifier duality and scope dominance is described in
the following fact (Westerst̊ahl, 1986, p.278).
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Fig. 1. The Square of Opposition

Fact 1 For all quantifiers Q1 and Q2: Q1 is scopally dominant over Q2 iff Qd
2

is dominant over Qd
1.

For instance, just like some (=more than 0) is dominant over more than 3,
so is all but at most 3 dominant over every (=all but at most 0).

2.2 Special Cases of Scope Dominance

Two different special cases of scope dominance were studied by Zimmermann
(1993) and Westerst̊ahl (1996). Zimmermann characterizes the class of scopeless
quantifiers: those quantifiers Q that satisfy for all Q1 ⊆ ℘(E): Q−Q1 = Q∼Q1. He
shows that the scopeless quantifiers over E are precisely the principal ultrafilters
over E: the quantifiers {B ⊆ E : a ∈ B} for some arbitrary a ∈ E.1 Westerst̊ahl
(1996) characterizes the class of self-commuting quantifiers: those quantifiers Q
that satisfy Q−Q = Q∼Q. He shows that Q is self-commuting iff Q is either a
union or an intersection of principal ultrafilters, or a finite symmetric difference
of principal ultrafilters, or a complement of such a symmetric difference.

Clearly, the notion of scope dominance is more general than scopelessness
or self-commutativity: a quantifier Q is scopeless iff Q and Qd are both domi-
nant over any quantifier, while Q is self-commuting iff it is dominant over itself.
However, it should be noted that the results on scope dominance that we sur-
vey below do not fully subsume these results by Zimmermann and Westerst̊ahl,
which hold irrespectively of quantifier monotonicity and the cardinality of the
domain.
1 Zimmermann characterizes scopelessness in a more general case, where Q and Q1

are not necessarily defined over the same domain. The property we mention here is
a direct result of his characterization.
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2.3 Characterizing Scope Dominance

A quantifier Q over E is called upward (downward) monotone if A ⊆ B ⊆ E
implies that B ∈ Q if (only if) A ∈ Q. A determiner D over E is upward
(downward) monotone if DA is upward (downward) monotone for all A ⊆ E.

Westerst̊ahl (1986) characterizes the pairs D1 and D2 of upward monotone
determiners for which D1 is dominant over D2. He shows that over finite domains
these are precisely the cases where D1 is some or D2 is every. Westerst̊ahl’s
characterization is stated in a more general form in the following theorem.2

Theorem 2. Let Q1 and Q2 be two nontrivial upward monotone quantifiers
over a finite domain E. Then Q1 is scopally dominant over Q2 iff Q1 = someA

or Q2 = everyA for some A ⊆ E.

In general, however, this characterization is too narrow for infinite domains.
For instance, the quantifier Q1 = {X ⊆ N : {1, 2} ⊆ X} is dominant over the
quantifier Q2 = {X ⊆ N : |Y \ X | ∈ N}. This is reflected in the logical relation
between the two readings of sentence (12). But there is no A ⊆ N such that
Q1 = someA or Q2 = everyA.

(12) Both item 1 and item 2 cover all but finitely many cases.

Altman et al. (2005) extend Westerst̊ahl’s result for upward monotone quan-
tifiers over countable domains.3 For the formulation of the characterization,
they define a property of quantifiers called the Descending Chain Condition
(DCC). A quantifier Q is said to satisfy (DCC) if for every descending sequence
A1 ⊇ A2 ⊇ · · ·An ⊇ · · · in Q, the intersection

⋂
i Ai is in Q as well. For instance,

any quantifier of the form everyA satisfies (DCC), while a quantifier someA sat-
isfies (DCC) if and only if A is finite. The following theorem by Altman et al. is
a generalization of Theorem 2 to countable domains.

Theorem 3. Let Q1 and Q2 be upward monotone quantifiers over a countable
domain E. Then Q1 is scopally dominant over Q2 iff all of the following require-
ments hold:

(i) Qd
1 or Q2 are closed under finite intersections;

(ii) Qd
1 or Q2 satisfy (DCC);

(iii) Qd
1 or Q2 are not empty.

Note that, on finite domains, an upward monotone quantifier Q is closed under
intersections if and only if it is of the form everyA. Furthermore, over finite
domains, (ii) is a trivial consequence of (i). So this is indeed a generalization of
Theorem 2.
2 In fact, Westerst̊ahl’s result is restricted to “global” determiner functors (abstracting

over the domain E), which are furthermore logical, i.e. satisfy the familiar restrictions
of conservativity, permutation invariance and extension.

3 See Altman et al. (2001) for an earlier, and more restricted, characterization of scope
dominance for the same class of quantifiers.
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If we consider not only upward but also downward monotone quantifiers, then
also on finite domains there are instances of scope dominance that do not involve
quantifiers of the form everyA or someA. For instance, the logical relation be-
tween the two readings of sentence (13) is a manifestation of the scope dominance
relation between mth (cf. (2)) and no = at most 0 (cf. (11)).

(13) More than half of the teachers praised no student.

Theorem 4 below from Ben-Avi and Winter (2004), together with its dual,
provide a characterization over finite domains of scope dominance between quan-
tifiers of “opposite” (upward/downward) monotonicities. In this theorem we use
the notion of a minimal set in a quantifier. Standardly, we say that a set X ∈ Q
is minimal in Q if Y � X implies Y /∈ Q.

Theorem 4. Let Q1 and Q2 be two (non-trivial) quantifiers over a finite domain
E, s.t. Q1 is upward monotone and Q2 is downward monotone. Let

n
def
= max{|X | : X is minimal in Q2}

Then Q1 is scopally dominant over Q2 iff every Q ⊆ Q1 with |Q| ≤ n + 1 has a
nonempty intersection (i.e.,

⋂
Q 	= ∅).

