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A B S T R A C T   

The numerical modelling of ionic diffusive transport through a charged thin film of electrolyte is mathematically 
and computationally complex due to the strongly coupled hydrodynamics and electrochemical interactions. 
Generally, simulations are performed by solving the Poisson equation together with the Nernst-Planck flux 
formula to model electrochemical processes in electro-diffusion problems. One important application of these 
system of equations to study the interaction of ionic diffusion and thin film hydrodynamics in petroleum engi
neering. However, due to the highly nonlinear and coupled equations the computational costs are heavy and very 
often limited to simulations in two-dimensional geometries. In this article, we have developed an equivalent one- 
dimensional electro-diffusive transport model based on mathematical averaging of 2D equations to reduce the 
computational time. Doing so, the computational time is improved substantially and simulation of much larger 
domain sizes which are required to study and interpret the experimental results is shown to be feasible. We have 
shown the high accuracy of the developed model by comparing the electric potential and concentration profiles 
of the developed model against the original 2D simulations. The developed approach reduces the computational 
effort by over 200 times without losing accuracy.   

1. Introduction 

Poisson-Nernst-Planck (PNP) equations are widely used to describe 
transport of ions in various applications including chemistry, physics, 
biology, and engineering (Suopaiarvi, 2015; Bazant et al., 2009; Eisen
berg, 1998; Kurnikova et al., 1999; Selberherr, 1984). Poisson equation 
is used to describe the electrical potential and the Nernst-Planck equa
tion is applied to include the electric double layer effects in the transport 
of ions through a thin layer of electrolyte. Applying PNP equations in 
numerical modelling with application to membrane electrochemistry 
dates back to 1975 in the work of Cohen and Cooley and that of 
Brumleve and Buck (Cohen and Cooley, 1965; Brumleve and Buck, 
1978). Use of PNP equations allows the computation of the space charge 
density near an interface which may represent a solution/electrode or 
solution/ion-exchange membrane interface (Uzdenova et al., 2018). In 
addition, PNP equations are also known as the drift-diffusion equations 
and are used for simulating ion diffusion in semiconductor devices 

(Markowich, 1986; Rouston, 1990; Newman, 1991). In these systems, 
the diffusion of ions is affected by the excess chemical potential pro
duced by the mobile ions. Another application of PNP equations is in 
biological membrane channels (́Ardenas et al., 2000; Hollerbach et al., 
2000; Coalson and Kurnikova, 2005) where the underlying mechanisms 
for ion transport through such channels are studied to understand the 
cellular activities of the living cells (Eisenman and Dani, 1987; Hille, 
1978). Moreover, the PNP equations have been applied for solving ion 
transport in general nano- to macro-scale charged porous media (Piv
onka et al., 2009; Mohajeri et al., 2010). They can be also applied for 
describing special mechanisms behind the flow and transport behaviors 
in unconventional reservoirs. In these systems, the widespread nano
pores are often considered as the main cause of significant capillary and 
confinement effects. Zhang et al. (2020) designed a digital twin platform 
by which they combined several promising numerical models and 
multiscale algorithms. Their model approach covered all the effects of 
capillarity, sorption and salinity to simulate and illustrate the effect of 
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these mechanisms on flow and transport phenomena and the production 
of unconventional reservoirs. They mentioned water salinity as one of 
the key factors affecting injection and fracturing performance. For the 
two directly relevant processes to salinity, they used multicomponent 
ion exchange equation and DLVO theory to represent the electrical 
interaction process and the double-layer expansion, respectively. The 
Poisson-Boltzmann equation was used to model electrostatic 
double-layer force and the effect of dynamic sorption was represented 
by the Nernst-Planck equation. Moreover, numerous studies on uncon
ventional oil and gas production indicate that under confinement the 
fluid behavior deviates from its bulk behavior (Alharthy et al., 2013; 
Chen et al., 2013; Du and Chu, 2012). Thus, phase behavior modelling 
becomes significant as the change of reservoir fluid properties could 
affect the flow mechanisms and displacement processes. Since the 
nano-scale pore yields a large capillary pressure, capillary effect should 
be considered in modelling phase behaviors in unconventional reser
voirs (Sun, 2019). In this regard, a well-developed flash calculation 
scheme which is stablished at fixed chemical composition (N), volume 
(V) and temperature (T), known as NVT flash, was established by Zhang 
et al. (2020). Their trained model was capable of accurately estimating 
the phase behavior of complex reservoir fluids under a wide range of 
environmental conditions, in the presence of capillary pressure. For 
electrically charged nano-porous materials, such as electrodes, the for
mation of electrical double layer (EDL) considerably influences the 
transport and electro-sorption of ions inside the nanopores. This phe
nomenon leads to changes in pore accessibility (Zhang and Tartakovsky; 
2017). Damiani et al. (2021) developed a reactive transport model based 
on the PNP to simulate diffusion of ions through a charged constricted 
pore. Their work contributed to the understanding of electrochemical 
migration of ions caused by changes in electric fields under various 
chemically reactive conditions such as those related to the swelling of 
clay minerals. The complex composition of mineral surfaces in geolog
ical media, either chemical heterogeneity or pore property, poses chal
lenges in accurate description of ionic transport in porous media (Naidu 
et al., 1994; Norde and Lyklema, 1978). For example, in simulation of 
electrokinetic processes in fluid saturated porous materials, ζ potential is 
a fundamental property for charged surfaces that represents approxi
mately the electrical potential at the mineral-fluid interface (Pride, 
1994). Revil and Pezard (1999) considered a silica-dominated porous 
material filled with a binary symmetric 1:1 electrolyte, such as NaCl. 
They developed analytical expressions for ζ potential and the specific 
surface conductance and predicted the variation of these parameters 
with the pore fluid salinity, temperature, and pH. In the field of particle 
transport, Trefalt et al. (2016) discussed the effect of charge regulation 
in Electrical Double Layer (EDL) on the interaction between colloids and 
interfaces by using the classical Poisson-Boltzmann theory. Several re
searchers have proposed theories to explain the impact of interfacial 
properties on macroscopic transport (Alizadeh et al., 2019; Liu et al., 
2020). Yet, an accurate simulation of electrochemical processes in the 
presence of dynamic changes in electrical potential and ionic concen
tration induced by the alteration of solid charged surfaces and the sur
rounding electrolyte remains a challenging task. 

