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The detection of gravitational waves from core-collapse supernova (CCSN) explosions is a challenging
task, yet to be achieved, in which it is key the connection between multiple messengers, including neutrinos
and electromagnetic signals. In this work, we present a method for detecting these kind of signals based on
machine learning techniques. We tested its robustness by injecting signals in the real noise data taken by the
Advanced LIGO-Virgo network during the second observing run, O2. We trained a newly developed Mini-
Inception Resnet neural network using time-frequency images corresponding to injections of simulated
phenomenological signals, which mimic the waveforms obtained in 3D numerical simulations of CCSNe.
With this algorithm we were able to identify signals from both our phenomenological template bank and
from actual numerical 3D simulations of CCSNe. We computed the detection efficiency versus the source
distance, obtaining that, for signal to noise ratio higher than 15, the detection efficiency is 70% at a false
alarm rate lower than 5%. We notice also that, in the case of the O2 run, it would have been possible to
detect signals emitted at 1 kpc of distance, while lowering down the efficiency to 60%, the event distance
reaches values up to 14 kpc.
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I. INTRODUCTION

The recent discovery of gravitational waves and high-
energy cosmic neutrinos marked the beginning of a new era
of the multimessenger astronomy. These new messengers,
along with electromagnetic radiation and cosmic rays, give
new insights into the most extreme energetic cosmic events.
Among them supernovae explosion is one of the challeng-
ing targets of this new astronomical approach.
The advanced generation of gravitational wave detectors

has proved their capacity of detecting gravitational waves
(GWs) from astrophysical processes. While gravitational
waves have been detected from mergers of binary black
holes and binary neutron stars, core collapse supernovae
(CCSN) have not been detected yet and they still represent
a puzzle to solve. We had confirmation of the basic CCSN
theory through the detection of MeV neutrinos from the
SN1987A [1]: the collapse of a massive star’s core is driven
by the release of gravitational energy and the vast majority

of this energy is realized in neutrinos. However, the details
of the mechanism of the explosion are still an open question
and the astronomical community is trying to disentangle
the supernova explosion mechanism with intense studies.
Massive stars ðM > 8 M⊙Þ spend most of their lives

burning hydrogen into helium, which settles in the core
and, when temperatures increase sufficiently, burns into
heavier nuclei until iron is reached. The resulting iron core
is supported by electron degeneracy pressure. When the
core reaches the Chandrasekhar mass, pressure cannot
support its own weight anymore and collapses. The
collapse of the inner core is stopped abruptly when nuclear
saturation density is reached at the center and the inner core
bounces back. Shortly after the core bounce neutrino
emission carries away energy from the postshock layer.
In the present models of the neutrino driven supernovae
explosions, the intense hydrodynamic mass motion has to
play a significant role in the energy transfer by the neutrino
flux to the medium behind the stagnating core-bounce
shock, reviving the outward shock motion and thus
initiates the SN explosion. Because of the weak coupling
of neutrinos in the region of this energy deposition, in
the hydrodynamic models of the explosions a large variety
of physical ingredients are needed [2,3]. This so-called
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neutrino driven mechanism [4] is the dominant theory to
explain CCSN explosions in slowly rotating progenitors.
Observationally only∼1% of the events shows signatures of
fast rotation (broad-lined type Ic SNe [5] or long GRBs [6]),
therefore neutrino-driven explosions are likely the most
common type of CCSN andwewill focus this work on those.
In a supernova explosion, GWs are generated in the inner

core of the source, so that this messenger carries direct
information of the inner mechanism. The feasibility of this
scenario will be supported by the joint observation of
neutrino and gravitational wave emission from CCSN, by
assessing the correlation between neutrino emission and
collapsed core motion. Although the phenomenon is among
of the most energetic in the Universe, the amplitude of the
gravitational wave impinging on a detector on the Earth is
extremely faint. For a CCSN in the center of the Milky way,
a rare event, we could expect amplitudes of the metric
tensor perturbations ranging between 10−21–10−23. To
increase the detection probability we should increase the
volume of the universe to be explored and this can be
achieved both by decreasing the detector noise and using
better performing statistical algorithms.
The impossibility of using template-matching techniques

in this case, due to the complexity and stochasticity of the
waveform, makes it necessary to find new ways to improve
the detection statistics. Current efforts to search for gravi-
tational waves from CCSN include targeted searches for
observed nearby SNe [7,8] and all-sky generic searches for
bursts [9,10]. For the latter, two independent pipelines are
used: coherent Waveburst (cWB) [11] and omicron-LIB
(oLiB) [12], while BayesWave [13] is a followup of cWB
GW candidate events. These searches use algorithms based
on excess power to identify signals buried in the detector’s
noise without taking advantage of any specific feature of
CCSN waveform.
In Ref. [14] it was proposed to use machine learning

techniques to take advantage of the peculiarities of the
CCSN GW signal with the goal of increasing our
detection capability with respect to current methods. In
particular, the focus was on the monotonic raise of the
GW signal in the time-frequency plane due to the g-mode
excitation, which is the dominant feature present in the
GW spectrum. A similar approach has been followed
recently by Refs. [15–17] and in general there has been
an increasing interest in the GW community for the
use of machine learning methods (see Ref. [18] for a
review). Additionally, there has been an attempt of
using machine learning techniques for inference in this
context [19].
In this paper we follow a similar approach as in Ref. [14].

The main differences are
(i) the use of a more sophisticated convolutional neural

network (CNN);
(ii) the injection of simulated CCSN signals in real noise

of the three advanced detectors of the LIGO-Virgo

network, as measured during August 2017 (Ref. [14]
only considered Gaussian noise);

(iii) the improvement of the phenomenological templates
used during the training of the CNN network to
better match results from numerical simulations.

