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ABSTRACT: Rivers play an important role in the global carbon (C) cycle.
However, it remains unknown how long-term river C fluxes change because of
climate, land-use, and other environmental changes. Here, we investigated the
spatiotemporal variations in global freshwater C cycling in the 20th century using
the mechanistic IMAGE-Dynamic Global Nutrient Model extended with the
Dynamic In-Stream Chemistry Carbon module (DISC-CARBON) that couples
river basin hydrology, environmental conditions, and C delivery with C flows from
headwaters to mouths. The results show heterogeneous spatial distribution of
dissolved inorganic carbon (DIC) concentrations in global inland waters with the
lowest concentrations in the tropics and highest concentrations in the Arctic and
semiarid and arid regions. Dissolved organic carbon (DOC) concentrations are less than 10 mg C/L in most global inland waters
and are generally high in high-latitude basins. Increasing global C inputs, burial, and CO2 emissions reported in the literature are
confirmed by DISC-CARBON. Global river C export to oceans has been stable around 0.9 Pg yr−1. The long-term changes and
spatial patterns of concentrations and fluxes of different C forms in the global river network unfold the combined influence of the
lithology, climate, and hydrology of river basins, terrestrial and biological C sources, in-stream C transformations, and human
interferences such as damming.

KEYWORDS: carbon biogeochemistry, river fluxes, global budget, process-based hydrology-biogeochemistry model,
spatiotemporal variations

1. INTRODUCTION

Rivers are an important component of the global carbon (C)
cycle and have been identified as a significant source of carbon
dioxide (CO2).

1 The estimates of global inland-water CO2

emissions range from 0.7 to 3.3 Pg C yr−1;1−9 this large range
not only implies uncertainty in global C budgets but also
illustrates our limited understanding of governing factors.
C in freshwater originates from terrestrial (allochthonous or

external) sources and in situ aquatic (autochthonous or within-
system) production.10 Allochthonous C is delivered to surface
water as dissolved organic carbon (DOC) and particulate
organic carbon (POC) from plant litter, surface runoff or
leaching, and as dissolved inorganic carbon (DIC) produced
during weathering or soil respiration.11 After delivery to
streams, rivers, lakes, or reservoirs, organic C can be
metabolized to DIC, buried in sediment, or transported
toward oceans.1 The DIC delivered to or generated within the
system is transported downstream or emitted to the
atmosphere as CO2 since aquatic systems are predominantly
supersaturated in CO2 relative to the atmosphere.12−14 These
early studies on CO2 partial pressure and effluxes have been an
impetus to develop global assessments on the importance of
freshwater systems in global C cycling.1,8,15−17

Most studies on C processing in streams, rivers, lakes,
reservoirs, and floodplains have focused on local processes and
cycling, including their sensitivity to perturbations, such as
dam construction, eutrophication, land-use change, and
climate change.2,3,6,9,18−26 However, these available snapshot
estimates often cover one single river, one specific year, or one
specific C flux (mainly CO2 fluxes or river organic carbon
export) and fail to describe the complete C budget. Moreover,
these studies do not resolve how C cycling in aquatic systems
has changed because of changes in hydrology, climate, and
land use. Recently, Ran et al. (2021) reported a decrease in
CO2 emissions from Chinese inland waters because of a
combination of environmental factors,27 and it is unknown
whether such a change is specific to China or of global
importance.
Modeling approaches are useful to describe long-term

changes in the C cycle that occurred in the past and to
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generate projections into the future. Many existing river
biogeochemistry models use regressions by lumping data at the
river basin scale to quantify C export to coastal waters or CO2
emission to the atmosphere for specific years.8,28−37 These
lumped regression approaches are often based on a priori
assumptions on the controlling factors or preselected data-
sets.8,28,29,31−38 Such models lack spatiotemporal inputs and
dynamic hydrological constraints, thus fail to reflect temporal
changes and only improve our understanding of the underlying
processes at highly aggregated levels (e.g., at river basin level or
at one point in time). A few semi-mechanistic models that use
some distributed inputs and in-stream processes have
attempted to simulate the long-term changes in the riverine
fluxes of certain C forms. For example, in the regional
terrestrial ecosystem model (TEM), the annual river DOC
export to oceans in Arctic regions is simulated as leaching of
DOC from soil in spring based on a series of environmental
factors, which causes huge uncertainties in estimates and
inapplicability to other rivers.39 The TRIPLEX-hydrological
routing algorithm model (TRIPLEX-HYDRA) couples natural
organic C inputs from soil and river hydrology and uses DOC
observations from the literature to estimate the global riverine
DOC export during 1951−2015, but the crucial in-stream C
biogeochemical processes and all anthropogenic impacts
including land-use change, wastewater discharge, dam
construction, and so forth are not considered.40 The Dynamic
Land Ecosystem Model (DLEM) includes multiple C forms
and in-stream processes and has been applied to some rivers in
North America, but the potentially important processes of
aquatic production, C burial, sediment dynamics, CO2
exchange with the atmosphere in large waterbodies, and the
impacts of floodplains and construction of dams and reservoirs
are not included.41−43 The regional model Integrated Catch-
ments Model for Carbon (INCA-C) is designed to simulate
the processes of dissolved C, especially DOC, in boreal and
temperate river basins, but sediment dynamics, POC dynamics,
and anthropogenic impacts other than land cover are not
considered.44,45 The regional model ORCHILEAK simulates
terrestrial C inputs, in-stream respiration and DOC decom-
position, and transport of DOC and CO2 along the terrestrial-
aquatic continuum of the Amazon basin, but other C forms
and dynamic processes are not included.46,47 The regional
Model of Organic matter Removal and Export for Dissolved
Organic Carbon (MORE-DOC) simulates riverine DOC
processes in the Yangtze River for the period 1980−2015,
but it relies on numerous observational data for calibration and