Considering clayey soil as a notable example of charged porous 
media, different studies worked on flow, ion and chemical transport, and 
deformation in these systems (Kirby, 2010; Mahani, 2015; Niasar and 
Mahani, 2016). Mahani (2015) used a model system for sandstone rock 
consisting of clay minerals deposited at the glass substrate and oil 
droplets which were attached to clay patches separately. Their study was 
under the assumption of hydrodynamic equilibrium between the oil 
phase and the surrounding water. They studied ion diffusion and 
transport when the system is exposed to two different brine solutions 
having low and high salinity values. Later, they studied the DLVO 
intermolecular forces by considering electrostatic forces and including 
osmotic pressure to understand the dynamics of disjoining pressure in
side a thin film of electrolyte (Niasar and Mahani, 2016). They coupled 
the Nernst-Planck ionic transport and Poisson equations with 

Navier-Stokes equation in order to describe the disjoining pressure and 
investigate its impact on the transport of ions within the thin film. They 
found that the nonlinear behaviour in the pressure field, which is caused 
by multidirectional and asymmetric ions transport, is strongly affected 
by the diffusion length and the overlapping of EDL. 

While the coupled PNP model provides quantitative prediction of ion 
transport problem in many areas, it has its own limitations such as 
neglecting the finite size effect of ion particles and correlation effect (i. 
e., self-energy) which may become important in very confined channels 
(Jung et al., 2009). 

Concerning model limitations such as ion-ion interactions and steric 
effects, some recent theoretical modifications have been proposed. For 
example, Corry et al. (2003) demonstrated that if a specific self-energy 
term is included in the NP equation, qualitative improvements could 
be made in the computational results. Kilic et al. (2007) proposed a 
simple modification of the widely used PNP equations through including 
the steric effect due to ion transport. They reported that some limitations 
confronted in specific applications, such as those related to ionic chan
nels, can be sufficiently improved by adjusting the diffusion coefficients, 
or by considering additional force terms in the ion flux formula of the NP 
equation (Zheng and Wei, 2011). 