This paper is structured as follows. In Sec. II we describe
our newly improved phenomenological waveform tem-
plates that are used to train the CNN networks presented
in Sec. III. In Sec. IV we describe the detector noise data
used for the injections. Section V is devoted to the
procedure of the training of the CNN network and its
behavior. In Sec. VI we report the results, showing the
detection performance in terms of signal to noise ratio and
event distance. Results are discussed in Sec. VII and then
we conclude.

II. WAVEFORMS

To implement our search method, we have pursued an
approach similar to Ref. [14]. We consider a parametric
phenomenological waveform designed to match the most
common features observed in the numerical models of
CCSN. We focus our attention on the g-modes excitation,
the most common feature of all models developed so far to
describe the CCSN phenomena, responsible for the bulk of
the GW signal in the postbounce evolution of the proto-
neutron star. The measurement of the g-mode has been
proposed as way of inferring the properties of the proto-
neutron star; see, e.g., Refs. [20–23]. The aim of our
phenomenological template is to mimic the raising arch
observed in core-collapse simulations. To this end we will
consider a damped harmonic oscillator with a random
forcing, in which the frequency varies with time. The
phenomenological templates used in this work differ with
respect to the ones in Ref. [14] in two aspects: we use a
new and more flexible parametrization for the frequency
evolution and we use the distance as a parameter. The
phenomenological templates are calibrated to mimic the
features in the numerical simulations for nonrotating
progenitor stars by Refs. [20,24–31], named the waveform
calibration set, hereafter.
The new parametrization describes the evolution of the

frequency of the g-modes νðtÞ as a cubic spline interpo-
lation to a series of discrete points ðti; νiÞ, where ti
corresponds to postbounce times. Given the relatively
simple behavior of νðtÞ observed in numerical simulations,
it is sufficient to use three points with ti ¼ ð0; 1; 1.5Þ s. ν0,
ν1, and ν2 are then three new parameters of the template.
In Ref. [14] the amplitude of the generated waveforms

has been chosen according to the signal to noise ratio
(SNR). In this work we want to go one step further and use
distance as a parameter for the waveform generator. In
order to do that we relate the amplitude of the waveform
with its distance using the data in the waveform calibration
set. First, we have to measure for each simulation the
typical strain of the component of the signal related to
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g-modes. To this aim we apply a high pass filter at 200 Hz,
and then we use the section of the waveform containing
99% of the waveform energy to compute the root mean
square (rms) value. This procedure filters out signal power
at lower frequencies related to other effects different from g
modes (standing-shock accretion instabilities, prompt con-
vection, and large scale asymmetries due to shock propa-
gation) that are not considered for this work. Figure 1
shows distribution of the logarithm of the rms strain for 2D
and 3D simulations at 10 kpc. There are significant
differences between different simulations depending on
the dimensionality. The mean and standard deviation for
each distribution is log10hrms;2D ¼ −22.4� 0.42 and
log10 hrms;3D ¼ −23.1� 0.29, for the 2D and 3D cases,
respectively. Given that 3D simulations are more realistic
we use this normalization to generate our phenomenologi-
cal waveforms. As a consequence, we end up with template
amplitudes about a factor 5 smaller than typical 2D
simulations. In our waveform generator, the strain of each
of the waveforms is scaled to have a rms strain correspond-
ing to a random value following a normal distribution with
the mean and standard deviation of our normalization, and
scaled to the corresponging distance.
In synthesis, we have a waveform template that depends

on a set of 8 free parameters as reported in Table I. In this
table the quality factor Q refers to the damping of the
harmonic oscillator and the driver frequency, νdriver, to the
mean frequency of the random impulsive force acting on
the oscillator; see Ref. [14] for details. Additionally, for any
combination of those parameters we can generate multiple
realizations due to the random component in the excitation
of the harmonic oscillator and on the random value of the
rms strain. In order to be able to represent the variety of
g-mode features observed in the waveform calibration set,
we provide ranges covering all the possibilities (see
Table I). To this parameter space one has to add additional

restrictions to ensure the monotonicity (ν2 > ν1 > ν0) and
convexity (ðν1 − ν0Þ=ðt1 − t0Þ ≥ ðν2 − ν1Þ=ðt2 − t1Þ) of
νðtÞ, as seen in the numerical simulations. We have created
the waveform template bank that contains 504 different
realisations of this parameter set, for each distance, result-
ing of applying the restrictions above to the 9072 possible
combinations of the parameters in Table I. In this way we
obtain a reasonably dense covering of the parameter space,
an example of a phenomenological waveform is shown in
Fig. 2. The computational time of the generation of one
phenomenological waveform is about 6 ms. This makes it
possible to generate the large template banks necessary to
train the CNN, something which would be prohibitively
expensive using multidimensional numerical simulations.

FIG. 1. Number of simulations with a given g-mode root
mean square strain at 10 kpc (per logarithmic interval) for 2D
(blue bars) and 3D (red bars) simulations in the waveform
calibration set.

TABLE I. Parameter space of the phenomenological templates.
The second, third, and fourth columns indicate the range
minimum and maximum, respectively) for each parameter and
the spacing used in the sampling of the parameter space. For Q
and D we show the actual values instead. All times are
postbounce times.

