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Intersublattice entanglement entropy as an extensive property in antiferromagnets
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Recent advancements in our understanding of ordered magnets call for a quantification of their entanglement
content on an equal footing with classical thermodynamic quantities, such as the total magnetic moment. We
evaluate the entanglement entropy (EE) between the two sublattices of a bipartite ordered antiferromagnet,
finding it to scale with volume. Thus, the EE density becomes an intensive property and is evaluated to be a
universal dimensionality-dependent constant when exchange is the dominant interaction. Our analytic results
are validated against the DMRG-based analysis of a one-dimensional (1D) system, finding good agreement.
Furthermore, our evaluated EE per bond provides a useful shortcut towards obtaining the central-cut EE in 1D,

and the area law in higher-dimensional magnets.
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I. INTRODUCTION

Antiferromagnets (AFMs) and their different phases per-
vade condensed-matter physics. They underlie research fields
such as spin fluctuations, mechanism of high-7; supercon-
ductivity [1-3], and quantum spin liquids [4-8], as well
as applications such as exchange-biasing in magnetic read
heads [9-11]. There exists a sharp contrast between the two
widespread approaches towards understanding AFMs. In the
first “quantum” approach [6-8], determining the ground-state
wave function for various model AFMs is a major goal. The
true ground state, comprising distant entangled spins, is often
not known and is complicated. Various numerical methods
are employed in approximating the ground state and the ex-
citations. The investigated system size is often limited by
computational power. In the second “semiclassical” approach
[12-17], a mean-field approximation is made and spatially
resolved spin densities or magnetizations become classical
fields within the Landau-Lifshitz description [18,19]. A Néel-
ordered ground state is assumed and yields results consistent
with many experiments [13,15,17,20]. Macroscopic averaging
is one of the reasons why nonlocal spin correlations and entan-
glement, fundamental in the quantum approach, appear to not
affect several experiments consistent with the semiclassical
approach.

Entanglement is an important resource in quantum infor-
mation and computing protocols [21-23]. Two subsystems
are said to be entangled if the wave function describing
the total system cannot be factored into a product of two
wave functions, one for each subsystem. Furthermore, in
the quantum approach discussed above, entanglement offers
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a powerful metric for characterizing ground state and ex-
citations, mapping complicated wave functions existing in
very-high-dimensional space to a scalar quantity [7,24-26].
In a widely employed technique, a three-dimensional AFM is
partitioned via a closed surface and the entanglement entropy
(EE) between the two partitions is evaluated. The EE then
bears a contribution proportional to the partition surface area,
known as the area law [7,26-28]. An additional, and some-
times universal, offset in the area law probes and characterizes
topology and long-range entanglement in ground and excited
states of the AFM [26,29].

Recent works relate magnons with squeezed states stud-
ied in quantum optics [30-33] to demonstrate a nonzero
entanglement in magnets [31-34], even in the mean-field
approximation employed in the magnon-based semiclassical
theory. This calls for a systematic quantification of EE as a
quantum property describing such ordered magnets. We note
two key motivations for this. First, the EE offers a simple
scalar metric from which the proximity of a numerically
evaluated ground-state wave function of an ordered state can
be measured. This facilitates analysis and approximations for
quantum ground states. Second, the recent breakthroughs in
robust experimental control of AFMs [13,17,20] obeying the
semiclassical approach outlined above pave the way for using
them as a resource or battery for entanglement [26,32,35].
Such efforts benefit from adding EE to the (quantum) ther-
modynamic description of magnets.