does not include other C forms and relevant processes.48 The
regional process-based model National Integrated Catchment-
based Ecohydrology (NICE)-BGC was recently applied to
simulate the in-stream processing for DIC, DOC, and POC in
global 153 river basins for the period 1980−2015 with a 1° ×
1° spatial resolution, but the land-use change before the year
1992, impacts of dams and reservoirs, and processes relevant to
sediment and C burial were not considered.49,50 Since these
process-based models do not fully consider multiple C forms
and their associated in-stream dynamic processes, including C
production, consumption, transformation, lateral transport,
and interaction at the water-sediment and water-air interfaces,
they have limited capabilities of hindcasting the historical
spatially-explicit riverine fluxes and concentrations of multiple
C forms on the global scale.
To describe the changing riverine C cycling resulting from

the long-term interactions between land-use changes, inter-
ventions in hydrology (dam construction, reservoirs, and water
extraction), and wastewater discharge, we need a spatially
explicit integrated model that describes biogeochemical
processes coupled to hydrology and the terrestrial C cycle.
In this study, we implement freshwater C cycling in the
process-based Dynamic In-Stream Chemistry module (DISC)
(i.e., DISC-CARBON), which is part of the Integrated Model
to Assess the Global Environment (IMAGE51)-Dynamic
Global Nutrient Model (IMAGE-DGNM52). This new
model describes the spatial and temporal variability of C
concentrations, transformations and fluxes based on the river
basin hydrology, environmental conditions, and C delivery
from headwaters to mouths. The model calculates pCO2, CO2
emissions, organic carbon burial, and export of DIC, POC, and
DOC resulting from the balance of inputs, transfers, and
transformations, and observational data are only used for
performance assessment and not for calibration. We employ
DISC-CARBON to investigate long-term changes in concen-
trations and fluxes for DIC, DOC, and POC in the world’s
river network over the 20th century, and, via a sensitivity
analysis, identify the major drivers of C fluxes (export, burial,
and emission) for five major river basins.

2. MODEL AND DATA USED
2.1. DGNM Framework. The DISC-CARBON module,

part of the IMAGE-DGNM framework (Figure 1a), is an
extension of the recently published DISC module52 with a
description of the riverine C cycle. IMAGE-DGNM builds on
the IMAGE-GNM53 that uses the spiraling approach for

Figure 1. (a) Scheme of the IMAGE-DGNM framework including the DISC-CARBON module for the in-stream biogeochemical C transformation
processes and (b) scheme of C sources, forms, and biogeochemical transformations in all simulated waterbodies in the DISC-CARBON module.
The formulas for each transformation process are listed in Table SI2.
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describing global annual in-stream nitrogen (N) and
phosphorus (P) retention for long time series (20th century).
With defined subannual variations and speciation of C and
nutrient delivery to river networks,54 and the integration of the
new process-based DISC module that replaces the spiraling
approach, the IMAGE-DGNM framework allows for the global
simulation of transfers of multiple nutrient and C forms from
land to coastal waters. IMAGE-DGNM provides a long-term
global perspective on C and nutrient accumulation and
consumption processes in landscapes within river basins.
Apart from the subannual temporal scale and the representa-
tion of different nutrient and C forms, the description of
remobilization processes of the accumulated matter is a major
innovation at this scale of analysis (with more details in Text
SI1 in the Supporting Information).
In the current version of the framework, input and output

time steps range from monthly to yearly. In this study, we used
an annual temporal resolution at the global scale and compared
results for annual and monthly resolution for the Rhine River
basin. The spatial resolution of 0.5-by-0.5 degree matches that
of the PCRaster Global Water Balance (PCR-GLOBWB)
hydrology model, which is part of the IMAGE-DGNM
framework (Figure 1a). PCR-GLOBWB dynamically simulates
the volumes, surface areas, and discharges of the different
waterbodies of river networks, including lakes, reservoirs, and
high-order (≥ 6) streams.55,56 Floodplains are assumed to
exchange water in Strahler orders ≥6 and have a flow velocity
of 10% of that in the mainstream. The discharge and
characteristics of smaller streams are estimated for each 0.5
by 0.5-degree continental grid cell based on the runoff and the
properties of high-order streams using the parameterization
proposed by Wollheim et al.57

Within the IMAGE-DGNM framework, the IMAGE model
provides land cover data to PCR-GLOBWB and C delivery
fluxes to DISC-CARBON. Climate data from ERA-40 re-
analysis58 are used in PCR-GLOBWB for computing the water
balance, runoff, and discharge for each year. C delivery
includes POC, DOC, DIC (the sum of dissolved CO2, HCO3