Parameter min. max. Δ Description

tini [s] 0 0.2 0.1 Beginning of the waveform
tend [s] 0.2 1.5 0.1 End of the waveform
ν0 [Hz] 50 150 50 Frequency at bounce
ν1 [Hz] 1000 2000 500 Frequency at 1 s
ν2 [Hz] 1500 4500 1000 Frequency at 1.5 s
νdriver [Hz] 100 200 100 Driver frequency
Q (1,5,10) Quality factor
D [kpc] (1,2,5,10,15) Distance to source

FIG. 2. Example of a phenomenological waveform generated
by the waveform generator. The upper panel shows the strain as a
function of time and the lower panel the corresponding spectro-
gram. The white-dotted curve shows the time-frequency depend-
ency used to generate the waveform. White circles represent the
pairs ðti; νiÞ used to generate this curve.
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III. METHODOLOGY

A. Challenges and milestones of deep learning

The application of deep learning (DL) across science
domains is a booming enterprise. DL algorithms have been
very successful in a variety of tasks and in recent times it
has emerged as a new tool in the GW field. These methods
are able to perform analysis rapidly since all the intensive
computation is diverted to the one-time training stage,
which could make them orders of magnitude faster than a
conventional matched filtering technique. In addition, there
are no limitations in the size of the templates bank of GW
signals, and even more, it is preferable to use large datasets
to cover as deep a parameter space as possible. Because
of this fact they sparked the interest of several authors, who
have built deep-learning algorithms to demonstrate their
power on specific examples, including CCSN [15–17]
among others [18,32–34].
A CNN is a specialized kind of DL algorithm to process

data that has a known gridlike topology and can learn to
differentiate a variety of input types due to its ability for
pattern recognition [35]. In a CNN, the input is convolved
with a filter, which varies according to the characteristics of
the data since it can be learned by the network. The
computations are performed at each step, as the filter is slid
onto the input to compute the corresponding value in the
output feature map. Despite the automatic learning of the
filter, some parameters need to be tuned by hand.
The input of two-dimensional CNN are images, which

have 3 dimensions: width win, height hin, and depth din. The
width and the height are the image dimensions expressed in
pixels, while the depth represents the number of input
channels. Commonly, color images have 3 input channels
that correspond to colors red, green, and blue. Hence,
assume that an image with dimensions ðwin; hin; dinÞ is
convolved with f filters of size k × k. The amount of pixels
that the filter slides at each step is the stride s, while the
border of zeros added has a width p, called convolutional
padding. The result of the convolution yields the following
output:

0
B@

wout

hout
dout

1
CA ¼

0
B@

½winþp−k
s � þ 1

½hinþp−k
s � þ 1

f

1
CA: ð1Þ

We can also calculate the number of parameters
that we need to train for each layer (or level) as
ðk × k × din þ 1Þ × dout. It is interesting to note that each
layer of the CNN looks at different patterns since they can
learn different filters, depending on the information pro-
vided by the previous layers. Thus, these layers learn to
recognize visual patterns by first extracting local features
and subsequently combining them to obtain higher-level
representations.

With these ideas in mind, Ref. [14] provided clear
evidence that, under relatively simplified conditions, deep
CNN algorithms could be more efficient to extract GW
signals from CCSNe than the current methodology.
Therefore, the aim of this work is to improve the neural
network developed in Ref. [14], going deeper with con-
volutions to increase accuracy while keeping computa-
tional complexity at a reasonable cost.
The most straightforward way of improving the perfor-

mance of deep neural networks is by increasing their
size, which includes the number of layers and the number
of neurons per layer. Nonetheless, enlarging a network
implies training a larger amount of parameters and over-
complicating the model, which increases dramatically the
computational cost and reduces the generalization ability of
the network, i.e., the network would be prone to overfitting.
A fundamental way of solving these issues would be to
move from fully connected to sparsely connected archi-
tectures, as is discussed in Ref. [36]. This work presents a
sophisticated network topology construction, the so-called
inception network, that tries to approximate a sparse
structure. The architecture is composed by blocks of
convolutions, known as inception modules. The input of
each block is convolved in parallel by separate CNN layers
with different kernels, while the outputs of all the con-
volutions are stacked, as we can observe in Fig. 3. In such a
way, a sparse network is built without the necessity of
choosing a particular kernel size, but computational com-
plexity increases drastically. To prevent a high computa-
tional cost the authors introduce dimensionality reduction,
i.e., 1 × 1 convolutions that reduce the depth of the output.
If we convolve our input ðwin; hin; dinÞ with f filter 1 × 1,
stride s ¼ 1 and padding p ¼ 0, according to Eq. (1) the
output will be ðwin; hin; fÞ. Therefore, if f < din the depth
and the number of parameters will be greatly reduced. In
later releases of the inception network, the authors explore
further the idea of dimensionality reduction.

FIG. 3. Inception module with dimensionality reduction,
adapted from Ref. [36].
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Reference [37] explores other ways of factorizing con-
volutions in various settings, especially in order to increase
the computational efficiency of the solution without reduc-
ing the expressiveness of the block. First, the authors
examine the factorization into smaller convolutions, where
they claim that 5 × 5 convolution can be factorized into two
3 × 3 convolutions since the final output has the same
dimensions. Nonetheless, the main difference between both
processes are the number of parameters. A 5 × 5 convo-
lution needs ð52 × din þ 1Þ × dout parameters to train,
while for two 3 × 3 convolutions it is necessary to train
2 × ð32 × din þ 1Þ × dout parameters, which is less compu-
tationally expensive. Second, they analyze the factorization
into asymmetric convolutions, such that a convolution
c × c → c × 1 and 1 × c convolutions. Again, the outputs
of both processes have the same dimensionality but differ-
ent amount of trainable parameters, ðc2 × din þ 1Þ × dout >
2 × ðc × 1 × din þ 1Þ × dout. Therefore, in Ref. [37] the
authors factorize 5 × 5 convolutions into 3 × 3, which in
turn are factorized by 3 × 1 and 1 × 3 convolutions, to
lighten the computations.
Another obstacle of deeper networks is the degradation