On the other hand, one of the challenges in the application of PNP to 
model ion transport in electrode and membrane system is the imple
mentation of certain boundary conditions that make models mathe
matically complex. For example, this is encountered in 2D modelling of 
ion and water transfer to describe electrochemical processes in mem
branes (Pismensky et al., 2012) and electrodes in galvanostatic mode 
(Mareev et al., 2016) on the basis of local electroneutrality. This 
required applying an integral boundary condition for the electric current 
density which caused high computational demands. Uzdenova et al. 
(2018) proposed a 1D model based on PNP equations for the galvano
static mode. Their model eliminated the need for an additional interface 
for the time integral calculations. They specified the electric potential 
gradient as an explicit function of the total current density at the outer 
edge of the diffusion layer of ion-exchange membrane /solution inter
face instead of the time derivative of the electric potential gradient at 
this boundary. Their model eliminated the need for an additional 
coupling due to the time integral calculations. 

Other importance of simplifying the numerical models based on PNP 
equations is related to the fact that they are computationally very 
complex. For example, to improve the computational efficiency in the 
study of ion transport in a multilayer graphene membrane, one approach 
would be to reduce the dimensionality of the nanochannel. Doing so, the 
computational cost of the problem without significant loss of accuracy 
are significantly reduced. Jiang et al. (2014) have developed an equiv
alent one-dimensional ion transport model for the tortuous nano-slit 
systems embedded in a multi-layered graphene membrane. They 
concluded that the equivalent 1D model should provide a framework to 
interpret and rationalize the experimental results of ion transport in the 
cascading nano-slit systems. It may provide a simple, yet quantitative, 
model to design 2D materials-based membranes for various applications, 
such as energy storage, electrode design, ion separation, water 
desalination or treatment. 

The aim of this study is to enhance the computational efficiency 
needed to simulate ion transport in charged media. We have first 
developed a 2D axi-symmetric model to investigate the ion transport 
within a film of water underlying an oil droplet, with negatively charged 
surfaces on its top and bottom boundaries. The liquid film is initially 
composed of a high salinity electrolyte, and, afterwards, it is exposed 
through its lateral sides to a bulk fluid with a lower salinity. This contact 
initiates a dynamic process with diffusion of ions and the subsequent 
evolution of the electric field over time across the liquid film. 

Our 2D model was developed based on the model proposed by 
Mahani et. al 2016 in which the interaction of ionic diffusion and thin 
film hydrodynamic was studied. In simulations using the developed 2D 
model, only very small domain size could be considered as otherwise the 
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very large domain aspect ratio could cause numerical problems. 
Considering the assumptions of fixed and rigid boundaries and incom
pressible water phase in the 2D model, there is no net inflow of water 
into the domain. There could be flow circulation within the domain 
which is expected to be very small. In a next step, in order to reduce the 
complexity and the computational effort, we have derived and devel
oped an averaged, one-dimensional, coupled Poisson-Nernst-Plank 
model to simulate electro-diffusion in the same system. To do so, we 
have integrated the governing differential equations along the channel 
height. This strategy allowed us to solve the equations for a much larger 
realistic domain size relative to that used in the 2D model. The COMSOL 
Multiphysics software was used to solve the coupled PNP equations in 
our 1D and 2D models. Our results using the 1D model showed exact 
agreement with the results from the 2D model, but with significantly less 
computational time and modelling complexity. 

2. Theory 

In this section, we will describe the Electrical Double Layer (EDL) 
and the general form of the equations used in this study to simulate the 
electric field and ion transport within the channel. 

2.1. EDL 

As you can see in Fig. 1, an EDL has a structure of two parallel layers 
of charges appearing at the surface of a material when exposed to an 
ionic solution. 

The first layer, called stern layer, consists of either positive or 
negative ions adsorbed onto the surface due to chemical interactions. 
The second layer is formed by ions attracted to the surface charge via the 
coulomb force (shear plane) and free ions moving in the fluid under the 
influence of electric attraction and thermal motion (diffuse layer). 
Typically, the electric double layer may be of interest when modelling 
very thin layers of electrolyte such as that studied here. To model the 
behaviour of the diffuse double layer, one should solve Nernst-Plank 

equations for all ions in combination with the Poisson equation for the 
electrical potential. 

