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ABSTRACT
When gravitational waves (GWs) pass through the nuclear star clusters of galactic lenses, they may be microlensed by the
stars. Such microlensing can cause potentially observable beating patterns on the waveform due to waveform superposition and
magnify the signal. On the one hand, the beating patterns and magnification could lead to the first detection of a microlensed
GW. On the other hand, microlensing introduces a systematic error in strong lensing use-cases, such as localization and
cosmography studies. By numerically solving the lensing diffraction integral, we show that diffraction effects are important
when we consider GWs in the LIGO frequency band lensed by objects with masses � 100 M�. We also show that the galaxy
hosting the microlenses changes the lensing configuration qualitatively, so we cannot treat the microlenses as isolated point
mass lenses when strong lensing is involved. We find that for stellar lenses with masses ∼1 M�, diffraction effects significantly
suppress the microlensing magnification. Thus, our results suggest that GWs lensed by typical galaxy or galaxy cluster lenses
may offer a relatively clean environment to study the lens system, free of contamination by stellar lenses, which can be
advantageous for localization and cosmography studies.
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1 IN T RO D U C T I O N

Both gravitational waves (GWs) and electromagnetic (EM) waves
can be gravitationally lensed when propagating near massive astro-
physical objects, such as galaxies and galaxy clusters (Ohanian 1974;
Thorne 1982; Deguchi & Watson 1986; Wang, Stebbins & Turner
1996; Nakamura 1998; Takahashi & Nakamura 2003). To date, only
the lensing of EM waves has definitively been observed, but several
searches for GW lensing have already been performed (Hannuksela
et al. 2019; Li et al. 2019a; Dai et al. 2020; Liu, Hernandez &
Creighton 2020; McIsaac et al. 2020; Pang et al. 2020).

Suppose the GW is lensed by a galaxy or a galaxy cluster only.
In that case, we can use the geometrical optics approximation to
solve for the trajectory, the arrival time of distinct GW images,
and their image types (Takahashi & Nakamura 2003). These GW
images will only differ in their amplitudes, arrival times, and overall
phases.1 Thus, we can identify the strongly lensed images as repeated
events with identical frequency evolution using matched filtering
and Bayesian analysis (Haris et al. 2018; Hannuksela et al. 2019;
Li et al. 2019a; Dai et al. 2020; Liu et al. 2020; McIsaac et al.
2020).

� E-mail: hycheung@link.cuhk.edu.hk
1This generally applies to (2,2) modes. However, if the GWs exhibit higher
order modes or precession, the so-called saddle point images (type-II)
could experience non-trivial waveform changes (Dai & Venumadhav 2017;
Ezquiaga et al. 2020).

If we localized such strongly lensed GWs, we might be able to
perform precision cosmography studies at high redshift (Sereno et al.
2011; Liao et al. 2017; Cao et al. 2019; Li, Fan & Gou 2019b;
Hannuksela et al. 2020), connect binary black holes to their host
galaxy properties and investigate formation channels (Chen & Holz
2016; Hannuksela et al. 2020), and conduct improved tests of the
GW polarization content (Goyal et al. 2020).2 Other intriguing use-
cases in, e.g. cosmography, have been documented in (Oguri 2019).
However, most of these science cases, as well as the localization
studies, rely on a clean environment devoid of systematic errors
introduced due to microlensing by stars.3

In particular, when GWs are strongly lensed by galaxy and galaxy
clusters, their trajectories might pass through dense nuclear star
clusters, introducing a non-negligible chance of microlensing (Chris-
tian, Vitale & Loeb 2018). The stellar lens would then introduce
additional microlensing effects. In GW lensing localization studies,
they can introduce a sizable error in the magnification ratio when
the geometrical optics limit is assumed (Hannuksela et al. 2020).
In general, microlensing could lead to systematic errors that will
be counter-beneficial to studies of lensed transient events (see

2We note that these latter polarization tests could be done even for non-
localized events (Goyal et al. 2020). Still, the localization would significantly
improve the tests, as we could solve the sky location and the image properties
independently in the EM band (Hannuksela et al. 2020).
3For example, a substantial fraction of the error budget in the localiza-
tion studies proposed in Ref. Hannuksela et al. (2020) is dominated by
microlensing.
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discussion in Oguri 2019) and indeed almost any study relying on
GW localization (e.g. Sereno et al. 2011; Baker & Trodden 2017;
Collett & Bacon 2017; Fan et al. 2017; Liao et al. 2017; Cao et al.
2019; Li et al. 2019b; Hannuksela et al. 2020).