problem, where with increasing depth, accuracy gets satu-
rated and then degrades rapidly. In Ref. [38] this problem is
approached by introducing a deep neural network, called the
residual network or ResNet. This network is able to learn the
identity function using shortcut connections that skip one or
more layers, which are also known as “skip connections.”
Therefore, the network is reminded every few layers how the
input was a few layers before, which can be translated in
learning the identity function with a simple demonstration.
Furthermore, in Ref. [38] different empirical results show
that the degradation problem is well addressed since
accuracy gains are obtained from increasing depth.
Because of the improvements in accuracy obtained with

the inception network and Resnet, in Ref. [39] they
explored the combination of these two brilliant architec-
tures, while factorization is discussed in Ref. [37]. As a
result, they developed, among others, an architecture called
Inception-Resnet v1 which is ∼90 layers deep. It was
demonstrated that the introduction of residual connections
lead to a dramatic improvement in the computational speed,
while it was shown that inception-Resnet algorithms were
able to achieve higher accuracies with less iterations of the
training phase.
Our problem is simpler than the task performed in

Ref. [39], since we only need to discriminate between
two classes: templates that contain a GWCCSN signal with
noise (event class) and templates that contain only noise
(noise class). Hence, the need to increase the complexity of
the CNN in our case is due to the loudness of the noise
power in the data, rather than the number of the different
classes. As a consequence, we have developed reduced
(“mini”) versions of Inception v3, Resnet, and Inception-
Resnet v1, using the original building blocks of those

networks, but adapting them to our needs and limiting the
number of layers to ≤30 to avoid overfitting.
During our investigation it was observed that inception

blocks did improve the performance with respect to a
vanilla CNNwith few skip connections, i.e., Mini Inception
v1 obtained a better performance than Mini Resnet.
From our results we concluded that skip connections
enhance the learning for very deep networks (>30 layers).
Furthermore, preliminary results of Mini Inception-Resnet
v1 showed that the use of factorized inception blocks
enlightened the computations while increasing the com-
plexity and the generalization ability of the network,
whereas skip connections enhanced the learning of the
network by reminding of the previous input. Because of its
high performance this last network was optimized and is
presented in this work.

B. Architecture of Mini Inception-Resnet

For the development of our Mini Inception-Resnet
network, including the model definition, the training and
the validation phases, we have used the Keras frameworks
[40], based on the TensorFlow backend [41]. We employ
the Adam optimizer [42] with a learning rate lr ¼ 0.001
and ϵ ¼ 10−6 to avoid divisions by zero when computing
backpropagation. The activation functions of all the
convolutional layers is the relu activation function,
ReLUðxÞ ¼ max ð0; xÞ. We employ a batch size of 64
because, for our particular task, it is a good trade-off
between computational complexity and performance.
Despite facing a classification problem with two classes,

the approach used in Ref. [14] is to employ the categorical
cross-entropy loss function with a softmax activation
function in the last layer, i.e., the problem is treated as a
multiclass classification problem with two classes. In this
work we simplify this approach by using a binary cross-
entropy instead and a sigmoid activation function for the
output, i.e., we address the problem as a classification
problem with a positive class (event class) and a negative
class (noise class). Therefore, the output of the network is a
probability vector θ, which contains the probabilities of the
template belonging to one class or another. The classifi-
cation task is then performed according to a predefined
threshold θ�, i.e., the template will be classified as event
class only if this probability overcomes θ�. It is important
to note that categorical cross-entropy and softmax activa-
tion function are the generalizations of binary cross-
entropy and a sigmoid activation function, respectively.
In Ref. [39], the authors build 5 different types of

blocks, namely, Inception-ResNet-A, Inception-ResNet-B,
Inception-ResNet-C, Reduction-A, and Reduction-B. The
modules Inception-ResNet-B and Reduction-B are the most
expensive blocks, since the convolutions inside them are
1 × 7, 7 × 1, and 7 × 7. Hence, we discard these modules to
implement the reduced version of this algorithm. At the
same time, we shrink the amount of parameters of our
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network by interspersing Inception-Resnet modules with
Reduction-A blocks (Fig. 4).
The Inception-ResNet-A block (see Fig. 5) is equivalent

to the inception module shown in Fig. 3. It is interesting
to note that the max pooling layer is substituted by the
“shortcut connection,” and the 5 × 5 convolution is
factorized by two 3 × 3 convolution layers.
Moreover, Inception-ResNet-C block (see Fig. 6) is the

equivalent to the inception module without the 5 × 5
convolution layer. Note that the max pooling layer is again

replaced by the shortcut connection, and the 3 × 3 con-
volution is factorized by 1 × 3 and 3 × 1 convolution
layers. The module Reduction-A (see Fig. 7) shrinks the
number of parameters thanks a 3 × 3 max pooling layer.
Because of its deepness, the resulting Mini Inception-

Resnet architecture is much more flexible than the one
presented in Ref. [14]. As we have discussed previously,
increasing the number of layers might be counterproductive
and would drastically increase the computational complex-
ity of the network. Nonetheless, these two concerns are
solved with the incorporation of shortcut connections,
which allow the input not to be forgotten, and a factorized
gridlike architecture that alleviates the computational
complexity of the neural network, on top of avoiding
overfitting.

IV. DATA

The Advanced LIGO-Virgo detector network collected
data for three runs, during which more than 60 possible GW
events have been identified [43,44]. Almost all of them, if
confirmed, are associated with the coalescence of binary
systems with the peculiar chirp shape of the signal. This
feature is used to extract the signal from the detector noise
adopting a matched filter approach. In the case of CCSN,
data must be selected and processes using different algo-
rithms. To enhance the detection probability and reduce the
false alarm rate, the proposed method implies to select data
in a time window around trigger times given by the neutrino

FIG. 4. The overall schema of the Mini Inception-Resnet
network. For the detailed modules, please refer to Figs. 5, 6,
and 7.