−,
and CO3

2−) and alkalinity (ALK) from wastewater, surface
runoff, weathering, eroded soil material, and litterfall from
vegetation in flooded areas (Figure 1a). The calculation of
each of these input fluxes is described in Table SI1.
2.2. DISC-CARBON. After delivery of C to streams and

rivers, the DISC-CARBON model calculates in-stream
biogeochemistry, uptake by pelagic and benthic algae (ALG),
burial, mineralization, CO2 emission, and transport for all
waterbodies from upstream grid cells down to the river mouth
for each river basin at the global scale (Figure 1b). Particulate
inorganic carbon (PIC), primarily calcium carbonate, is
ignored in DISC-CARBON for simplification, considering
that PIC mainly originates from detrital old carbonates,59 that
PIC transport flux is relatively limited compared with those of
other C species,16,25,60 and that its relocation within river
basins does generally not affect the short-term biogeochemical
C fluxes.61 DISC-CARBON calculates the concentration of C
species i for each time step in each waterbody type (i.e., rivers
of different stream orders, lakes, reservoirs, or floodplains) of
every cell as an effect of biogeochemical (bgc) interactions
between C species and as a result of hydrological (hyd)
transport (between cells or waterbodies within the same grid
cell) as follows:

if species i is dissolved or suspended in the water column:

= +
C
t

C
t

C
t

d
d

d
d

d
d

i i i

tot bgc hyd (1a)

if species i is incorporated or attached to the bed surface:

=
C
t

C
t

d
d

d
d

i i

tot bgc (1b)

Hydrological advection of any dissolved or particulate C
species i in the water column, being DIC, DOC, POC, and
ALG, is calculated as follows:

= − × [ ]
C
t

L Q C
d
d

i
i i

hyd (2)

where Li is the upstream load (Mmol yr−1) of species i, Q is the
water discharge (km3 yr−1), and [Ci] is the concentration of C
species i (Mmol km−3). POC, when sedimented, is not
transported until it is resuspended. Benthic algae are assumed
to be attached to the streambed and are not transported
downstream.
Model equations for C dynamics are listed in Table SI2, and

model constants and parameters are listed in Tables SI3 and
SI4, respectively. Subsequently, we briefly discuss the
simulation of light limitation, primary production, and DIC
and DOC dynamics.
The biogeochemical transformations among DOC, POC,

and DIC depend on hydrology, temperature, and radiation.
Light limitation for primary production is calculated using a
spatiotemporal distribution of solar radiation reaching the
surface of the waterbody and water turbidity, caused by
particulate matter, which controls light penetration through the
water column (eqs 1−7 in Table SI2). Primary production
(eqs 8−19 in Table SI2) depends on the biomass of the
producers, their growth rates, temperature, and light and DIC
availability. Similarly, respiration and excretion (biomass to
DOC) are modeled as a fraction of primary producer biomass
and depend on temperature.
POC dynamics is affected by delivery fluxes from erosion

and litterfall, sedimentation and resuspension, primary
production, and mineralization. The mineralization of
terrestrial organic matter with structural carbohydrates and
lignins is slower than that of aquatic organic matter, which is
rich in N and P.62 The role of associations with protective
mineral surfaces is ignored (see previous studies63−66).
However, to account for the diversity in POC reactivity,67,68

DISC-CARBON distinguishes (1) allochthonous, terrestrial
POC (with slow mineralization) and (2) aquatic, autoch-
thonous POC (with fast mineralization) (Table SI2 eqs 27−
30).
The dynamics of DIC is described by eqs 20−25 in Table

SI2. External input of DIC in the DISC-CARBON module
originates from weathering (Table SI1), and DIC is produced
in-stream through the mineralization of organic C forms and
respiration of living biomass. DIC consumption occurs through
primary production. Finally, DIC is added to or removed from
the waterbody through CO2 exchange with the atmosphere.
ALK is generated by weathering of sediments and rocks and
delivered to streams. ALK production and consumption by
primary production, respiration, nitrification, calcium carbo-
nate precipitation, and dissolution within the stream network69

are assumed to be negligible compared to the ALK inputs from
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weathering; the spatial and temporal resolution of the model
does not allow for calculating hyporheic ALK production and
removal.70 Although ALK is the sum of excess bases in solution
in natural environments, carbonate alkalinity (i.e., the
bicarbonate and carbonate ions) tends to make up most
alkalinity. In DISC-CARBON, ALK delivered to surface water
is combined with DIC to calculate pCO2 and pH.
Surface runoff and wastewater constitute external DOC

sources (Table SI1). In-stream DOC production occurs
through excretion by pelagic and benthic algae, and DOC
consumption occurs through mineralization. DOC dynamics is
described by eqs 26−46 in Table SI2.
2.3. Sensitivity Analysis. For a selection of the world’s

largest rivers (the Amazon, Lena, Mississippi, Nile, and
Yangtze), we calculated the sensitivity of the DISC-CARBON
modeled average CO2 emissions, C burial, and C export
[DOC, POC, DIC, ALG, and their sum (total carbon, TC)] to
the variation of 52 parameters, 8 environmental, and 8 C
delivery forcings. We used the Latin hypercube sampling
method71 and carried out 750 runs. Model sensitivity is
expressed as the standardized regression coefficient (SRC).
More details on this approach are provided in Text SI2.
2.4. Model Performance Assessment Strategy. The

model performance is evaluated by comparing simulated

concentrations of DIC, DOC, and TC with measurement-
based annual and 0.5-by-0.5-degree grid averages for a range of
global rivers calculated from GloRiSe,72 GLORICH,73 and
GEMS-GLORI databases.74 Available data have been selected
for stations and years with at least six observations per year to
represent the annual mean, while these measurements may
include different sampling and analytical methods (which are
not always recorded in the databases).