2.2. Electric Field 

To simulate the electric field, we use the coupled Poisson-Nernst 
Plank (PNP) equations. The electro-osmotic flow occurs through the 
film because electric double-layers are developed at the top and bottom 
interfaces and overlap with each other. Under these conditions, there is 
no thermodynamic equilibrium and thus Poisson-Boltzmann equations 
cannot be used for the simulation of ionic distribution. Instead, the 
Nernst-Planck equation should be used to find the distribution of ions 
within the electric double-layer (Park et al., 2007) under dynamic 
non-equilibrium condition. To model the electrical potential, the Pois
son equation is used as: 

∇2Ψ = −
ρe

ε (1)  

where ε is the permittivity of the medium and ρe is the charge density 
due to ion concentrations. The latter can be described as: 

ρe =
∑

ezinaci (2)  

where ci, represents concentrations of two ions of opposite charge, zi, na 
and e denote the valence of the ion i (+1/ -1), Avogadro number and 
elementary charge, respectively. 

2.3. Ion Transport 

To solve for the concentrations, ci, of two ions in an electrolyte so
lution, we can use the Nernst-Planck equation. The molar flux of ions, ji, 
are described as follow: 

ji = ciV − Di∇ci − um,iziFci∇Ψ (3)  

Fig. 1. Schematic of an electric double layer (EDL) and electrical charge distribution near a negatively charged surface (Kelessidis, 2021).  
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where Di is the diffusion coefficient, V is advective velocity, um,i is the 
mobility, F is Faraday’s constant, and Ψ is the electrical potential. The 
conservation of ions in a medium provides ∂ci

∂t + (∇ . ji + Ri) = 0. 
Assuming no chemical reactions (Ri = 0) in the electrolyte, for the two 
species under equilibrium and dynamic condition we obtain, 
respectively: 

∇ . ji = 0 (4)  

∂ci

∂t
+ ∇. ji = 0 (5)  

3. Numerical modelling 

3.1. Modelling approach and model configurations 

In this study, we assumed that a thin layer of high salinity electrolyte 
solution is squeezed between an oil droplet and a clay platelet and is 
initially under thermodynamically equilibrium condition. Then, we 
exposed the lateral boundaries of the domain with a solution having 
lower salinity. This initiates the diffusion of ions and evolution of 
electric field through the film. Such a thin layer can be conceptualized as 
a disc with axis-symmetrical properties (Mahani, 2015). To simulate 
electric field and ions transport within this thin layer, we first developed 
a 2D model. Due to the coupling between highly complex and nonlinear 
equations, this model had relatively heavy computational costs which 
limits its usage for larger realistic domain sizes because of the high 
aspect ratio. This problem together with the dominant flow and trans
port in the horizontal direction motivates developing an equivalent 1D 
model to reduce the computational efforts and do the simulation for 
larger domain which is comparable to the experiment. 

3.2. 2D model 

3.2.1. Initial and boundary conditions in the 2D model 
In the following, a 2D simulation domain and schematic overview of 

the relevant boundary conditions are presented. As shown in Fig. 2, the 
2D system is modelled as axisymmetric geometry with an axial coordi
nate z and a radial coordinate r, respectively. In finite element method, 
using an appropriate mesh for the system is important. We have tested 
several mesh sizes to find an optimum mesh size that provides stable 
solutions. In the 2D model, within Debye lengths of top and bottom 

boundaries, the minimum element size was set to (λH
D
6 ) and the maximum 

element size was set to (λH
D
4 ), to ensure sufficient resolution for the electric 

double layer. Here, λH
D , is the Debye length for the system under high 

salinity initial condition, and is determined using λH
D =

(

εkBT
e2na
∑

z2
i cH

b

)0.5

. 

Given the domain geometry, we have used structured meshes that pro
vided accurate and computationally efficient results (compared to the 
unstructured triangular mesh) as shown in Fig. 2. In order to compare 
our results with those of Mahani et. al, we considered a similar film size 
with a radius of 20 nm and a height of 4 nm (i.e., L = 20nmandh = 4nm). 
On the left boundary of the domain (i.e., the symmetry axis of the cy
lindrical domain) a no-flux boundary condition was imposed. At the 
right boundary, being exposed to the low salinity bulk solution, the 
electrical potential was set to zero and the concentrations of the cation 
and anion species, cp and cm (mol/m3), were set to a constant value cb (i. 
e., the concentration of low salinity solution in the bulk region). The top 
and bottom boundaries represent the interfaces of the electrolyte with 
oil and clay, respectively, which are negatively charged surfaces and 
carry constant surface charge density, σ (c/m2), and a no-flux (− n. 
D∇ci = 0) boundary conditions for Nernst-Planck equation. We specified 
a space charge density of ρe = ena(cp − cm) (C/m3) on the entire domain. 