In this paper, partitioning the AFM into two sublattices
(Fig. 1), we establish the EE (density) as an extensive
(intensive) quantum property characterizing ordered AFMs.
Working within the mean-field approximation and magnon
picture, we analytically evaluate the EE in the ground state,
finding it to scale with the system size in the thermodynamic
limit. Contradicting a preliminary expectation suggesting an
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FIG. 1. The studied system for d =2, N =5 close to a Néel
state. Sublattice A (blue) and B (red) both have an equal amount
of spins. The exchange interaction (orange) is restricted to nearest
neighbors and is identical for each pair of neighbors. The external
magnetic field (purple) is along the z direction.

increase in EE with exchange interaction strength [31,33],
the EE density is found to be a universal constant depending
only on system dimensionality. This universality could offer
useful benchmarking in analyzing quantum ground states.
Examining its dependence on an applied magnetic field, we
find that EE remains unchanged on approaching the spin-flop
transition, where various classical response functions diverge
[19,36].

Our analytic results are found to agree well with a density
matrix renormalization group (DMRG) analysis of a one-
dimensional (1D) AFM. Furthermore, our evaluated EE per
bond provides an analytic shortcut to evaluating EE for the
widely employed system partitioning into two spatially sepa-
rated regions [26].

II. MODEL

We consider a d-dimensional uniaxial AFM in an external
magnetic field along the z axis with N spins in each direction
on sublattice A (B) pointing along the (—)z axis described by
the Hamiltonian

J
H =7 ZSA(ri) - Sp(ri +9)
.8
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with J the exchange coupling, K the anisotropy energy, é the
vectors to nearest neighbors, y < 0 the gyromagnetic ratio,
and H the external magnetic field. Our final expression for
EE does not depend on the lattice or spin S considered, as
long as ) 58 = 0. Thus, for concreteness and without loss of
generality, we consider a square lattice. We closely follow the
derivation of Ref. [31] in this section and expand upon their
results by considering all magnon modes.

Figure 1 depicts a two-dimensional system with N =
5 spins per sublattice per dimension. Assuming the mag-
netic field is below the spin-flop transition [i.e., |y|hH <
25V K(J + K)], we apply a Holstein-Primakoff transforma-
tion to express the Hamiltonian in local bosonic operators g;
(b;) which annihilate a spin flip on the ith (jth) site of the A
(B) sublattice and satisfy the canonical bosonic commutation

relations [18]. We assume periodic boundary conditions. After
a Fourier transform we obtain the Hamiltonian up to second
order in these ladder operators assuming high S:

H= ZA+altak + A,blbk + Cragb_xk + Cl:bT—kalt’ 2)
k
Ay =JSc+2KS+yhH, Cq=JS Z X (3)
s

Here, c is the coordination number and S the total spin per
site. The sum over k runs over the Brillouin zone, i.e., k -
& e{—m/a,...,n(N —2)/L}, with L = aN and a the lattice
spacing. It is known [37] that the eigenstate depends only on
the sum A, + A_ = 2A, hence the magnetic field does not
affect the entanglement entropy within the Néel state approx-
imation.

We diagonalize the Hamiltonian by applying a Bogoli-
ubov transformation H = Y, E ook + EJ By Bk to obtain
the eigenenergy

EF = L|y|iH + E, with E = (A> — C})"/? and o and
Bk are squeezed sublattice magnons as given in Ref. [31].

Thus the ground state is squeezed [38]: Whereas a and b
operate only on one sublattice, @ and B operate on both. So
we expect a finite entanglement in the ground state.

In Fock notation we write a state in terms of
®xk|Np, » Nay )subx in the sublattice basis, or in terms of
®xkINg, » Ny )sq.x in the squeezed basis. The product over k
ranges over all N¢ allowed wave modes. The ground state
is the squeezed vacuum ®x|0, 0),, k. We use the two-mode
squeezing operator S(rx) = exp rx(axbx — albf{), with r, =
arccosh[(A + E)/2EQ]'/?, and exploit the Baker-Hausdorff
lemma [39] to express the ground state in terms of the sub-
lattice basis

G) = &k 10, 0)sgk = [ [ S() & 10, 0)subk
k

= Qxk

1 o0
> (—tanhn)' | Dby @)
cosh ri P

So, for each mode k we have a sum over / ranging over all
occupation numbers of this mode.