3. RESULTS AND DISCUSSION
3.1. Model Performance. 3.1.1. Model Estimates and

Observations. The comparison of the simulated concen-
trations of DIC, DOC, and TC with the available observational
data in river basins since the 1940s shows that the
concentrations of different C forms simulated by DISC-
CARBON are in fair agreement with observations (Figure 2a−
c). Most simulated DIC (89%) and DOC (90%) concen-
trations are within a factor of 2 of the observations at various
stations in a range of global river basins, irrespective of the
basin size (Figure 2a,b,e and SI1a). The simulated TC
concentrations agree with the measurements for major rivers;
for small rivers, 83% of the simulated TC concentrations are
within a factor of 2 of those measured, with a slight general
overestimation (Figure 2c and SI1b). For data from river

Figure 2. Validation of DISC-CARBON against the observed concentrations of (a) DIC, (b) DOC, and (c) TC (DIC + DOC + POC) at different
stations with at least six measurements within the year considered for numerous global rivers of various sizes; when more than one station occurs
within a grid cell, the mean of their annual average concentrations is used for comparison; (d) validation of DISC-CARBON simulated POC export
to the coastal oceans against observation data from the late 1980s to early 1990s; (e) fraction of observations plotted against the ratio of prediction:
observation (relative error) for DIC; and (f) comparison of the difference between the predicted and observed DIC concentrations (in μmol/L)
with the mean of the predicted and observed values according to Bland and Altman (1986).75 Similar figures for DOC and TC to (e) and (f) for
DIC are in Figures SI1a−d. DIC data covering 1942−2000, DOC data covering 1973−2000, and TC data (for Rhine and Weser Rivers) covering
1978−1998 are from GloRiSe72 and GLORICH;73 POC observation data are from GEMS-GLORI.74 Rivers are sorted based on their catchment
areas.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.1c04605
Environ. Sci. Technol. 2021, 55, 16757−16769

16760

https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c04605/suppl_file/es1c04605_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c04605/suppl_file/es1c04605_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c04605/suppl_file/es1c04605_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c04605/suppl_file/es1c04605_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c04605/suppl_file/es1c04605_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c04605?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c04605?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c04605?fig=fig2&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c04605/suppl_file/es1c04605_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c04605?fig=fig2&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c04605?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


mouths, the simulated DIC (R2 = 0.519, p < 0.001) and DOC
concentrations (R2 = 0.562, p < 0.001) show an even better
agreement with observations, with over 97% of both within a
factor of 2 (Figure SI2a, b). DISC-CARBON predictions of
POC river export are consistent with observations for large
global rivers (R2 = 0.462, p < 0.001) (Figure 2d). Despite the
limited available measurements of TC (i.e., all C forms
measured simultaneously at the same location) at global river
mouths compared with those of DIC and DOC, 97% of the
simulated TC concentrations are within a factor of 2 of the
measurements (Figure SI2c). Freshwaters are heavily under-
sampled and the lack of representativeness of the few TC
measurements available may also contribute to the minor
mismatch. DISC-CARBON results are closer to the observa-
tions for river mouths than for upstream stations because the
simulation results at river mouths integrate the effect of
processes over the entire river basins: the quality of the input
data is better at the basin than the single-grid-cell scale. For
upstream stations, the spatial input data of DISC-CARBON
can be uncertain because of the coarse resolution, and available
observational data may not be representative because of
incomplete temporal coverage within each year.
We also tested the model performance with the Bland−

Altman approach,75 that is, examining the difference between
the observation and prediction (residual) with the mean of the
predicted and observed values. The results show that the
predictions agree with the observations (Figure 2e, SI1a, b),
and there is no systematic error for DIC (Figure 2f), DOC
(Figurer SI1c), and TC (Figure SI1d).
This fair agreement between model predictions and

independent observations gives confidence to the overall
approach because DISC-CARBON is a mechanistic model and
not a regression model aiming to reduce differences between
observations and estimates.
3.1.2. Sensitivity Analysis. Since our model is based on

mass conservation, the modeled global C fluxes are internally
consistent, and temporal changes are the combined result of
the changes in hydrology, climate, and C inputs from the land.
However, the uncertainties in the fluxes can be as large as their
temporal changes, which calls for an analysis of the sensitivity
of modeled fluxes to the variation of model parameters. The
results of this sensitivity analysis for those parameters with a
significant and important influence on the simulated CO2
efflux, C burial, and export of different C forms are presented
in Table SI5 for the Amazon (a), Lena (b), Mississippi (c),
Nile (d), and Yangtze (e) Rivers. These rivers represent a
range in climate, hydrology, and human activity (land use, dam
construction, and so forth). In this way, not only the variations
of parameters driving changes in C cycling but also their
differences among river basins are examined. We present values
of the SRC, which quantify the sensitivity of the model to
parameters (see Tables SI5). Results for 32 input parameters
are shown that have a significant and important effect on one
of the output variables listed in Table SI5 in any of the five
rivers analyzed.
For the five rivers analyzed, the role of discharge (Q) is