We assumed that initially the system is in equilibrium with residing 
high salinity bulk solution. To solve for the corresponding initial dis
tribution of electrical potential Ψ(r, z) and concentration field, of the 
cation and the anion Ci(r,z) for our 2D model we solved Eq. (1) and Eq. 
(4), respectively. As the domain is closed with fix boundaries and water 
is considered incompressible, the flow into the domain is zero and there 
is no need to simulate fluid flow. 

3.2.2. 2D cylindrical form of the governing equations under dynamic 
condition 

In this section, we provide the governing equations for electrical 
potential Ψ(r, z) and concentration field of cation and anion Ci(r,z) in a 
cylindrical coordinate for our 2D model under dynamic condition. As we 
exposed the right boundary to the low salinity bulk solution, the diffu
sion of ions and evolution of electric field occurs through the film. In 
Poisson equation to calculate the electrical potential Ψ(r, z), Eqs. (1) and 
(2) can be written for axi-symmetric conditions as: 

∂2Ψ
∂z2 +

1
r

∂
∂r

(

r
∂Ψ
∂r

)

= −

∑
eNazici

ε (6) 

For ions transport under dynamic condition (and excluding the 
convection term) Eqs. (5) and (3) provide: 

∂ci

∂t
+

Di

kBT
Naezi

[
∂
∂z

(

ci
∂ψ
∂z

)

+
1
r

∂
∂r

(

cir
∂ψ
∂r

)]

+Di

[
∂2ci

∂z2 +
1
r

∂
∂r

(

r
∂ci

∂r

)]

= 0
(7)  

3.3. 1D model 

3.3.1. 1D domain and boundary conditions 
The 1D model has a length of 20 nm long, representing the extent of 

the electrolyte between oil and clay. In this model, the left boundary is 
axi-symmetric, and the right boundary applies a zero electric potential 
and a fixed concentration of bulk solution for Poisson and Nernst-Planck 
Equations, respectively. 

3.3.2. Derivation of the 1D form of the governing equations in the radial 
coordinate 

In order to derive the 1D equations, we integrate all terms along the 
height of the film. First, we define the averaged electrical potential Ψ(r)
and averaged ion concentrations Ci(r) as: 

Ψ(r) =
1
h

∫h

0

Ψ(r, z)dz (8)  

Fig. 2. The 2D representations of the simulation domain together with the 
boundary conditions for Poisson and Nernst-Planck Equations. The domain in 
2D represents a radial cross section of 20 nm long with a total height of 4 nm 
(L = 20nmandh = 4nm). The left boundary is axisymmetric, and the right 
boundary applies a zero electric potential and a fixed concentration of bulk 
solution. The top and bottom boundaries represent negatively charged surfaces 
are the interfaces of electrolyte with oil and clay, respectively, and carrying 
constant surface charge density and no-mass-flux conditions. 
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Ci(r) =
1
h

∫h

0

Ci(r, z)dz (9) 

Table 1 provides the integrated forms of each term in the Poisson and 
Nernst-Planck equations. For some terms, we have used the top and 
bottom boundary conditions of the 2D model. 

Based on the information provided in Table 1, the final form of the 
PNP equations in a one-dimensional space may be written as: 

1
r

∂
∂r

(

r
∂Ψh
∂r

)

− 2
σ
ε = −

h
∑

eNazici

ε (17)  

∂cih
∂t

+
DiNaezi

kBT

[
1
r

∂
∂r

(

rci
∂Ψh
∂r

)

− 2ci
σ
ε

]

+
Di

r
∂
∂r

(

r
∂cih
∂r

)

= 0 (18) 

In 1D model, the effect of surface charge density should be taken into 
account. To do so, the second term in the left-hand side of Eq. (17) (i.e., −
2 σ

ε) is defined as a source term. This term originates from integrating the 
first term of Poisson equation along the height of the aqueous film (Eq. 
10). Considering Eqs. (17) and (1), we have defined the charge density in 
the one-dimensional space as: 

ρe = −
2
h

σ + e na
(
cp − cm

)
(19) 

We have first solved these equations for the initial equilibrium 
condition and after that we solved them for dynamic condition when we 

expose the domain to the low salinity bulk fluid. 