Luckily, as GWs have much longer wavelengths than typical EM
waves, diffraction effects can suppress microlensing when the stellar
lens has an Einstein radius comparable to the wavelength of the
GWs (Oguri 2019). However, microlenses in the wave optics limit
have been mostly studied in isolation (see, however, Diego et al. 2019,
Meena & Bagla 2020, and Diego 2020) for an interesting exploration
of microlensing effects on top of a macromodel of constant external
convergence and shear in the extreme high-magnification regime).

We consider the typical case of a stellar lens on top of a galactic
lens model at moderate magnification, similar to the usual strong
lensing system we expect to observe. We focus on the waveform
suppression effects brought forth by wave optics diffraction and
elaborate on its implications. Much of our work is motivated by
the discussion in Ref. Oguri (2019), which discusses some of these
wave optics suppression effects; our work aims to quantify the wave
optics suppression when macromodels are involved and investigate
their dependence on the microlens properties and position in order
to obtain a qualitative understanding.

We first lay out the procedures for treating a compound lens
system consisting of lenses with masses and length-scales orders
of magnitudes apart. Then, we show that the geometrical optics
approximation is not sufficient to treat the case of stellar-mass
microlensing for LIGO/Virgo. After that, we quantify the deviations
introduced by microlenses to the GW waveforms and show that they
would generally not affect events at LIGO/Virgo frequencies. Finally,
we will put our results in an astrophysical context and elaborate on
the implications and potential use-cases, especially those related to
the localization of GW sources and cosmography.

2 ME T H O D S

Strongly lensed GWs may be detectable at design sensitivity, based
on current lens and binary models (Li et al. 2018; Ng et al. 2018;
Oguri 2018). The typical analysis considers gravitational lensing by a
macromodel, such as a galaxy. However, microlensing by, e.g. a point
mass within a larger galaxy macromodel may significantly affect the
lensed GW waveform (Christian et al. 2018; Lai et al. 2018; Diego
et al. 2019; Jung & Shin 2019; Diego 2020).

Suppose the wavelength of the GW λ is comparable to the
Einstein radius of the point mass θm. In that case, there will be
significant diffraction effects as the ‘obstacle’ has a size smaller than
the wavelength, in which case the propagation of the wave will be
less disturbed and the geometrical optics approximation no longer
holds (Oguri 2019). Following Takahashi & Nakamura (2003), this
can be shown by considering a double slit experiment set-up with
the slit width comparable to θm ∼ √

mD, where m is the lens mass
and D is the distance from the slit to the screen (analogous to the
distance from the lens to the observer DL). Then, the maximum
magnification of the wave flux at the central peak is of the order
∼θ2

m/(Dλ) ∼ m/λ. When λ � m, the lens is of a negligible size,
and the magnification is suppressed.

In this section, we review the necessary methods to treat lensing
in the full wave-optics regime. Note: in this paper, we work in units
where c = G = 1.

2.1 Computing the diffraction integral

Fig. 1 shows the geometry of a typical lensing configuration. A GW
source is positioned at an angular diameter distance of DL. In contrast,

Figure 1. Schematic diagram of the lensing geometry. We use the thin-lens
approximation and assume that all of the lens mass resides on the lens plane.
This diagram is not drawn to scale; the lengths DLS, DL, and DS are very
large compared to ‖�η‖ and ‖�ξ‖.

a massive object, or ‘lens’, is positioned near the straight-line path
between the source and the observer at an angular diameter distance
DS. As DL and DS are very large compared to the length-scale of the
lens, we can apply the thin-lens approximation, where the lensing of
GWs occurs in the plane of the lens.

When GWs are radiated from the source, the portion that passes
near the lens might be focused towards the observer. As the lens’s
length-scale is small compared to the distances between the source,
lens, and observer, we can approximate the paths of lensed ‘rays’ of
GWs as straight line segments that change their direction abruptly at
the lens plane. In Fig. 1, we show one of these rays. If we draw all
possible rays from the source that would arrive at the observer, we
would observe a one-to-one correspondence of such rays with points
on the lens plane. Moreover, as these rays take different space–time
paths, they would arrive at the observer at different times. Thus, we
can construct a function td that maps a point on the lens plane �ξ to the
arrival time of the ray that passes through that point, given a source
position �η. For analytical calculations with �ξ and �η, it is easier to
work in units normalized by the Einstein radius:

θE =
√

4MLDLDLS

DS
, (1)

where ML is the total mass of the lens and DLS is the angular diameter
distance between the lens and the source (in systems with multiple
lenses, we will revert to un-normalized units to avoid confusion).
In these normalized units, writing �x = �ξ/θE and �y = �η/θE, the time
delay function td is given by

td(�x, �y) = DSθ
2
E(1 + zL)

DLDLS
T (�x, �y), (2)

with

T (�x, �y) = 1

2
‖�x − �y‖2 − φ(�x) − T0(�y), (3)

where T0(�y) corresponds to the arrival time of the first image, and
φ(�x) is the Fermat potential that depends on the nature of the lens (e.g.
we have φ(�x) = ln ‖�x‖ for a point mass lens). Besides, we consider
the time delay on cosmological distances, such that equation (2)
includes a factor of 1 + zL, where zL is the lens’s redshift.