important for almost all C fluxes as it influences the flow
velocity and time available for transformations, with a
commonly negative influence of increasing discharge on CO2
efflux and C burial and a positive influence (although limited in
some cases) on the export of the various C forms (because
there is less burial and less CO2 efflux), which is consistent
with the findings in other studies.36,44,46,48,76,77 An increase in

temperature positively influences CO2 efflux (SRC of 0.28 for
the Amazon to 0.39 in the Yangtze and 0.65 in the Nile) and
lowers C burial (not important in the Lena because of low
temperatures and low production rates, and SRC values of
−0.43 to −0.83 in the other rivers); it also negatively impacts
the export of primarily DOC (high negative values of −0.43 for
the Lena and −0.73 for the Amazon) and POC (−0.22 for the
Nile to −0.73 for the Amazon). The parameters related to
phytoplankton growth (e.g., solar radiation and maximum rates
of phytoplankton growth or mortality) are important in most
of the rivers for the export of POC and algal biomass (SRC
values of 0.22−0.30, Tables SI5a−e), but they also exert an
influence on DOC export, C burial, and CO2 emission in rivers
heavily controlled by dams and reservoirs, such as the
Mississippi17,78 and Yangtze.27,79,80 Maximum algal growth
rates influence CO2 exchange negatively (SRC of −0.36 for the
Mississippi and Yangtze) and burial positively (SRC of 0.48 for
the Mississippi and 0.43 for the Yangtze); the sensitivity to the
variation of parameter values for algal growth is much smaller
in the other rivers considered (Tables SI5c and e).
Terrestrial organic inputs generally have a small positive

effect on the POC export (highest SRC values of 0.41−0.43 for
the Mississippi, Nile, and Yangtze, Tables SI5c,d,e). Differ-
ences in geomorphology play a role in the importance of
autochthonous phytoplankton growth. For the Amazon River
and its tributaries, floodplains are major components81−83 and
have large standing stocks of biomass and limited agricultural
land use, which cause large C inputs to the water during
flooding periods in forested areas (POC input from litterfall,
with a high SRC of 0.85 for CO2 emission). In contrast, the
Mississippi and Yangtze Rivers have extensive agricultural
areas,84,85 and floodplain processes are less important (SRC of
0.39 and 0.2 for CO2, respectively, Tables SI5c and e) than
those in the Amazon. With its extensive forested area in
upstream areas, the Nile basin also has a high SRC of 0.58 for
CO2 emission because of variation in litterfall (Table SI5d).
Finally, alkalinity inputs from groundwater have a significant
and important influence on DIC export in all analyzed rivers
(with SRC values ranging from 0.77 for the Amazon to 1.0 for
the Rhine), and in most cases, there is also a large influence on
the TC export, especially where DIC is the major component
of TC in the rivers.
Although the small parameter ranges used to calculate the

model sensitivity are by no means uncertainty ranges, the
approach allows for calculating the ranges covering 95% of the
outcomes. We illustrate the model behavior with the estimates
and their ranges for the five rivers in Table 1. The results

Table 1. Average Yearly CO2 Emission, TC Burial, and TC
Export by the Amazon, Lena, Mississippi, Nile, and Yangtze
Rivers over the Period 1995−2000 Simulated by DISC-
CARBON with the Ranges Covering 95% of the Outcomes
(between Brackets in %) Based on the Assumed Ranges in
Input Parameters Listed in Text SI2

rivers CO2 emission TC burial TC export

Tg C yr−1

Amazon 975.2 (±5%) 33.2 (±15%) 89.9 (±13%)
Lena 2.6 (±11%) 0.03 (±13%) 4.9 (±4%)
Mississippi 20.7 (±11%) 18.1 (±8%) 19.1 (±5%)
Nile 1.6 (±11%) 0.1 (±11%) 2.7 (±5%)
Yangtze 2.6 (±16%) 0.1 (±21%) 13.4 (±13%)
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indicate that the ranges vary among rivers and also among
output variables. The CO2 emissions vary less in the Amazon
River than in the other rivers, the variation in C burial is the
largest for the Yangtze River and that of C export is the largest
in the Amazon and Yangtze Rivers. However, our analysis
demonstrates that relatively narrow ranges of 5% for all inputs
and parameters except temperature (Text SI2) can lead to
large variations in the model output.
3.2. DIC and DOC Concentrations in Global Inland

Waters. After the above performance evaluation, we simulated
C cycling in global river basins for the period 1900−2000 at a
yearly time step. The results of dissolved C concentrations in
global inland waters with a 0.5° × 0.5° spatial resolution are
shown in Figure 4 and SI3.
3.2.1. DIC Concentration Patterns. In 2000, simulated DIC

concentrations in global inland waters show a wide range with
distinct regions having high or low concentrations (Figure 3a).
The lowest simulated DIC concentrations are in the equatorial
region between 10°N and 10°S, with a range of 10−30 mg C/
L in the island area of Oceania and southern Asia and even
lower levels (minimum values <10 mg C/L) in the continental
areas of Africa and South America. These results agree with the
observed mean DIC concentrations of 8 mg C/L in the
Amazon River and 3 mg C/L in the Congo River.59 Huang et
al. (2012) reported a mean DIC concentration of 8 mg C/L
for 175 equatorial rivers;25 our results are also consistent with

the reported mean DIC concentrations of 5 mg C/L in Africa
and America, 13 mg C/L in Asia, and 21 mg C/L in Oceania.
The slightly higher DIC concentration in the equatorial region
of Asia than in South America is mainly because of the more
widespread presence of carbonate rock in Asia.34,86