III. ENTANGLEMENT ENTROPY

Using the Schmidt decomposition we derive the reduced
density matrix

pa=Trgp =) x(|G)(GIn)s = Y ,(IG)(GI)s

(.

where n = (ny, ny, ..., nya) is a vector of N integers used
to determine a pure Fock state |n)p on the B sublattice in
the position basis, i.e., each integer n; gives the occupancy
of the ith position on the B sublattice. Similarly, 1 is a vector
used to determine a pure Fock state on the B sublattice in the
momentum basis.

tanhy rk

1)k A,.{(ll), &)

cosh? ri
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FIG. 2. The entanglement entropy per wave number s(k) in
(a) d =1 and (b) d =2, with K/J =107, Note that, near the
Brillouin zone boundaries, the EE vanishes. Whereas in the low-
wave-number regime, the EE depends approximately only on the
radius of the wave vector. Thus, a smaller contribution from the high-
k modes allows a low-k continuum approximation to analytically
obtain the total EE.

The eigenvalues of the reduced density matrix follow im-
mediately

N2

palM)4 = Ap[m)a,  Ap = .
" " 1} cosh? ry,

tanh®" ry,

(6)

This yields an analytic expression for the EE

SEE = _Z)\.nln)\.n
n

= Z 2(In cosh ry, — sinh® r In tanh ry). (7
k

Note that, in the sum over k, all components k; range from
—m/a to m(N —2)/L in N steps of 2m /L. The squeezing
parameter r; (and thereby the EE) does not depend on the
applied external magnetic field when the magnetic field is
below the spin-flop strength. Furthermore, there also is no
S dependence. This result nicely extends the k = 0 entangle-
ment found in Ref. [31].

For brevity we denote the term in the sum as s(k) to
investigate scaling behavior in the large-N limit

d?k
See = ) s(k) ~ L f 2 @®)

k

From Eq. 3 we see that the only k dependence lies in Ck.
As Fig. 2 demonstrates for the one- and two-dimensional
systems, for k approaching the Brillouin zone boundary the
contribution to the EE vanishes since ry — 0.

Furthermore, note that, for small k, the EE density depends
mostly on the norm of k. This warrants us to consider the
small-k limit and expand

G2 1 e
A2 ~ 2K\ 2 1- 4 ) (9)
(1+3)

with k2 = Y k2 and for the square lattice ¢ = 29, § - & =
4a/2, and Cx is real. This is the only point in our derivation
where details of the lattice structure enter. For instance, for a

honeycomb lattice we would have ¢ = 3.
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FIG. 3. The lattice entanglement entropy [Eq. 9] divided by the
approximated continuum result [Eq. 10], plotted as a function of
(a) the system size and (b) the ratio K/J for N = 50 for d = 1 (blue),
d = 2 (yellow) and d = 3 (orange).

This demonstrates that, for K < J, our result is universal
with respect to the lattice structure. Transforming the integral
to spherical coordinates, leaving only the integral over the
radial component k, we obtain

(Lt o)

~ S+l
S 2N ()

I(d K 10
( J ) (19)
where I' is the Euler gamma function and an integral rep-
resentation for / is given in Appendix A where we derive
analytically for K < J that I(d, K/J) ~ d 2.

In Fig. 3 the ratio between the lattice result from Eq. 9 and
the continuum limit from Eq. 10 is plotted versus N [Fig. 3(a)]
and the ratio K/J [Fig. 3(b)]. Note that the finite-size effects
quickly vanish as N increases and that the EE is independent
of the ratio K/J in the regime K/J <« 1. The error of the
continuum result increases with d because it is caused by
the increasing inaccuracy of the small-k approximation: As
d increases, so do the degrees of freedom and higher-order
products of wave numbers become relevant, which are not
captured in our approximation.

IV. DENSITY MATRIX RENORMALIZATION GROUP FOR
A ONE-DIMENSIONAL CHAIN

The DMRG method [40] is a versatile variational numeri-
cal tool to find the low energies and corresponding eigenstates
of a strongly correlated 1D system in polynomial (in system
size) time.