Let the GW waveform observed without the presence of the lens be
h(f) in the frequency domain. If the waveform observed with lensing
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3328 M. H. Y. Cheung et al.

is hL(f), we can quantify the change in the waveform due to lensing
effects by the amplification factor

F (f ) = hL(f )

h(f )
, (4)

which is complex in general. If φ and hence td is known, we can
obtain F(f) by the diffraction integral (Schneider, Ehlers & Falco
1992)

F (f ) = DSθ
2
E(1 + zL)

DLDLS

f

i

“
R2

d2 �x e2πif td(�x,�y). (5)

By using a dimensionless frequency scale w = 8πML(1 + zL)f, we
arrive at

F̃ (w) = −iw

“
R2

d2 �x eiwT (�x,�y). (6)

The integrand in equation (6) is highly oscillatory for high w,
so the integral is computationally expensive to solve with typical
numerical integration techniques even for simple lens models. To
solve this integral, we follow a similar method mentioned in Ulmer &
Goodman (1994) and used in Diego et al. (2019), where we compute
an area integration directly in the lens plane and take its Fourier
transform, which is easier to implement for general lens models and
gives F(f) for a wide frequency spectrum with a single calculation.
The case of microlensing on a macromodel introduces important
subtleties to this method, making the evaluation of the integral not as
straight forward as models containing lenses with masses all of the
same order. In particular, the regions around the time delay function’s
saddle points require careful treatment (see Section 4.2). These cases
and the detailed methodology for calculating equation (6) for general
lens models will be discussed in a later work. In this paper, we focus
on the results from the minimum time delay image of the macro
model, which can already give us insights into the effects of stellar
lensing on GWs.

2.2 Geometrical optics approximation

For w � 1, we can work in the geometrical optics limit, where the
integral in equation (6) will mostly be contributed by the stationary
points of T (�x, �y) (Fermat’s principle). We call these stationary points
the image positions of the lensing configuration. In such a limit, F̃ (w)
is given by (Schneider et al. 1992)

F̃ (w) =
∑

j

|μ( �xj )|1/2 exp (iπ (2wT ( �xj , �y) − nj )), (7)

where �xj are the image positions, μ(�x) = det(∂ �y/∂ �x) is the image
magnification, nj = 0, 1

2 , 1 when �xj is at a minimum, saddle,
and maximum point of T (�x, �y), respectively. We solve the image
properties in the geometrical optics limit using the LENSINGGW

package (Pagano, Hannuksela & Li 2020), powered by LENSTRON-
OMY (Birrer & Amara 2018).

2.3 Microlensing

Strong lensing occurs when a GW passes by a lens with an impact
parameter � the Einstein radius. A scenario particularly interesting
would be when a GW passes inside the Einstein ring of two lenses
of drastically different lens scales. It is useful for such cases to
introduce the notion of ‘macro’ and ‘micro’ lens models. We refer to
the lensing images produced by the two models as macroimages and
microimages, respectively, following Diego et al. (2019).

Figure 2. Schematic diagram of an example scenario of microlensing on a
macromodel. (Top) In the geometrical optics limit, one can treat the waves
as rays propagating from the source to the observer, only taking specific
routes through particular points on the lens plane. If there were no microlens,
there would be two of these rays, passing through macroimage points (the
blue points) on the lens plane (bottom panel) before arriving at the observer.
However, when a microlens (a small black dot on the lens plane) is present
near a macroimage, the beam (shown in the dotted lines) might be split into
multiple ones and pass through different points on the lens plane, which
correspond to microimage positions (the red points). The distance between
the microlens and the macroimage is written as ηm and called the micro
impact parameter.

Let there be some lenses of mass ∼M and some of mass ∼m in
the lens plane (where the thin-lens approximation is invoked), and
let M � m. For simplicity, let there be no relevant lenses in the
intermediate-mass range. We can then define the ∼M lenses to be
the macrolenses, and those ∼m to be the microlenses. We can obtain
an intuitive understanding of the behaviour of GWs lensed by such
a system by thinking of how the lenses would split the GW beams.
We can think of the macrolenses splitting the beams into separate
rays (macroimages), and then the microlenses split the beams further
(into microimages). An example is shown in Fig. 2.