3.4. Model parameter values 

Parameters values considered for our simulations are given in 
Table 2. In the Nernst-Planck equation, only migration term and the 
existence of two ion species (cp and cm), with valences1.0 and -1.0, were 
included. 

To better present the modelling results, some dimensionless vari
ables are used as defined in Table 3. Here, λH

D , is the Debye length for the 
system under high salinity initial condition determined using λH

D =
(

εkBT
e2na
∑

z2
i cH

b

)0.5

. 

4. Simulation results and discussion 

In this section, we provide the results obtained from the numerical 
simulation of coupled PNP equations. We will first describe the results 
for electrical potential and ion concentrations under initial equilibrium 
condition obtained from our 1D mode. Afterwards, we compare the 
dynamic results of this 1D model with those of 2D model to verify our 
model. To show the efficiency of the developed model, the computa
tional time ratio between the 1D model and the 2D model is provided for 
different domain lengths (including r = 1000, 5000, and10000nm). The 
analysis showed that the 1D model can solve the Equations 180–220 
times faster than the 2D model. After verification, we use the developed 
efficient model to perform simulation for a much longer domain size 
(r = 0.5mm) which is not feasible to be simulated using the original 2D 
model due to its computational demands. 

4.1. Initial equilibrium condition for the 1D model 

Initially, the domain is filled with high salinity bulk solution which is 
under equilibrium condition. We performed a simulation for r* = 2 and 
z* = 0.4 with a constant surface charge density σ = − 0.017c/m2. Fig. 3 

Table 1 
This table includes the integrated forms of all terms of Poisson and Nernst- 
Planck equations.  

Integrated form of each term of Poisson equation 

∫h

0

∂2Ψ
∂z2 dz =

(
∂Ψ
∂z

)

h
−

(
∂Ψ
∂z

)

0
= −

σ
ε −

σ
ε = − 2

σ
ε  

Eq. (10) 

∫h

0

1
r

∂
∂r

(

r
∂Ψ
∂r

)

dz =
1
r

∂
∂r

(

r
∂Ψh
∂r

) Eq. (11) 

−

∫h

0

∑
eNazici

ε dz = −
h
∑

eNazici

ε  

Eq. (12) 

Integrated form of each term of Nernst-Planck equation  
∫h

0

∂
∂z

(

ci
∂Ψ
∂z

)

dz =

(

ci
∂Ψ
∂z

)

h
−

(

Ci
∂Ψ
∂z

)

0
= − ci

σ
ε − c

σ
ε = − 2 ci

σ
ε  

Eq. (13) 

∫h

0

1
r

∂
∂r

(

cir
∂Ψ
∂r

)

dz =
1
r

∂
∂r

⎛

⎝r
∫h

0

(ci + ĉi )
∂Ψ
∂r

dz

⎞

⎠

=
1
r

∂
∂r

⎛

⎝rci

∫h

0

∂Ψ
∂r

dz

⎞

⎠+
1
r

∂
∂r

⎛

⎝r
∫h

0

ĉi
∂Ψ
∂r

dz

⎞

⎠

=
h
r

∂
∂r

(

rci
∂Ψ
∂r

)

+
1
r

∂
∂r

⎛

⎝r
∫h

0

ĉi
∂Ψ
∂r

dz

⎞

⎠

Eq. (14) 

∫h

0

∂2ci

∂z2 dz =

(
∂ci

∂z

)

h
−

(
∂ci

∂z

)

0
= 0  

Eq. (15) 

∫h

0

1
r

∂
∂r

(

r
∂ci

∂r

)

dz =
1
r

∂
∂r

(

r
∂
∂r

)∫h

0

cidz =
1
r

∂
∂r

(

r
∂cih
∂r

) Eq. (16)  

Table 2 
Parameter values used in the model.  

Parameter Value/Range 

Relative solvent permittivity, εr 80 
Ion Diffusivity, D 10− 9 m2/s 
Temperature, T 298 K 
Fluid mass density, ρ 1000 kg/m3 

Fluid viscosity, μ 0.001 Pa.s 
Domain radius range, L 20-10000 nm 
Domain height, h 4 nm  

Table 3 
The dimensionless form of some key variables.  