Theorem 4 captures the dominance in (13). For more examples of this sort see
Ben-Avi and Winter (2004).

2.4 Inverse Linking Constructions

One of the puzzling structures for theories of quantifier scope in natural language
involves sentences like the following, which are sometimes referred to as inverse
linking constructions.

(14) Some student from every city participated.

In Predicate Calculus notation, the prominent reading of (14) is (15b), whereas
a possible but less plausible reading is (15a).

(15) a. ∃x[S(x) ∧ ∀y[C(y) → F (x, y)] ∧ P (x)]
(“there exists a student who is from every city, and that student par-
ticipated”)

b. ∀y[C(y) → ∃x[S(x) ∧ F (x, y) ∧ P (x)]]
(“for every city y, there exists a student who is from y and who partic-
ipated”)

As a matter of syntactic structure, inverse linking sentences involve a noun
phrase that appears within the left argument of a determiner expression, where
this argument is further restricted by a noun. In the case of sentence (14), the
noun phrase every city is in the left argument of the determiner expression some,
restricted by the noun student. To capture the effect we call “restriction”, we
adopt the following notation for any determiner over E and a set X ⊆ E.
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(16) a. D:X = {〈A, B〉 : 〈A ∩ X, B〉 ∈ D}
b. D:X = {〈A, B〉 : 〈A, B ∩ X〉 ∈ D}

The denotations in inverse linking sentences like (14) involve two determiners
D and D′, three sets A, B and P , and a binary relation R. In the example,
the determiners correspond to some and every, the sets correspond to student,
city and participated, and the binary relation corresponds to from. Using the
“restriction” notation in (16), the two readings of inverse linking constructions
are expressed as follows.

(17) a. R ∈ DP
:A−D′

B

b. R ∈ DP
:A∼D′

B

It is easy to verify that the two predicate logic formulae in (15) are equivalent
to the following claims.

(18) a. F ∈ someP
:S−everyC

b. F ∈ someP
:S∼everyC

The intersectivity (cf. Peters and Westerst̊aaahl , 2006, p.210) of the determiner
some implies that someP

:S = someS∩P . As a result, the familiar dominance of
some over every accounts for the dominance of someP

:S over everyC , or the
entailment from (18a) (=(15a)) to (18b) (=(15b)).

Matters get more involved when the first determiner in the inverse linking
construction is not intersective. Consider sentence (19) and its two analyses in
(19a-b).

(19) Every student from some city participated.
a. F ∈ everyP

:S−someC

b. F ∈ everyP
:S∼someC

Two facts should be noted about the quantifier Q = everyP
:S in these analyses.

First, the effect of supplying the right argument P of the determiner every is
that in general Q is not an upward monotone quantifier. Second, for any sets
S and P , the quantifier Q is furthermore downward monotone, as a result of
the simple fact Q = everyP

:A = everyP∪A, and the downward monotonicity of
every in its left argument.4 Consequently, we can use Theorem 4 to show that
everyP

:S is dominant over someC , unless C = ∅. In fact, the dual of someC ,
everyC , is upward monotone, and

⋂
everyC 	= ∅, unless C = ∅. By Theorem 4,

everyC is dominant over any downward monotone quantifier;5 specifically, it is
dominant over the dual of everyP

:S. By Fact 1, everyP
:S is dominant over someC .

4 More generally, the presentation DP
:A = DP∪A follows for any co-intersective deter-

miner D. Co-intersectivity requires that if A\B = A′\B′, then B ∈ DA ⇔ B′ ∈ DA′ .
(Keenan, 2006)

5 It should be noted that Theorem 4 as stated here does not cover trivial quantifiers.
However, C �= ∅ implies that everyC is not trivial, in which case it is easy to verify
that it is dominant over any trivial quantifier.
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We conclude that the scheme in (17) allows us to use the theorems above,
which are stated in terms of quantifiers, for characterizing at least some of the
entailments between readings of inverse linking constructions, which are initially
stated in terms of determiners. Further study of the way to characterize such
entailments must wait for further research.

2.5 Open Questions

In addition to the characterization of entailments between readings, results about
scope dominance itself can be extended and generalized in some directions. This
includes a full characterization of scope dominance between arbitrary quantifiers,
and over domains with arbitrary cardinality. At present there are no such general
results known to us.

3 Discussion

Nissim Francez (p.c.) has expressed some doubts about the importance of scope
dominance for theoretical and computational semantics of natural language. As
always, we are happy to differ. Although it is a “purely” combinatorial prob-
lem, it seems clear that a full characterization of scope dominance would deepen
our understanding of ambiguity in natural language. It is a fact that some sen-
tences show intricate logical relations between readings that grammarians find
necessary to assume. This fact has led to considerable confusion in the theo-
retical linguistic literature (Ruys, 2002). Having sound rules of thumb for the
situations in which such relations may appear could undoubtedly help to pre-
vent further descriptive inadequacies. Furthermore, some works (Chaves, 2003;
Altman and Winter, 2005) have started to explore the possibilities of comput-
ing scope dominance with natural language sentences. As Francez has argued, at
this point it is too early to know if such algorithms can be useful for reasoning
under ambiguity (e.g. Reyle, 1995; Van Deemter, 1996; Van Eijck and Jaspars,
1996). However, this is one domain where non-trivial problems about inference in
natural language seem tractable. We therefore believe that scope dominance in-
troduces an interesting challenge for a realm in which Francez (Fyodorov et al.,
2003; Zamansky et al., 2006; Francez and Dyckhoff, 2007) has continuously con-
tributed.
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