FIG. 5. The schema for Inception-ResNet-A, adapted from
Ref. [39].

FIG. 6. The schema for Inception-ResNet-C, adapted from
Ref. [39].

FIG. 7. The schema for Reduction-A, adapted from Ref. [39].
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observatories and take advantage of common GW features
predicted by CCSN numerical simulations.
To assess the robustness of our method, we selected data

from the second observing run of the Advanced GW
detectors, without relying on any neutrino information.
In particular, we chose a stretch of real data even containing
glitches, taken during August 2017, when Virgo joined the
run [45]. The period includes about 15 days of coincidence
time among the three detectors and we used this dataset to
generate about 2 years of time-shift data to train and test the
neural network as noise class.
To build images for our neural network algorithm we

use the internal features of cWB algorithm.1 cWB is used
by the LIGO and Virgo Collaborations for the GWs search
that uses minimal assumptions of the expected signal. It
measures the energy excesses over the detector noise in the
time-frequency domain and combines these excesses coher-
ently among the various detectors of the network [9,10]. It
is used in both the low latency mode [46] and in triggered
searches for CCSN [7,8]. In our work we used this software
tool to compute the Wavelet transform, on the base of
which the images of 256 × 64 pixels are built covering the
frequency band from 0 to 2048 Hz and a time range of 2 s.
Because the gravitational-wave signal is embedded in noise
and difficult to extract, in Ref. [14] a technique to visually
enhance the coincidences among all the interferometers of
the network has been developed. The method consists in
using primary colors for the spectrograms of each detector:
red (R) for LIGO-Hanford, green (G) for LIGO-Livingston,
and blue (B) for Virgo.
The main results in this work present some differences

with respect to Ref. [14]: we incorporate the information of
the source distance; we cover a larger parameter space with
our phenomenological waveforms; we consider real data
from the second observing run, we do not anymore build
images based on cWB selective information. The idea is to
use the neural network as a follow-up of multimessenger
information. We define the starting time of each image
every 2 s, echoing the choice done in Ref. [14]. The images
containing the central time of injected signals are consid-
ered as the event class, instead of the ones without signals
that are the noise class. The injected signal is expected
to be about 600–700 ms in duration, drawn everywhere in
the image, with a small probability to be between two
consecutive images. Such images are used for the training
in any case, therefore the network can recognize also a
partial signature of the event.
We first compare the new architecture of the neural

network using, for the training and validation, the same
data set of Ref. [14] (Sec. IVA). To tune our CNN we train
the algorithm with the new phenomenological templates

injected in the real noise (Sec. IV B). Finally we test the
network with injections of phenomenological waveforms
(Sec. IV C) and waveforms from CCSN numerical simu-
lations (Sec. IV D).

A. Previous set

In Ref. [14], phenomenological supernova signals were
injected in Gaussian noise simulating the final expected
sensitivity of Advanced LIGO and Virgo detectors. Signals
were injected at fixed network SNR, and did not include
any information about source distance. This set was
constructed using the information given by the cWB
algorithm and, unlike in the following datasets, only using
events passing the first stage of cWB analysis. This set
contains about 10 000 images with signals for 11 different
SNR ranging from 8 to 40 and the same amount with only
noise, 75% of the signals are used to train the network and
25% for validation.

B. Training set

The training set for CCSN signals has been constructed
injecting waveforms at fixed distances: 0.2, 0.4, 1, 2, and
3 kpc. For this purpose, we have used the waveform
template bank described in Sec. II injecting, for each
distance, of the order of 70 000 waveforms, with random
sky localization. 75% of the set is used in the actual training
while the remaining 25% is used for validation. The upper
distance has been chosen according to the requested
minimal SNR of the injected signals, in which the trace
of the CCSN signal is distinguishable from the noise in the
image passed to neural network.

C. Blind set

In the blind set we injected a new ensemble of about
2 60 000 simulated signals, generated by the phenomeno-
logical templates described in Sec. II. In this case distance
is chosen in a uniform distribution between 0.2 and 15 kpc,
position in the sky are randomly chosen. This set is used to
quantify the detection efficiency and to test the network. It
is not involved in the training or validation procedure. The
set is bigger than the training set, to maintain enough
statistic for all the distances.

D. Test set

For the final test we perform injections using CCSN
waveforms from numerical simulations found in the liter-
ature. In particularwe focuson3Dsimulations of nonrotating
progenitors representative of the neutrino drivenmechanism.
The selection test set, hereafter, see Table II, is performed
based on the realism of the computed simulations in terms of
neutrino transport and equation of state and on the com-
pleteness of the GW signal.2 The selection includes models

1cWB home page, https://gwburst.gitlab.io/; public reposito-
ries, https://gitlab.com/gwburst/public documentation, https://
gwburst.gitlab.io/documentation/latest/html/index.html.

2Some of the models in the literature compute less than 100 ms
after bounce or have a poor sampling rate.
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with a variety of mass progenitors and features in the
GW spectrum, and coincides with the choice for ongoing
SN searches by the LIGO-Virgo-KAGRA collaboration.
Except for model L15, none of the models coincide with
the models selected for the waveform calibration set
used in Sec. II. With this choice the injected waveforms
are in practice completely uncorrelated to any informa-
tion we have used to train the CNN network. The
procedure is similar to the one used for the blind set
of the previous test: we injected about 65 000 waveforms
uniformly in distance and sky directions, from 100 pc
to 15 kpc.