The highest predicted DIC concentrations (generally over
40 mg C/L) in global inland waters are mostly in the Arctic
river basins (in eastern Asia, Europe, and North America),
which are regions with carbonate and volcanic rocks and
regions with calcareous soils (mainly loess).24,25,86−88 The
simulated spatial distribution of DIC concentration in global
inland waters thus seems closely related to lithology, which is
consistent with the early study by Meybeck et al.89 and with
the consensus that DIC in rivers primarily originates from rock
and sediment weathering.90,91 Therefore, driven by weathering
of carbonate (in North America) and silicate rocks (in Siberian
watersheds),88 the high DIC loadings of Artic rivers may be an
important source of DIC to the Arctic Ocean. The simulated
high DIC concentrations in Arctic rivers also agree with
observations.92 Simulated DIC concentrations are also high in
rivers in semiarid and arid regions because of the high
evaporation and low water discharge,93 including the Niger and
Nile River basins (in northern Africa), Limpopo and Orange
River basins (in southern Africa), Darling River basin (in
Oceania), and Indus, Ural, Volga, Tigris, and Euphrates River
basins (in eastern Europe and western Asia).

Figure 3. Concentrations of DIC (a) and DOC (b) in global inland waters simulated by DISC-CARBON for the year 2000. Gray colors indicate
grid cells with precipitation excess lower than 3 mm per year. Maps showing the concentration difference between 1950 and 2000 are presented in
Figure SI3.
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3.2.2. DOC Concentration Patterns. In 2000, simulated
DOC concentrations in inland waters are usually lower than 10
mg C/L (Figure 3b), which is consistent with the mean DOC
concentration in global rivers of 6 mg C/L25 and reports of 6
mg C/L in Oubangui River, 5 mg C/L in Mpoko River, 10 mg
C/L in Ngoko-Sangha River, and 11 mg C/L in Congo-Zair̈e
River during 1990−1996.25 The DOC concentrations tend to
be higher at high latitudes, especially in the Northern
Hemisphere, and the highest DOC concentrations are in
Arctic river basins. This agrees with the reported high DOC
concentrations for the Yenisey (2−13 mg C/L), Ob’ (4−17
mg C/L), Lena (3−24 mg C/L), Yukon (3−16 mg C/L),
Porcupine (2−12 mg C/L), and Kolyma (3−18 mg C/L)
Rivers.87,94,95 The latitudinal distribution of river DOC
concentrations is mainly due to the spatial heterogeneity of
soil C inputs.94,96 High-latitude soils and peatlands account for
about half of the global soil C stock, much of which is in the
Arctic watersheds that extend as far south as 45°N in the
Eurasian continent.94,96 With substantial inputs from the large
soil C stocks,23,87,94−96 the DOC concentrations in Arctic
rivers are among the highest. The DOC concentrations for
tropical rivers are low because high DOC inputs (from
vegetation and soils) to rivers are balanced by high DOC
decomposition rates at high temperatures.
This consistency between model predictions and observa-

tions for DOC and DIC at the various sites discussed above
indicates that DISC-CARBON sufficiently incorporates the
combined influence of the lithology, climate and hydrology of
basins, terrestrial and biological sources, and in-stream
transformations on the distributions of DIC and DOC in
global rivers.
3.3. Global River C Budget and Export. To evaluate the

simulations of global C fluxes in inland waters and export to
coastal waters, it is important not only to understand the
governing factors at the global scale and how well they are
represented in our models but also to assess how simulated
global C fluxes compare with data-based estimates. No direct
observations are available to validate the C input from
terrestrial ecosystems, and there are a few observations for C
burial and CO2 emissions. Moreover, these observations are
only available for the last part of the twentieth century. We,
therefore, evaluate the flux estimates, their changes, and
uncertainties by comparison with estimates based on data,
models, and other approaches from the literature.

The literature inventory shows that the temporal changes
simulated by DISC-CARBON (Figure 4a) are generally
consistent with the trends from earlier data-based and
model-based assessments (Table 2). A direct comparison of
our model predictions with these assessments is not
straightforward because in these studies, (1) “static” C fluxes
are based on merging data covering long periods, (2) the data
usually did not cover all global inland waters, and (3) the
whole C budget was rarely fully quantified with a consistent
approach, as done in our study. Literature estimates of C
inputs from terrestrial ecosystems are basically the resultant of
the overall C budget and are consequently subject to
substantial uncertainty. Our estimate of the C input to global
inland waters for the year 2000 (Figure 4a) is in the middle of
the range of previous estimates for the 2000s of 1.9 Pg C yr−1

by Cole et al.1 to 5.1 Pg C yr−1 by Sawakuchi et al.6 and Drake
et al.,11 and is very close to 2.7 Pg C yr−1 estimated by Battin et
al.5 and Regnier et al.9 and 2.9 Pg C yr−1 estimated by Tranvik
et al.2 (Table 2). These estimates have been derived in
multiple ways and are generally based on the extrapolation of
independent C burial, CO2 emission, and river C transport
data, unlike our integrated model results. Our estimated 3.0 Pg
C yr−1 of C input to inland waters for the year 1900 is higher
than 1.7 Pg C yr−1 for the preindustrial era estimated by
Regnier et al.9 This difference is likely due to multiple factors:
for example, we included, while they ignored, the decline of
natural inputs because of land-use changes over the past
century (Figure SI4).
The increase in C burial during the past century reported by