However, there is a caveat: when thinking of lensed GWs as
propagating towards us by taking certain discrete ray-like paths,
we have implicitly invoked the geometrical optics approximation.
As mentioned previously in this section, if the wavelength of the
GWs is comparable to the Einstein radius of the lenses, diffraction
effects will occur, and the GWs will no longer take only a discrete
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Stellar-mass microlensing of GWs 3329

Figure 3. The lens plane of an SIS macromodel of mass M = 1010 M� with a microlens of mass m = 30 M� near the minimum macroimage. The source
position measured from the centre of the SIS lens and projected on to the lens plane (macro impact parameter) is ηSIS = 0.1 θSIS, while the microlens is placed
ηm = 1.0 θm away from the macroimage. The contour lines of the time delay function td are shown in grey. (Left-hand panel) view of the complete model,
including the source position and macroimages. The macroimage on the left is of type-II (negative parity) as it is a saddle point of td, while that on the right
is of type-I (positive parity). (Centre panel) zoom in on the region around the type-I minimum macroimage. The microlens splits the macroimage into four
microimages, two of type-I (both minimum points) and two of type-II. (Right-hand panel) Further zoom-in on to the macroimage position. Note that as the
macroimage is split into microimages, the point corresponding to the macroimage position is not a stationary point of td anymore; it is an actual image only
when the microlens is absent.

number of paths. The next section will show that the geometrical
optics approximation is insufficient for treating microlenses of stellar
mass for GWs detectable by LIGO. None the less, the microimage
positions and the macroimage positions are always the stationary
points of the time delay function td, and it is convenient to keep track
of their positions even if we are working with a full wave-optics
treatment.

The Einstein radii of the microlenses are orders of magnitudes
smaller than those of the macrolenses. The difference in arrival
time between a group of microimages near a particular macroimage
is also orders of magnitude below the difference in arrival time
between macroimages. Therefore, we can carry out our integration
in equation (6) for the microimages near the minimum macroimage
of the macromodel (galactic lens), that is, within a small domain
on the lens plane near the macroimage. We will then obtain an
amplification factor F(f) that corresponds to the interferences be-
tween the relevant microimages with diffraction included. For saddle
point macroimages, we will have to cover a much more extensive
integration domain. This is to be performed in a later work (see also
Section 4.2).

3 R ESULTS

This section quantifies the effects of stellar microlenses on GWs
(within the LIGO frequency band) lensed by a galaxy. We place the
source at a redshift of zS = 1 and place a galactic lens at zL = 0.5. For
our galactic macromodel, we use a singular isothermal sphere (SIS)
lens of mass 1010 M�. We will only consider cases corresponding to
strong lensing. The macro impact parameter y (position of the source
in the sky with respect to the centre of the SIS macromodel) is less
than θSIS, the Einstein radius of the SIS macromodel. For such cases,
we will see two macroimages, one corresponding to a minimum point

in the time delay function, and the other corresponding to the saddle
point. Then, we introduce point-mass microlenses in the vicinity
of the minimum macroimage. We can naively treat the minimum
macroimage position as the ‘source position’ for the microlensing
configuration and define the micro impact parameter ηm as the
distance of the microlens from the macroimage position.

We assume that the microlens is hosted by the macromodel galaxy,
which will likely be true for most cases of microlensing where the
microlens is a star from the nuclear cluster of the galaxy, so we can
treat the macrolens and the microlens as residing on the same plane in
the sky (Diego et al. 2019). If the microlenses are of stellar mass, say
m < 100 M�, the arrival time of the microimages will reside within a
time window that is less than the period of GWs measured by LIGO.
Thus, we will have to use the methods discussed in the previous
section to recover the amplification factor for the signal measured
that corresponds to the lensed GW rays near the macroimage.

In this section, as we are working with two very different length-
scales corresponding to the macromodel and microlenses, we will
revert to unnormalized units of length, i.e. using �ξ and �η instead of
�x and �y. We denote the norms of the vectors ξ = ‖�ξ‖ and η = ‖�η‖,
etc. Relevant lengths for the SIS macromodel are the macro impact
parameter (distance from the centre of the SIS lens to the source,
projected on to the lens plane) ηSIS, and the Einstein radius of the
SIS lens θSIS. For microlenses near a parent macroimage, we denote
the micro impact parameter (distance between the parent macroimage
and the microlens on the lens plane) as ηm, and the Einstein radius
of the microlens as θm.

3.1 The necessity of a full wave-optics analysis

Fig. 3 shows the configuration of the full lens model and the contours
of the time delay function for the case of a macro impact parameter
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3330 M. H. Y. Cheung et al.