V. TRAINING METHODOLOGY

In this section we describe how we convert training
images into categorical data for the identification of CCSN
signatures in Gaussian and real noise, to solve our binary
image classification task.
As in Ref. [14], we train the network using curriculum

learning, where we start training with the easiest datasets,
and then gradually the task difficulty is increased. We note
that, although our new template bank is constructed using
a series of fixed distances, the SNR follows, for each of
these distances, a statistical distribution resulting from the
random process used to generate the waveforms (see
Sec. II). In practice, instead of using the distance, we
define data as a set of templates that have SNRs in a fixed
range. In this way, the difficulty of the datasets increases
with decreasing SNR. It is important to note that because
we use this methodology to improve the learning of the

network, it is key to obtain a high performance when
learning easy examples at high SNR, to be able to capture
the hard examples later on. The datasets are balanced, so
that 50% of the templates belong to the event class and 50%
to the noise class. Because the present network is much
larger than that in Ref. [14] where we had balanced training
and validation sets, here we use 75% of the data for training
and 25% for testing.
In Ref. [14] we measured the performance of the

neural network in terms of the efficiency ηCNN and the
false alarm rate FARCNN , which are equivalent to the true
positive rate and the false discovery rate, respectively. Here
we will redefine these variables in terms of the confusion
matrix (see Table III), but the definitions are completely
equivalent.

ηCNN ¼ correctly classified signals
all the signals at CNN input

¼ TP
TPþ FN

; ð2Þ

FARCNN ¼ misclassified noise
all classified events

¼ FP
FPþ TP

: ð3Þ

In this research we also measure the performance of our
network with the receiver operating characteristic curve
(ROC curve), which is created by plotting the true positive
rate (TPR) agains the false positive rate (FPR). Note that
the definition of ηCNN coincides with TPR, but FPR is
defined as

FPR ¼ FP
FPþ TN

ð4Þ

VI. RESULTS

A. Waveform injection in Gaussian noise:
Comparison with previous results

In this subsection we will describe the experiments
performed with injections in Gaussian noise. To train
and validate the network, we use the dataset described
in Sec. IVA, composed of waveforms ranging in the
interval SNR ¼ ½8; 40�. This choice allows for a direct
comparison with the results in Ref. [14] and it helps to
improve the present software architecture.
To improve the performance of Ref. [14] it is necessary

to minimize FARCNN while maximizing ηCNN . Therefore,
from Eq. (3) we wish to minimize FP instead of FN, i.e.,
we need to penalize the algorithm when it classifies noise
class as event class. To be able to penalize the algorithm
we implement weighted binary cross-entropy, where we
assign weight w to the noise class and weight 1 to the event
class. We vary this parameter between w ¼ ½1.0; 3.5�,
where w ¼ 1 would be equivalent to a normal binary
cross-entropy and w ¼ 3 would mean that it is 3 times
more important to correctly classify the noise class rather

TABLE II. List of models of the test set used in the injections.
MZAMS corresponds to the progenitor mass at zero-age in the
main sequence (ZAMS). Unless commented, all progenitors have
solar metallicity, result in explosions and their GW signal do not
show signatures of the standing-shock accretion instability
(SASI).

Model
name Reference MZAMS Comments

s9 [47] 9 M⊙ Low mass progenitor, low
GW amplitude.

s25 [47] 25 M⊙ Develops SASI.
s13 [47] 13 M⊙ Non-exploding model.
s18 [48] 18 M⊙ Higher GW amplitude.
he3.5 [48] � � � Ultra-stripped progenitor

(3.5 M⊙ He core).
SFHx [49] 15 M⊙ Non-exploding model.

Develops SASI.
mesa20 [50] 20 M⊙
mesa20_pert [50] 20 M⊙ Same as mesa20, but

including perturbations.
s11.2 [31] 11.2 M⊙
L15 [28] 15 M⊙ Simplified neutrino

treatment.
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than the event class. Nonetheless, in this work we only
present the results of w ¼ f1.0; 2.0g to be able to compare
the best working case (w ¼ 2.0), with the base case
(w ¼ 1.0).
Moreover, the algorithm returns the probability θ that a

certain template belongs to the event class. We want this
probability to be high without dramatically decreasing
ηCNN . Therefore, we define the decision threshold θ� in
range ½50%; 85%�; when a given probability exceeds
this value, we will classify the template as an event,
otherwise, it is classified as noise. Therefore, we perform
different experiments to tune w and θ. In Figs. 8 and 9,
we obtain ηCNN and FARCNN for w ¼ f1; 2g and
θ ¼ f50%; 65%; 85%g.
In Fig. 8, we report the high performance of low θ in

terms of ηCNN , paying the prize in even relative high
FARCNN . The opposite behavior occurs for high θ. To be
able to improve the probability distribution θ, we will
penalize the loss function withw ¼ 2.0. This means that the
impact of correctly classifying noise templates is twice
higher than correctly classifying event templates, as we
show in Fig. 9 where the FARCNN is minimized with
respect to Fig. 8 with some cost in ηCNN .
Notice that wwill penalize the learning, so if the network

is learning correctly the results would be enhanced, but it
will lead to poor results otherwise. This is evident when we
compare the results shown in Figs. 8 and 9: if we increase w
we have less performance in terms of ηCNN , with little
gains in FARCNN . To have a clearer comparison between

Figs. 8, 9 and the results from Ref. [14], we plot the
validation results of Mini Inception Resnet for w ¼ f1; 2g
in Fig. 10.
Since we want to obtain a trade-off between ηCNN and

FARCNN , we settle w ¼ 2.0 and θ� ¼ 65%.
The main improvement of our network with respect to

Ref. [14] is the minimization of FARCNN towards ∼0% for
the SNR in range [15, 20], while maintaining the same
ηCNN . We note also that the poor performance at low SNR
is due to the fact that this architecture is susceptible to the
strong presence of Gaussian white noise, as is pointed
out in Ref. [51]. Hence, the role of the decision threshold
θ� ¼ 65% is twofold. On one hand, with this decision
threshold we obtain max ðFARCNNÞ ≈ 4% for low SNR
which is the upper limit obtained by the previous paper
[14]. On the other hand, θ� ¼ 65% provides us with a
fair trade-off between ηCNN and FARCNN as we have
discussed before.
In terms of speed performance, in a GPU Nvidia Quadro

P5000 it takes 1 h 18 min to train, validate, and test Mini

TABLE III. Confusion matrix for event and noise class.