existing studies (Table 2) is well captured by DISC-CARBON
(Table 2 and Figure 4a). This is mainly the result of increasing
C inputs (Figure 4a). Our estimated 0.5 Pg C yr−1 of C burial
for the year 2000 is very close to 0.6 Pg C yr−1 for 1990−2016
reported in recent studies2,5,9,11 and obviously higher than the
earlier estimate of 0.2−0.3 Pg C yr−1 for the preindustrial era9

and 1970s−2000s.1,97,101,102 Our simulated C burial of 0.37 Pg
C yr−1 in 1900 is higher than 0.04 Pg C yr−1 for the 1920s−
1930s estimated by Mulholland and Elwood (1982)97 because
they only counted C burial in lakes and reservoirs and ignored
the decline of the lake area since the 1920s−1930s when using
the estimate for the 1970s as the basis to trace back the C
burial during the 1920s−1930s. Our estimate of 1.9 Pg C yr−1

of the CO2 emission from global inland waters for the year
2000 is in the middle of the range of 0.8 Pg C yr−1 by Cole et
al.1 and 3.3 Pg C yr−1 by Aufdenkampe et al.32 for the 1990s−

Figure 4. (a) Aggregated C burial, export, and emission (i.e., CO2 emission) in global river basins for the period 1900−2000 and (b) export of
POC, DOC, DIC, and TC to world oceans in 1950 and 2000. C input is the sum of burial, emission, and export.
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2000s and is very close to the CO2-partial-pressure-data-based
estimate of Raymond et al.8 for 1990−2010 (2.1 Pg C yr−1).
The estimated CO2 emission for the Amazon (Table 1) is
consistent with the estimate of 0.8 Pg C yr−1 by Rasera et
al.106, but twice the estimate of 0.5 Pg C yr.−1 by Richey et
al.107 The estimate of1.4 Pg C yr.−1 by Sawakuchi et al.6

includes emissions from the many tidal floodplains in the lower
Amazonian basin. This suggests that the lower estimates for
global CO2 emissions shown in Table 2 may be underestimates
as they are close to the estimated emissions attributed to the
Amazon River alone.
Our CO2 emission estimate for the year 2000 is somewhat

lower than 2.5 Pg C yr−1 reported by Sawakuchi et al.6 and
Drake et al.11 for the period 1990−2016. This temporal
increase (between the periods 1990s−2000s and 1990−2016)
and the increase from 0.7 to 1.2 Pg C yr−1 between the
preindustrial era and the 2000s observed by Regnier et al.9 are
consistent with the increasing trend in the global freshwater
CO2 emission from DISC-CARBON (Figure 4a). Our
estimated 1.6 Pg C yr−1 of CO2 emission from inland waters

for the year 1900 is higher than 0.7 Pg C yr−1 for the
preindustrial era estimated by Regnier et al.9 because of the
increasing trend in the CO2 emission during 1750−1900 and
the possible underestimation of historical emissions by Regnier
et al.9 due to ignoring the change in natural C inputs.
These increasing C inputs to the global inland waters have

been accompanied by increasing C retention and in particular
emission to the atmosphere, with the consequence that the
river C export to the world’s oceans has remained stable
(Figure 4a,b). Our simulated global TC export of 0.9 Pg C yr−1

in 2000 almost equals the estimates of 0.9−1.0 Pg C yr−1 for
the period 1990−2016 in previous studies1,2,5,9,11 (Table 2).
This lack of change in TC export was also observed in previous
estimates of 0.8 Pg C yr−1 for the preindustrial era,9 0.7−1.0 Pg
C yr−1 for the 1970s−1980s,98−100 and 0.9−1.0 Pg C yr−1 for
the most recent decade11 (Table 2).
Although our simulation results show that the global export

of TC remained rather constant (in terms of quantity and
forms), there are regional differences. For instance, C export
into the Mediterranean Sea and the Black Sea showed a decline
(Figure 4b). The river DOC export from Arctic rivers
simulated by DISC-CARBON is 38 Tg C yr−1 for the period
1950−2000 (Figure 4b), which is in good agreement with the
estimates of 25−36 Tg C yr−1 based on the observations in
other studies.94,96 Our simulated global DOC export of 129 Tg
C yr−1 is ∼20% lower than the regression result by Global
NEWS for the year 2000,108 while our simulated global POC
export exceeds the previous regression-based estimates by
∼50% for the 1990s.28,30 One reason for the difference
between our model and these regression-based estimates of
POC export is related to the large uncertainties in the
regressions used for calculating the total suspended sediments
(TSS), which was the basis for their POC calculation. In this
study, sediment dynamics is strongly linked with C cycling
along the entire aquatic continuum and is thoroughly
described in the DISC-CARBON module (Text SI1), which
reduces the uncertainty.52 Another reason is that the Beusen et
al. estimate28 is based on data for 19 European rivers, which
may have induced a bias.
Overall, the temporal changes simulated by DISC-CARBON

are consistent with the trends from earlier data-based and
model-based assessments (Table 2). In DISC-CARBON, the
simulated long-term trends of the annual freshwater C fluxes
indicate that global river basins have been balancing the
increased inputs through more in-stream retention and
emission to the atmosphere. The increasing C retention in
inland waters may be closely related to the increasing global
dam construction and thus increasing reservoir volume, which
has increased from 7 to 3800 km3 parallel to dramatic land-use
changes between 1950 and 2000 (Figure SI4). The result of
the C budget from Regnier et al.9 also shows similar increases
in C input, emission, and burial and a relatively stable C export
between the preindustrial era and the 2000s, and the increase
in C burial is mainly attributed to that in reservoirs.