Figure 4. The normalized norm (top, left axis) and phase (bottom, left
axis) of the frequency domain amplification factor F(f) near the minimum
macroimage for the lensing set-up described in Fig. 3 (30 M� microlens). The
deviation of the geometrical optics approximation (the red-dashed line) and
the full wave optics treatment (the red solid line) demonstrates that wave optics
effects are important for stellar lenses of lower masses, and they suppress
the amplification factor. The disagreement between treating the microlens in
isolation (the red-dotted line) and considering both the macro and microlenses
(the red solid line) shows that we have to also consider the macromodel’s
contribution to the time delay function in our analysis. The PSD of LIGO is
plotted in the grey-dotted lines with the axis on the right of each panel.

ηSIS = 0.1 θSIS, micro impact parameter ηm = 1.0 θm, and microlens
mass m = 30 M�. The microlens is placed on the straight line
between the SIS centre and the minimum macroimage position. The
macroimage and microimage positions are found with the help of the
LENSINGGW package (Pagano et al. 2020).

We can work in the geometrical optics limit for the macromodel
(the SIS lens) due to the lens’s considerable mass. We will observe
two GW signals of the same phase but different amplitudes and arrival
times (see the two macroimages in the left-hand panel of Fig. 3). In
this case, the macroimage only induces an overall magnification on
the waveform, such that F(f) is a constant.

However, the addition of a stellar-mass lens near the macroimage
disturbs the time delay function near the arrival time of the macroim-
age, causing F(f) to deviate from the constant value. Fig. 4 shows F(f)
for the GW rays that come from around the minimum macroimage.
Note that the amplification factor is normalized by

√
μ, where μ is the

magnification of the macroimage in the geometrical optics limit. If we
work with the geometrical optics approximation and use equation (7),
we obtain the dashed curve, which deviates significantly from the
results without approximations for lower frequencies, showing that a
full wave-optics analysis is necessary when dealing with microlenses.

Figure 5. Same as Fig. 4, but with a point mass microlens of mass m ∈
{1, 5, 10, 30} M�, placed accordingly at a distance of ηm = 1.0 θm away from
the macroimage position similar to the set-up in Fig. 3. F/

√
μ converges to

the constant limit of 1 for low frequencies and low microlens masses. We
show the geometrical optics approximation results for a 1 M� microlens
in the green-dashed lines. The wave optics diffraction effects suppress the
waveform relative to the geometrical optics approximation.

We also demonstrate that if we naively treated the microlenses
independently of the macromodel (in isolation), we obtain the dotted
curve in Fig. 4 instead, corresponding to the standard analytical ex-
pression for the amplification factor of the point mass lens (see Peters
1974). This amplification factor is significantly different from the
full non-approximate amplification factor. In fact, by observing that
the microlens splits the macroimage into four microimages instead
of two in the centre panel of Fig. 3, we can already infer that the
macromodel would introduce qualitative differences from the case
of an isolated point mass. This further confirms the results in Diego
et al. (2019, 2020) and Pagano et al. (2020) that it is necessary to
consider the macromodel when treating microlensing in the presence
of strong lensing.

3.2 Waveform suppression due to diffraction

We saw that the normalized amplification factor in our full wave-
optics analysis reduces to unity as f → 0, which corresponds to the
limit when the wavelength of the GW λ > θm, where the waves
would propagate through the microlens unimpeded as diffraction
effects dominate. This effectively means that GWs will be largely
unaffected by the microlenses in the very low-mass regime. We
examine the level of waveform suppression for different microlens
masses in Fig. 5. With m ∈ {1, 5, 10, 30} M�, we see that lower
microlens masses correspond to amplification factors approaching 1
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Stellar-mass microlensing of GWs 3331

Figure 6. The frequency domain (top) and time domain (bottom) waveforms
for the cases m ∈ {0, 10}M� for the set-up shown in Fig. 3. The waveform
obtained for m = 10 M� from the geometrical optics limit is plotted in dashed
lines. m = 0 M� corresponds to the case where there is no microlens. The
PSD of aLIGO is also plotted in the top panel in the black-dotted lines for
reference.

at most relevant LIGO/Virgo frequencies, implying that the GW
signal is amplified only by the macroimage magnification. We
also plot the frequency domain and time domain waveforms for
m ∈ {0, 10} M� in Fig. 6. Here, an IMRPhenomD waveform of a
30 + 30 M� binary black hole merger generated by PYCBC (Nitz
et al. 2020) is used. The result obtained from the geometrical optics
approximation for the m = 10 M� waveform is also shown in dashed
lines, showing that we would overestimate the deviations of the
waveform due to microlensing if we work in the geometrical optics
limit.