Dimensionless variable Formula 

Dimensionless radius, r* L
λH

D  Dimensionless height, z* h
λH

D  Dimensionless electric potential, Ψ* eΨ
kBT  

Dimensionless Concentration, c* ci

cH
b   

Fig. 3. Electrical potential. The initial distribution of electrical potential (r* = 2 
and z* = 0.4) with the domain filled with high salinity solution. Solid lines 
represent the results for the 1D and the markers representing the corresponding 
results of the 2D models. 
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shows the profile of the electrical potential field along the film radius. It 
is shown that, moving horizontally away from the centre of the domain 
(r* = 2), the electrical field becomes weaker. Since the interfaces are 
negatively charged, the concentration of cation is higher compared to 
the anion concentration, and by getting closer to the outlet the differ
ence between concentrations become smaller and finally at the outlet 

the ion concentrations reach to their bulck value. This behaviour is clear 
in Fig. 4a and b showing the concentration profiles for the anion and 
cation, respectively. To verify the simulation results for electrical po
tential and ion concentrations, we compared the results with those ob
tained using the corresponding 2D model (for r* = 2 and z* = 0.4), that 
are shown by markers in the following figures. 

4.2. 1D model verification under dynamic conditions 

To study the system behaviour under dynamic conditions, we per
formed simulations by including the unsteady, time dependent, terms. 
To verify the simulation results for electrical potential and ion concen
trations, we compared the results with those obtained using the corre
sponding 2D model (for r* = 2 and z* = 0.4). Fig. 5 shows this 
comparison for electrical potential evolution over time in radial direc
tion for thin film scenarios. The solid line and the triangular markers 
show the results that are obtained from 1D and 2D models, respectively. 
The blue curve shows the results for the first time-step and the red curve 
shows the final, i.e., equilibrium, solution balanced with the low salinity 
bulk solution. The simulation run was 10− 6 seconds, and the graphs are 
equally distributed between the beginning of the simulation and the end 
time of the simulation. 

Fig. 6a and b show dynamics of anion and cation concentration for 
thin film, respectively. Again, the solid lines represent the results 
obtaining from the 1D model and the triangular markers represent those 
of the 2D models. It is shown that, after we reduce the concentration of 
surrounding bulk solution, inside the film ions start diffuseing out of the 
high-salinity solution of the film to the surrounding environment. The 

Fig. 4. Concentration profiles. Initial distribution of concentration along the domain for (a) anion and (b) cation (r* = 2 and z* = 0.4) with the domain filled with high 
salinity solution. Solid lines represent the results for the 1D and the markers representing the corresponding results of the 2D models. 

Fig. 5. Dynamic conditions. Evolution of electric potential in radial direction 
(r* = 2 and z* = 0.4). Solid lines represent the results for the 1D and the various 
markers representing the corresponding results of the 2D models. Blue curve 
shows the first time step and red curve shows the final equilibrium under low 
salinity bulk solution. The graphs are equally distributed between the beginning 
of the simulation and the end time of the simulation corresponding to 
10− 6 seconds. 

Fig. 6. dynamic conditions. Evolution of (a) anion and (b) cation concentration profiles in the radial direction (fordomainr* = 2 and z* = 0.4). Solid lines represent the 
results for the 1D and the various markers representing the corresponding results of the 2D models. Blue curves represent the first time-step after exposing the right 
boundary to the low salinity bulk solution and the red curves show the final equilibrium under low salinity bulk solution. The graphs are equally distributed between 
the beginning of the simulation and the end time of the simulation corresponding to 10− 6 seconds. 
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diffusion time is estimated by dividing the squared length of the domain 
by the diffusion coefficient of ion species.We considered the ions with 
similar absolute valence and diffusion coefficient but, by comparing 
Fig. 6a and b you can see the outward diffusion rate of cation is lower 
compared to anion due to the presence of negative electrical charges on 
the top and bottom boundaries. 

The above figures show exact agreements between the results for 
electrical potential and ions concentration from both models. The 1D 

model, however, allows reducing the computational time for over 180- 
220 times without losing accuracy. Fig. 7 provides the acquired 
computational benefit using the 1D model for simulations using 
different film lengths. As demonstrated, the computational benefit be
comes much larger for bigger film lengths where the 1D model becomes 
significantly faster than the 2D model. 