The DMRG method is formulated in terms of matrix
product states (MPS) [41], making the EE straightforwardly
accessible.

The DMRG algorithm approaches the lowest energy
state by optimizing the MPS locally, alternating over all
sites. It retains only the D most relevant states, selecting
them based on the highest singular value of the weight s;.
Normalization of the state requires  ;s? = 1. The bond
dimension D < Dy, is set such that the weight of the dis-
carded state is ) =D s% < 1075, From the von Neumann
entropy Sgg = —2Y 2, s?In(s;) we see that the minimal
required bond dimension is related to the EE. In con-
trast with the two-sublattice partitioning discussed above,
the DMRG utilizes the bipartition displayed in the bottom
of Fig. 4. The area law tells us that, for gapped systems,
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FIG. 4. For the intersublattice entanglement (top) we divide our
system into two parts, red and blue, by alternating sites. For the cen-
tral cut entanglement (CCEE) (bottom) we split the system through
the middle. As the DMRG results suggest, the CCEE is a good
approximation of the intersublattice entanglement entropy per bond.

the entanglement and thus the bond dimension is chosen
independent of system length [27,28,42]. This showcases
the great advantage of DMRG, requiring only linear (in N)
memory allocation and polynomial computation time. The
numerical results presented here are obtained with the TeNPy
library [43].

The area law in 1D dictates a linear relation of the EE to the
length of the cut: Sgg = SoLcu- We recognize for the central-
cut bipartition (bottom Fig. 4) L., = 1 and for intersublattice
bipartition (top Fig. 4) L., = 2N. This allows us to compare
the analytic intersublattice EE with the numerical CCEE. The
black data in Fig. 5 confirm that the numerical CCEE matches
the intersublattice EE density (no spin dependence) very well
for spin S =3/2, 2, 5/2 and a large range of anisotropy
(K/J), moreover confirming numerically the independence of
EE with respect to S. As discussed in Appendix B, the 1D
spin-1 and spin-1/2 cases are not captured by the magnon
approximation (for small K/J) due to dominating quantum
fluctuations. We attribute the deviation in the CCEE at small
K/J <5 x 1072 to the existence of low-energy modes. In
this region there is either a gapless transition of a gapless
phase, increasing correlations and entanglement. Specifically,
for half-integer spin S the model at K = H = 0 is gapless
by virtue of the Lieb-Schultz-Mattis theorem [44,45]. On the
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FIG. 5. Comparison of approximate analytical ground state (4)
with the full DMRG ground state for N = 50. The marks denote
the numerical results for spin 3/2 (crosses), spin 2 (triangles), and
spin 5/2 (circles) with the analytical result as a dashed line. The
black results compare the central-cut entanglement entropy (CCEE)
for DMRG to the analytical spatial entanglement entropy density
Ser/2N. The red results compare the analytical with the numerical
ground-state energy (given in Appendix C).

other hand, for § = 2 a phase transition was identified at [46]
K/J =~ 0.0046. In both cases, low-energy states are present,
leading to a logarithmic dependence of the CCEE on the
system size [27,42].

Besides the good agreement in EE, Fig. 5 shows in red
that the analytical and numerical ground-state energies match,
giving yet another hint that the squeezed state provides a good
representation of the low-energy physical behavior.

V. DISCUSSION

Some key features of and a comparison between our an-
alytic and DMRG methods should be noted. In the former
approach, the two-sublattice partitioning allowed us to express
the total EE as a sum over k [Eq. 9]. This further allowed
demonstrating its scaling with system volume and obtaining
analytic results [Eq. 10] via the continuum approximation.
As the EE becomes small for k close to the Brillouin-zone
boundary, the dependence of EE on the microscopic lattice is
expected to be weak, as motivated in Fig. 2(b). Thus we expect
the result Eq. 9 to be valid for bipartite lattices in general, and
in this sense to be universal.