Then, we investigate how the microlens location relative to the
macroimage affects waveform suppression. Fixing m = 10 M�, we
vary the micro impact parameter ηm ∈ {0.1, 0.3, 0.5, 0.7, 1.0} θm and
calculate the amplification factors at different image positions. As
shown in Fig. 7, the amplification factor converges to the same
curve at low frequencies, suggesting that the effects of waveform
suppression are similar regardless of the microlens location. This
behaviour is also observed in the case of isolated point mass lenses
(Nakamura 1998; Takahashi & Nakamura 2003).

We then quantify the differences introduced by microlensing to
the lensed waveforms. We first define

hL,full(f ) = F (f )h(f ), (8)

hL,macro(f ) = √
μh(f ). (9)

Figure 7. Same as Fig. 5, but this time fixing the microlens
mass at m = 10 M� while varying the micro impact parameter ηm ∈
{0.1, 0.3, 0.5, 0.7, 1.0} θm. Due to diffraction effects, the amplification factors
in the lower frequency region are suppressed to the same limit regardless of
the micro impact parameter.

Then, we define the effective micro-magnification by

μm = (hL,full | hL,full)

(hL,macro | hL,macro)
, (10)

where

(a|b) = 4 Re
∫ fhigh

flow

a(f )b∗(f )

Sn(f )
df (11)

is the inner product weighted by the power-spectral density (PSD)
Sn(f) of LIGO. By taking the noise-weighted inner product, we
remove the frequency dependence, so we can now approximate the
change induced by the microlens on the amplification of the GW
waveform. In Fig. 8, we plot

√
μm for m ∈ (1, 100) M� and ηm ∈

(0.1, 1.0) θm. For h(f), we again use an IMRPhenomD waveform of
a 30 + 30 M� binary black hole merger, generated with PYCBC (Nitz
et al. 2020). We took the square root because the amplification to the
waveform is ∼√

μm. If the microlens were absent, hL,full = hL,macro

and equation (10) reduces to μm = 1. For lower m, μm does not
significantly deviate from unity. For m � 3 M�,

√
μm is larger than

1 by � 5 per cent.
To further quantify the deviation in the waveforms, we define the

waveform overlap, which is given by

O[hL,macro, hL,full] = (hL,full | hL,macro)√
(hL,full | hL,full)(hL,macro | hL,macro)

. (12)

We then define the match M[hL,macro, hL,full] to be the maximum of
O[hL,macro, hL,full] over time and phase, and 1 − M[hL,macro, hL,full]
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Figure 8. Contour plot of the effective micro-amplificaiton
√

μm for our lens
set-up as a function of the microlens mass m and the micro impact parameter
ηm. The behaviour of

√
μm almost does not depend on ηm for a low m.

Figure 9. The mismatch between the waveforms with and without microlens-
ing for our lens set-up as a function of the microlens mass m and the micro
impact parameter ηm. The contour lines of mismatch ∈ {0.1, 0.5, 1.0} per cent
are shown. Stellar mass microlenses of m � 10 M� have a mismatch in the
subpercent level.

to be the microlens-induced mismatch. The match is also computed
using the PYCBC software (Nitz et al. 2020).

Fig. 9 shows a contour plot of the mismatch 1 −
M[hL,macro, hL,full] between the waveforms with and without mi-
crolensing as a function of m and ηm. For most of the parameter
space concerned, the mismatch � 1 per cent except for m, ηm ∼
100 M�, 0.1 θm. For m � 10 M�, the mismatch � 0.5 per cent. We
note that the waveform’s mismatch does not encode any information
about the macroimage magnification μ, which scales the signal-to-
noise ratio of the signal as

√
μ. However, as the mismatch is at

the subpercent level for typical stellar masses of m � 10 M�, it is
expected that microlenses would not significantly affect the measure-
ment of other GW parameters for typical magnifications μ � 10. We
note that more complicated scenarios with a field of microlenses still
exist and there are some rare cases when we could observe extremely
large macromodel magnifications (μ ∼ 100). These scenarios may
still induce more substantial stellar microlensing features on the
waveform (Diego et al. 2019; Diego 2020).

With the same macromodel set-up, we also vary the direction we
place the microlenses from the macroimage, with φm ∈ {45◦, 90◦,

Figure 10. Varying the angular direction with respect to the macroimage for
which we place the microlens. The SIS centre is to the left of the figure and
φm is the angle between the microlens and the SIS centre measured at the
macroimage. The dashed and solid circles correspond to φm ∈ {0◦, 45◦, 90◦,
135◦, 180◦}.