Actual class

Event Noise

Predicted
class

Event True positive (TP) False positive (FP)
Noise False negative (FN) True negative (TN)

FIG. 8. ηCNN (solid lines) and FARCNN (dashed lines) for
different SNRs computed during the validation process for w ¼
1.0 and different θ� thresholds.

FIG. 9. ηCNN (solid lines) and FARCNN (dashed lines) for
different SNRs computed during the validation process for w ¼
2.0 and different θ� thresholds.

FIG. 10. ηCNN (solid lines) and FARCNN (dashed lines) as
functions of SNR computed during the validation process of
w ¼ f1; 2g, with θ� ¼ 65%, and [14], where θ� ¼ 50%.
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Inception Resnet for this particular dataset with 5 epochs for
each SNR. A great part of this time is employed in training
the neural network, so with bigger datasets the computa-
tional time will increase. Nonetheless, once the network is
trained, the prediction is performed within minutes.

B. Waveform injections in real detector noise:
Training and validation

In this section we describe the experiments performed
using the training set (Sec. IV B). This set contains injected
phenomenological signals in real noise in the interval
SNR ¼ ½1; 232�. As before, for each dataset at a given
SNR we calculate FARCNN and ηCNN during the validation.
We also vary the penalization parameter w ∈ f1; 2g and as
in the previous section we choose w ¼ 2 and the decision
threshold θ� ¼ 65%.
For the network to learn correctly the input, it is crucial

to perform a smooth “curriculum learning.” Because of the
difficulty of the dataset, we separate the event templates
into bins of size N and noise templates are packed
accordingly. We performed the training for different N
but a better trade-off between ηCNN and FARCNN was
observed for N ¼ 30000, which provided a smoother
transition between SNR bins. Therefore, in Fig. 11 we
show the results of the validation process having fixed
N ¼ 30000, θ� ¼ 65%, and w ¼ 2.
In Fig. 11 we note that ηCNN is around 98% above

SNR ¼ 32 and below this value ηCNN starts decreasing.
Instead, FARCNN is around 0% but increases for SNR
values below 20. For lower SNR values of the network the
method tends to show more and more an erratic behavior
that we foresee due to the statistical structure of the
real noise.
This procedure is rather fast. In terms of speed perfor-

mance, in a GPU Nvidia Quadro P5000 it takes 2h 21 min
for Mini Inception-Resnet to train and validate for this
particular dataset, but only 10 min to predict the blind set

and test set. The time increase in the training phase is due to
the fact that now we set the number of epochs to 10 instead
of 5 to guarantee a better convergence of the network’s
trainable parameters.

C. Waveform injections in real detector noise:
Final results

In this section we present the results obtained when we
used the network trained and optimized in the previous
section on the data of the blind set (Sec. IV C) and the test
set (Sec. IV D). The network has not been trained by any of
the images of these two sets so they can be used for the final
test of the performance of the network. The signals injected
in the blind set correspond to waveforms generated by the
same procedure used to generate the training set, while the
injections in the test set correspond to realistic CCSN
waveforms.
In Fig. 12, we report the histogram of the injections in

the real noise. Such plot shows the robustness of the
decision threshold θ� ¼ 65% even in the case of real
detector noise.
In Fig. 13 we plot the ROC curve and we calculate the

area under the curve (AUC).
We note the high performance of the test set

(AUC ¼ 0.79) compared with that obtained for the blind
set (AUC ¼ 0.90). Even if we only trained our network
with phenomenological waveforms from the template bank
described in Sec. II, such waveforms mimic the behavior of
the test set described in IV D, which is the main reason
behind such good results.
Another interesting graph that shows the resemblance

between the blind set and test set is Fig. 14. Here we plot
ηCNN as a function of the distance.

FIG. 11. ηCNN (solid line) and FARCNN (dashed line) for SNR
in range [1, 232], for w ¼ 2.0 and θ� ¼ 65%. These results are
obtained from validating on 25% of the data that we have not
trained on.

FIG. 12. Histogram of real detector noise and injections in real
time as a function of the probabilities predicted by Mini Inception
Resnet. The vertical line represents the chosen decision threshold
θ� ¼ 65%. Given the counts of the ith bin ci and its width bi, we
define the probability density as ci=ð

P
N
i ci × biÞ, where N is the

total number of bins of the histogram.
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As we can see, at short distances there is a difference in
efficiency between blind set and test set of ≈10%, but when
we increase the distance, they seem to reach a lower limit at
ηCNN ≈ 60%. In Fig. 15 we also plotted ηCNN against SNR.

For low SNR, the difference in efficiency ηCNN in the
two case, blind set and test set, is around 10%, while for
SNR>15 we obtain the same efficiency. These final results
assess the robustness of this method to detect CCSN signals
embedded in the real detector noise.

VII. DISCUSSION

The search of CCSN signals is carried by a software
algorithm whose architecture trains 98997 parameters,
significantly more than the 3210 parameters taken into
account in Ref. [14]. This implies an increase of the
network complexity by a factor of 30. We trained the
Mini Inception-Resnet using of about 26 000 images
corresponding to spectrograms of phenomenological wave-
forms injected in real noise of the three detector network
LIGO-Virgo during the second observation run, and similar
number of images without signals. We used the curriculum
learning with decreasing value of the SNR for the training.
The significant differences with Ref. [14] are

(i) the increase of the training images by a factor ∼10,
(ii) the extended variability of the injected waveforms,

to mimic the behavior of the results from the CCSN
numerical simulations,

(iii) the novel waveform parametrization for the fre-
quency evolution,

(iv) the use of real detector noise instead of Gaussian
one,

(v) images are not anymore built by applying a SNR
threshold by cWB.