Crucial to these simplifications has been our unconven-
tional choice of the partitioning which admits translation
invariance, see Fig. 1. Due to the equivalence between all
nearest neighbor exchange “bonds,” the total EE per bond
becomes a well-defined quantity. Thus, the area law of EE
obtained with more commonly employed partitions dividing
the AFM into two parts [7,26], is understood as the EE per
bond times the number of bonds that the partition intersects.
This is illustrated in Fig. 4. In this manner, our finding of EE
being an extensive property is consistent with the area law and
our choice of the partition [26,27].

Furthermore, we find that EE does not depend on the
applied magnetic field and remains constant [see Eq. 8], as
the system approaches the spin-flop transition from below.
At this value of applied magnetic field, one of the magnon
modes becomes gapless, resulting in a divergence in various
response functions [19,20,36], such as the high-frequency
susceptibility. Nevertheless, the EE remains well behaved and
unperturbed as it is a property of the ground-state wave func-
tion, which remains unaltered on approaching this transition
from below. The DMRG analysis corroborates this indepen-
dence of magnetic field for the EE, see Appendix D.

Our 1D DMRG based results show a good agreement with
respect to the energy and EE of the analytic squeezed ground
state as displayed in Fig. 5. While the agreement between the
energies is excellent, a small deviation in the EE demonstrates
that it is more sensitive when comparing the quantum ground
states. Quantum Monte Carlo [47] and tensor network [48]
evidence for 2D antiferromagnetic Heisenberg model suggests
that, for higher dimensions, the magnon approximation shows
less deviation for low K/J. Furthermore, a good agreement
between our analytic EE per bond and the central-cut EE
for long chains suggests a shortcut in evaluating the latter,
disregarding the finite-size effects.

Our methodology can be generalized to describe frustrated
systems [6] starting from classically ordered states via mul-
tisublattice (three-sublattice for a triangular spin lattice [6])
models. Since finite temperature and dissipation effects en-
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courage ordering, this approach offers a natural path towards
accounting for these nonidealities. Besides its relevance for
quantum ground states, our work clarifies the presence and
nature of entanglement in a broad range of AFMs [10,17,20]
adequately described via magnon theory from low to high
temperatures. Our work clarifies how spins on opposite sub-
lattices of an AFM are entangled much more strongly due to
exchange, as compared with spins on the same antiferromag-
netic sublattice or in a ferromagnet that derive entanglement
from anisotropy [32,37]. Hence, to transfer this entanglement
to external qubits, coupling them to opposite sublattices is
preferred.

VI. SUMMARY

We have investigated the entanglement entropy in the
ground state of an ordered antiferromagnet using a two-
sublattice partitioning. The translational invariance associated
with the latter enabled us to obtain analytic results, con-
sistent with numerics, providing insights and shortcuts for
characterizing the entanglement content. We obtained and
demonstrate universal behavior of the entropy with respect
to several external parameters, such as the specific lattice
structure, anisotropy, or magnetic field. This finding helps
benchmark numerically evaluated quantum ground states and
guide the development of ordered antiferromagnets for useful
quantum information protocols.
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APPENDIX A: CONTINUUM RESULT INTEGRAL

The analytical continuum result for the entanglement
entropy involves changing the sum to an integral over the d-
dimensional volume. After the small-k approximation we are
left with some prefactors, given in the main text, times a one-
dimensional integral over the normalized variable x given by

7/24/2(142x)
J
— & (d,x)Ing, (d,x)],

1 1 29712
gf(d,x)zi{[1—<w—1%—k2>} :I:l}. (A2)

For x = K/J = 0 and small k we approximate the integrand
by —k?~'In(k) and 7 /24/2 2 1 to obtain the proportionality
I(d,0) ~d~>.