135◦, 180◦}, where φm is the relative angle from the SIS centre to
the microlens measured at the macroimage as shown in Fig. 10. The
cases examined previously corresponds to φm = 0◦, while the results
for the range 180◦ < φm < 360◦ are similar to those examined here
by symmetry of the model. The deviation in micro magnification
and the mismatch for the above cases are plotted in Fig. 11, showing
that the microlens displacement relative to the macroimage does not
affect the results significantly for m � 10 M�.

Although microlensing due to a single star might not affect GWs
significantly, we are interested in the case of GW microlensing by
multiple stars as well. Following Christian et al. (2018), we also
study the case of the GW passing through the Einstein ring of two
microlenses, which is rare but possible when the lens galaxy has
a high stellar density. We use the same 1010 M� SIS macromodel
as that in the main text, and restrict ourselves to the minimum
macroimage. We draw two masses m1 and m2 from the Chabrier
(2005) mass function (Chabrier 2005) as implemented in the IMF

package (Ginsburg 2021). Then, we place m1 at a random position
within a disc of radius θm1 centred at the macroimage position, and
we repeat such procedure with m2 and θm2 (thus lenses with smaller
masses are generally placed closer to the macroimage). We simulate
1000 of these microlens pairs, calculate the amplification factor for
each configuration, and compute the micro magnification factor as
in equation (10) and the microlens induced mismatch as in Fig. 9.
The results are shown in Fig. 12. The results give

√
μm < 1.062

or mismatch < 0.135 per cent, respectively, for 95 per cent of the
simulations. The outliers to even higher

√
μm or mismatch corre-

spond to the unlikely cases of heavy stars (m � 10 M�) present near
the macroimage. It should be noted that the macroimage position
is within the Einstein radius of both m1 and m2 in our simulations,
but it is more probable that only one (or none) of the masses would
be that close to the macroimage. Therefore, single or double stellar
microlensing would typically not affect the GW signal.

4 D ISCUSSION

4.1 Implications of waveform suppression

In most micro- and millilensing situations above 100 M�, the geo-
metrical optics limit describes the physical configuration well at the
most sensitive LIGO/Virgo frequencies. However, for microlenses
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Figure 11. Micro amplification factor μm (left column) and mismatch (right column) for φm ∈ {45◦, 90◦, 135◦, 180◦} (from top to bottom). For m � 10 M�,
the features are qualitatively similar to those in the case discussed in the main text (see Figs 8 and 9). For m � 10, varying φm does introduce some differences,
meaning that the ability to detect microlenses in this higher mass range would at least depend on the three parameters m, ηm, and φm.

below 100 M�, wave diffraction effects become non-negligible.
Wave optics effects suppress the lensing magnification due to
microlenses, especially in common astrophysical strong lensing
scenarios with microlenses ∼1 M�, and even for the case of two of
such microlenses present near to the GW trajectory. We note that there
are still even rarer astrophysical situations where more microlenses
could plausibly conspire together to mimic larger lenses (Diego et al.
2019; Diego 2020), but our results are nevertheless promising, and

may have exciting implications for studies of fundamental physics
and cosmology through localization studies.

In particular, as pointed out by Oguri (2019), typical microlensing
may significantly and adversely affect the accuracy and precision of
time delay and magnification measurements of lensing transients.
As the typical radii of the objects emitting GWs are small (the
orbital radius of binary compact object mergers can be as low
as R ∼ 10 km), GWs can in principle be subject to considerable
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Figure 12. The effective micro amplification
√

μm and microlens induced
mismatch for the 1000 simulated double microlens configurations. The
masses of the two stars are drawn from an initial mass function. The 95th
percentile of

√
μm is 1.062, while that of the mismatch is 0.135 per cent.

microlensing in the usual geometrical optics limit (Oguri 2019).
However, our results confirm that the wave optics effects suppress
stellar microlensing (see also discussion on isolated lenses in Oguri
2019). This suggests that GWs may allow for relatively clean
measurements where we need to worry less about microlensing
systematics in, e.g. localization studies (Hannuksela et al. 2020)
and possible follow-up studies thereafter (Sereno et al. 2011; Baker
& Trodden 2017; Collett & Bacon 2017; Fan et al. 2017; Liao
et al. 2017; Cao et al. 2019; Li et al. 2019b; Hannuksela et al.
2020). Indeed, for example, the lensed GWs may be a promising
means for us to constrain cosmological parameters, such as the
Hubble constant H0, by accurately measuring the time delay of
different strongly lensed GW images. Intriguingly, GWs are not as
vulnerable to microlensing as the EM waves from supernovae and
other explosive transients (see discussion in Oguri 2019). Systematic
errors due to microlensing can potentially play a significant role in
these measurements. Thus, wave optics suppression can be seen as
an advantage in this case.