4.3. 1D Simulation results for more realistic domain length 

We performed simulation using the 1D model for more realistic 
domain length (r = 0.5mm, i.e., 25000 times largerthan simualtions used 
for model verifications) which was not possible to simulate using the 2D 
model due to the highly computational cost. The results for the electric 
potential and the anion and cation concentration profile obtained from 
the 1D model are provided in Fig. 8 and Fig. 9a,b, respectively. The 
computational time for this large 1D model was 8 min. 

Fig. 8 represents the evolution of electric field along the radial di
rection for this large 1D model. The blue curve shows initial equilibrium 
condition under high salinity bulk solution and the red curve shows the 
final equilibrium condition under lower salinity bulk solution. The 
choice of time steps, as shown in the figure legend, was in some way to 
better show the evolution of the electrical potential. 

In this large 1D model, the negatively charged system was initially 
under the thermodynamically equilibrium condition for high salinity 
bulk solution. As we exposed the right boundary to the lower salinity 
solution, this initial equilibrium condition is disturbed, and the diffusion 
of ions initiates between high salinity and low salinity bulk solution. 
Since a field of electrical potential gradient is imposed on the concen
tration gradient (as explained in Section 3.3.1) the ionic diffusion be
comes more limited and due to the presence of negatively electrical 
charges the mobility of cations is strongly affected and they mostly 
remain inside the system. Therefore, as shown in Fig. 9a, we could see 
the diffusion of anion over time while Fig. 9b shows that all the graphs 
for cation concentration profiles are overlapping each other. 

5. Application and future work 

Similar to other researchers, we have assumed that the thin film has 
fixed and rigid boundaries and contains incompressible water. As a 
result of these assumption, the film thickness remains constant, and no 
water would flow into or out of the domain. In future works, flow 
equations should be added to the effective 1D model in order to inves
tigate the spatial and temporal evolution of film thickness due to the 
coupled effects of electroosmosis and water flow and potential detach
ment of the oil phase from the solid surface in scales comparable with 

Fig. 7. Time ratio of 1D over 2D models. to compare how faster the 1D model 
could solve the simulation giving the same results as those of the 2D model, we 
plotted the computational time ratio of 1D over 2D model for different 
film length. 

Fig. 8. Large 1D model. Evolution of electrical potential under dynamic con
dition for the film with r* = 50000 and z* = 0.4. Blue curve shows the first time 
step and the red curve shows the final equilibrium under low salinity 
bulk solution. 

Fig. 9. Large 1D model. Evolution of (a) anion and (b) cation concentration profiles in radial direction under dynamic condition for the film with r* = 50000 and 
z* = 0.4. Blue curve shows the first time step and the red curve shows the final equilibrium under low salinity bulk solution. For cation concentration profiles, all the 
results overlapping each other due to the presence of negatively electrical charges. 
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the experimental observations (Mahani, 2015). 
Moreover, the electrostatic interface condition in modelling of the 

solid-fluid interaction is critical as it controls the transport of ions and 
evolution of disjoining pressure. In a recent study, Pourakaberian et al. 
(2021) investigated the evolution of hydrodynamic pressure and the 
electric potential under the effect of ionic strength gradient for different 
symmetric and asymmetric electrical boundary conditions. Our devel
oped 1D model is valid for symmetric electrical boundary condition of 
constant charge density as well as in the presence of multi-component 
solutions and highly overlapping electric double layers. However, for 
other types of boundary conditions such as constant potential, charge 
regulation model and asymmetric boundary conditions, appropriate 1D 
average equations should be derived. 

6. Conclusion 

In this work, we have developed an effective one-dimensional model 
to simulate electro-diffusion inside a thin layer of electrolyte located 
between two charged surfaces. This model has been used to simulate the 
evolution of electrical potential and ion concentrations distribution 
along the thin film of electrolyte. Simulations showed that because of the 
negatively charged surfaces the mobility of the cations was severely 
affected by the electric charges and these ions had lower outward 
diffusion rate compared to flux of anions. The developed model could 
significantly reduce the computational time by a factor of 180-220 
compared to simulation using a 2D model. The equivalent 1D model 
enables solving the nonlinear governing equations for much larger 
domain lengths providing unique opportunity to simulate experimental 
results of ion transport in thin films where the very large height to length 
ratio prevents use of 2D simulations. 
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