I(d,x) = dkk®'[gF (d,x)Ingf (d, x)

(AD)

APPENDIX B: SPIN 1 FOR ONE DIMENSION

The magnon approach works particularly well in the S
large and/or D > 1 limit. Here we present the results for
S = 1in ID. Despite the good correspondence for the ground-
state energy in Fig. 6(a), the CCEE [also in Fig. 6(a)] clearly
shows a discrepancy between the full DMRG (squares) and
analytical squeeze state (dashed line) results. For K > 1 the
Néel ordered phase is recovered. However, for K ~ 1/2 there
is and Ising transition [c = 1/2, not directly observable in
Fig. 6(a)] into a Haldane phase (lacking long-range order)
[49]. The EE of 0.855 for small K is confirmed by other
numerical studies [50]. The correspondence of the CCEE
between the DMRG and analytical results is assumed to be a
coincidence. For spin 1/2 the anisotropy term becomes trivial:
(8@)? oc I. The remaining model is simply the Heisenberg

1 g @ €—6—6-8
iEe T
A
O oS =3/2
e //o S =
<S8 =5/2
o lug o el
1073 1072 10=t 10° 10! 102
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(b)

FIG. 6. (a) Comparison of approximate analytical ground state (equation 4 in the main text) with the full DMRG ground state for N = 50.
The square marks denote the numerical results for spin 1 with the analytical result as a dashed line. The black results compare the central-cut
entanglement entropy (CCEE) for DMRG to the analytical spatial entanglement entropy density Sgg/2N. The red results compare the analytical
with the numerical ground-state energy. (b) Comparison of approximate analytical long-range order (G/S?) (B1) with the full DMRG ground
state for N = 50. The marks denote the numerical results for spin 3/2 (circles), spin 2 (triangles), and spin 5/2 (crosses) with the analytical

result as a dashed line.
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chain. This integrable model is critical with ¢ = 1 and shows
no resemblance to a magnon approximation [51]. However,
this is to be expected in small S and 1D. For 2D it is known
that both spin 1/2 and spin 1 exhibit Néel ordering even in the
absence of anisotropy (K = 0) [47,48].

Analytical long-range order

The long-range correlation function, signaling (Néel) order
for the squeezes ground state is
1N
G= N Z (85,555 jony2 + 5,55 jany2)
j=1
2
1 1

1 27
|55 [ @ -
4 1 2 2
o1 T e ®)

(BI)

This compares qualitatively to the DMRG results, as we
see in Fig. 6(b). The discrepancy is to be expected, because
the squeezed states are built on the ansatz of high long-range
order. The low-K/J numerical behavior is explained by the
vicinity of a transition or gapless. region.

APPENDIX C: ANALYTICAL GROUND-STATE ENERGY

The ground-state energy of the analytical squeezed ground
state is

JS°N JSc + 2K)N
Egs = — € _KNS?— (USc +2K)N
4
JSc
x [1-6(-2)] (C1)
JSc+ 2K
with the elliptical integral
2
d
G(a) = / 4 T acosqr. (C2)
0 27
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FIG. 7. The central cut entanglement entropy for S =3/2, N =
50 and a range of K, with magnetic field (crosses yH = 0.5J) and
without (squares). For K < 0.3/, as described in Sec. IV, the system
is not in the magnon phase but enters a critical regime. For the former,
we see no dependence on magnetic field, while for the latter, there is
a deviation when introducing y H.

This is the energy used in Fig. 5 in the main text against which
are compared the DMRG results.

APPENDIX D: MAGNETIC-FIELD INDEPENDENCE
IN ONE DIMENSION

With DMRG we investigate the magnetic-field dependence
explicitly. As an example we look at spin 3/2 with and with-
out magnetic field yH, as defined in Eq. (1). In Fig. 7 we
show the CCEE for yH = 0 and yH = 0.05J. This value is
chosen such that the system is below the spin-flop transition
for all K plotted here. For K > 0.3J there is no magnetic-field
dependence, as expected from the magnon approximation. In
Sec. IV we concluded that, for small K < 0.3/, the system
shows critical behavior and is not described by the magnon
phase. The energy dependence for small K is another indicator
that we have left the magnon regime.
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