3.4. Future Improvements and Outlook. This study
provides an integrated view and consistent quantification of the
spatiotemporal changes in global freshwater C cycling over
long time series, which can only be achieved with (i) a full and
form-explicit process representation and (ii) spatially explicit
and dynamic C inputs and environmental forcings. The long-
term simulations of DISC-CARBON show good agreement
with the available observations covering the second half of the
20th century (with close to 90% within a factor of 2, and no

Table 2. Comparison with Existing Estimates of Global
Freshwater Carbon Fluxes

study period
TC

export
CO2

emission
TC
burial

TC
delivery
from
land

Pg C yr−1

Mulholland and Elwood
(1982)97

1920s−
1930s

0.04

Mulholland and Elwood
(1982)97

1977−
1979

0.3

Sarmiento and
Sundquist (1992)98

1970s−
1980s

0.8−
0.9

Degens et al. (1991)99 1980s 0.7−
0.8

Meybeck (1982)100 1970s−
1980s

1.0

Dean and Gorham
(1998)101

1970s−
1990s

0.2

Meybeck (1993)102 1992 1.0 0.2
Aumont et al. (2001)103 1980s−

1990s
0.8

Schlünz and Schneider
(2000);104

Aufdenkampe et al.
(2011)32

1980s−
1990s

0.8−
0.9

Cole et al. (2007)1 1990s−
2000s

0.9 0.8 0.2 1.9

Battin et al. (2009)5 1990s−
2000s

0.9 1.2 0.6 2.7

Tranvik et al. (2009)2 1990s−
2000s

0.9 1.4 0.6 2.9

Aufdenkampe et al.
(2011)32

1990s−
2000s

3.3

Regnier et al. (2013)9 1750 0.8 0.7 0.2 1.7
Regnier et al. (2013)9 2000−

2010
1.0 1.2 0.6 2.7

Raymond et al. (2013)8 1990−
2010

2.1

Deemer et al. (2016)105 1990−
2010

2.7

Sawakuchi et al. (2017)6 1990−
2016

2.5 5.1

Drake et al. (2018)11 1990−
2016

1.0 2.5 0.6 5.1

this study 1900 0.9 1.6 0.4 3.0
this study 2000 0.9 1.9 0.5 3.3
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systematic errors), and the simulated trends for the full 20th
century agree with the results of other studies based on various
approaches.
However, our model assessment and sensitivity analysis

demonstrate that improvement in some formulations and
model input parameters could result in an improved
description of the C fluxes in river basins and a better match
of simulations with observations. Such an improved model
would lead to not only a better understanding of the role of
rivers in the global C cycle but also better information for
policy makers about the influence of human interferences on
emissions of greenhouse gases from inland waters to the
atmosphere.
The sensitivity analysis clearly points to some parameters

that have an overall influence on the model results. The first is
the discharge, which affects several biological and physical
processes important for C dynamics in river basins. To
improve this, a better description of hydrology in low-order
streams to replace the current parameterization will improve
our C cycle model in headwaters. The HydroSheds dataset109

is a good candidate to improve our PCR-GLOBWB model.
The HydroLakes dataset110 can be useful to improve the
current data on lake and reservoir water volume.
Second, the sensitivity analysis pointed to the importance of

C inputs from terrestrial systems and alkalinity and DIC inputs
via groundwater. These C inputs are an important source of
uncertainty in terms of their spatial distribution, organic/
inorganic ratios, and forms (dissolved or particulate). For
example, an improved estimate of terrestrial POC input from
litterfall and its variation from headwaters to mainstreams is
necessary to provide a more robust quantification and spatial
estimate of CO2 emissions from freshwaters. Similarly,
alkalinity input from groundwater is important but uncertain
and can be improved by a better model for weathering and
DOC input to aquifers and transformation to DIC.
Furthermore, accounting for PIC dynamics will form a
necessary extension of the model.72

Furthermore, a future major challenge to be tackled in global
biogeochemical modeling frameworks is to include nutrient
limitations to primary production (N, P, and silicon) and
oxygen availability for respiration and C burial, particularly in
reservoirs. Apart from advancing our capabilities to simulate
freshwater C dynamics, this will allow extending the
applications to other important issues such as global emissions
of greenhouse gases (nitrous oxide and methane) from inland
waters.
Finally, the current model simulates annual fluxes, while for

many processes, it may be important to analyze fluxes at
shorter time scales. A shorter time step (e.g., monthly) would
allow for the simulation of seasonal C fluxes in river basins and
export to coastal waters to better understand the impacts on
coastal marine ecosystems. A first experiment for the Rhine
River basin (Text SI3) showed that the model with annual and
monthly settings yields similar results.
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