Moreover, quadruply lensed GWs could be used to localize the
host galaxy of lensed waves by matching the GW image properties
with the lensed galaxy systems found in the direction of the GW in an
EM follow-up (Hannuksela et al. 2020). Microlensing could induce

a significant error on the lensing time delay and magnification,
hampering the match between the image properties (magnifications,
time delays) found in the EM and the GW channels. Our work
suggests that these localization studies may suffer from stellar
microlensing in the common astrophysical scenarios to a much
lesser degree, which may spell improvements for these localization
studies. Subsequently, microlensing may pose less of a problem in
measuring H0 through methods based on the distance-ladder or the
time-delay distance. Additional work is still needed to investigate
more complex microlensing scenarios, such as fields of microlenses
near the saddle point macroimage (type-II image). Nevertheless, our
results are very promising.

Finally, our results illustrate the mass ranges for which wave optics
effect becomes significant. As shown in Fig. 5, both the magnitude
and argument of the amplification factor deviate significantly from
the geometric optics model even at a microlens mass of 30 M�. In
Appendix A, we show that the validity of the geometrical optics
approximation depends at least on the mass of the lens and the
frequency range in question, and the approximation might be good
enough for LIGO detections for microlenses of mass m � 300 M�.

4.2 Non-minimum macroimages

In this paper, we focused on the amplification factors of microlenses
near the macromodel minimum point (a type-I image) of the time
delay function. This is for computational simplicity, as only the area
immediately surrounding the minimum contributes to the diffraction
integral around the macroimage time delay.

However, for a type-II images (saddle points), the regions of the
lens plane with time delay td(�ξ, �η) ∈ [tim − τ, tim + τ ] correspond
to thin strips centring around the contour lines td(�ξ, �η) = tim. As
the macroimage is a saddle point, such a contour line can have an
arbitrary length that depends on the lens model. In SIS lensing with
typical galactic masses, the relevant contours at the saddle point will
be vast, making the calculation of equation (6) very computationally
expensive. It has been shown in Diego et al. (2019) that microlensing
around type-II images have qualitative differences from that around
type-I ones. We will develop methods to tackle type-II images of
general lens configurations in future work.

5 C O N C L U S I O N S

We have shown that a wave optics treatment of the full lens model
is required for stellar-mass microlensing on a galactic macromodel.
Due to diffraction effects, microlensing is suppressed, making the
contributions by stellar lenses of mass ∼1 M� small regardless of
their proximity to the macrolensed GW beams. This allows for more
accurate measurements of the magnification and time delay of lensed
GW images and better confidence in localization studies. On the flip
side, we might require third-generation detectors to use GW lensing
to probe objects of masses O(1 M�). Future work will include the
cases of microlensing near type-II macroimages.
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A P P E N D I X A : AC C U R AC Y O F T H E
GEOMETRI CAL OPTI CS A PPROX I MATIO N

It has generally been accepted that the geometrical optics limit
approximates the exact results better for higher frequencies f and
higher (micro)lens masses m. In Fig. A1, we compare the full
wave optics calculation (the solid lines) and geometrical optics
approximate (the dashed lines) of the amplification factor F for
the set-up in Fig. 3 but with m = 100 M�. Comparing Figs 4 and
A1, we see that the geometrical optics approximation approaches
the wave optics calculations at a lower frequency for the more
massive case m = 100 M�. More explicitly, we can quantify the
error of the geometrical optics limit by taking the norm of the

Figure A1. Same as Fig. 4, but with a microlens mass of m = 100 M�
instead. There is still a clear mismatch between the geometrical and wave
optics limits for f � 102 Hz.
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Figure A2. Deviation between the wave optics and geometrical optics
results of the amplification factor for m ∈ {1, 30, 100, 300, 500} M�. The
shaded region corresponds to |Fwave − Fgeom|/√μ < 0.1. The curves for
m ∈ {300, 500} M� lie within this region for the most sensitive frequency
range f ∼ O(102 Hz) of LIGO.

difference between the wave optics amplification factor Fwave and the
geometrical optics amplification factor Fgeom. In Fig. A2 we plot the
results for m ∈ {1, 30, 100, 300, 500} M� (normalized by

√
μ). For

m ∈ {300, 500} M�, the normalized error in the geometrical optics
approximation is <0.1 for most of the frequency range sensitive for
LIGO, meaning that the approximation might be good enough for
m � 300 M� depending on the accuracy required.
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