First, to compare the efficiency of this new method with
previous results, we run the Mini Inception-Resnet network
with the same setup as in Ref. [14]. The validation step
shows that, with the appropriate choice of parameters
(θ� ¼ 65% and w ¼ 2) we minimize the FARCNN toward
∼0% almost maintaining the same efficiency ηCNN for the
range of SNR ¼ ½15; 20�.
Then, we tested this method by injecting signals in the

noise data of the LIGO-Virgo network taken during the
second observation run. We have applied this analysis
method for detecting two classes of signals. The first one is
a blind set composed of the same phenomenological
templates having the same analytical structure of those
signals of the training set. The second one is based on 3D
realistic numerical CCSNe simulations available in the
literature.
In the validation process, carried on using the dedicated

25% of the training set, where signals are uniformly
distributed in distance between 0.2 and 15 kpc, we obtain
about 80% efficiency with a false alarm rate of about 5%
for SNR ¼ 16, see Fig. 10.
Applying the same method trained with phenomeno-

logical templates to the case of realistic GW signals from
3D numerical simulations (test set) we still obtain a reliable
performance. Overall, when compared to the case of the
blind set, the efficiency at SNR > 15, is very similar while

FIG. 14. ηCNN as a function of the distance computed during the
testing process for fw;N; θ�g ¼ f2; 30000; 65%g.

FIG. 15. ηCNN as a function of SNR computed during the
testing process for fw;N; θ�g ¼ f2; 30000; 65%g.

FIG. 13. Performance of our neural network for the blind set
and the test set for fw;N; θ�g ¼ f2; 30000; 65%g. AUC is
presented in the legend of the plot.
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at lower SNR we observe a reduction of less than 10%, see
Fig. 14. The satisfying agreement is an indication that our
phenomenological template generator is mimicking the
main features observed in realistic CCSN and, therefore,
it supports the choice of this kind of templates to train
CNNs. Moreover, the high performance of the network for
both testing datasets implies a high generalization ability,
meaning that the network is not prone to overfitting.
However, the decrease in efficiency at low SNR could
be an indication that some of the features of CCSN are not
perfectly captured by the templates, for example, the
variability of the waveform amplitude for the duration of
the signal (we consider that is in average constant) or the
presence of low frequency components associated with
SASI. Future work could incorporate these two features to
improve the performance of the search method.
One of the advantages of the newly developed phenom-

enological templates is that they contain information about
the distance to the source, which allows us to study the
performance of the blind set with respect to the distance and
to compare directly with the results of the test set. With
respect to the distance, the efficiency shows in general a
quick drop at ∼2 kpc followed by a gentle decline, falling
down to about 60% at 15 kpc. This contrasts very much
with the behavior with respect to SNR that shows a step
decline at SNR ∼ 15. The reason for this difference is
that, at a given distance, there is some variability in the
amplitude of the possible waveforms, which tends to
smooth out the results over a range of distances. We expect
that at larger distances the efficiency will keep decreasing
towards zero, but we did not see this effect within the
limited set of distances used in this work. The performance
with the realistic test set is somewhat worse than with the
blind set, but the difference in efficiency is never larger than
10%, in agreement with the results obtained as a function
of SNR.
We note that this results have been obtained using

realistic waveforms from 3D models, which are, in general,
about a factor 5 weaker than those of 2D simulations.
It is also important to notice that we have used real O2
noise, so the results are expected to be better for the
current detector configuration, which recently ended O3,
and will improve further once the final sensitivity of LIGO,
Virgo, and KAGRA detectors will be achieved. These two
factors make it difficult to compare our results with those
obtained in other papers using injections based on 2D
simulations, simulated Gaussian noise and/or ultimate
detector sensitivity [15–17].
In fact, for the case of neutrino driven explosions in

Ref. [15] they use a set of waveforms from 55 numerical
simulations (mixed 2D and 3D) to perform about 105

injections with random orientations in the sky in the range
0.2–200 kpc. Using a LIGO-Virgo-KAGRA network with
optimal sensitivity, they obtain an efficiency of 50% at
4 kpc with false alarm probability of 0.1%. These results

are similar to our work, however, it is difficult to do a closer
comparison since they are using an interferometer network
with ultimate sensitivity.
The work of Ref. [16] focused on using genetic pro-

gramming algorithms to improve the significance of a
single interferometer detection. For that purpose they
trained the algorithm making injections of CCSN wave-
forms in real detector noise from the LIGO-Virgo first
observing run (O1). For the case of neutrino driven
explosions the algorithm is trained using waveforms from
2D and 3D CCSN simulations (8 in total) injected at
different locations in the sky and distances in the range
1–7.5 kpc (about 15 000 injections in total). Similarly to
Ref. [14], they employed the cWB pipeline. For waveforms
from 3D simulations (not the same as ours) they get an
efficiency of 86% at 3.16 kpc with 12% of false negatives.
Again, the results are in the bulk of our numbers but it is
difficult to compare, since they are using a network with
lower sensitivity than ours and the injections that are
comparable to ours amount only to 4 different signals.
Their results show that it is possible to have a detection with
high significance (3σ) for signals with an SNR as low as 10.
However, it should be noted that, in their case, the same
waveforms were used for training and for testing.
Finally, Ref. [17] utilized a CNN trained using 5 wave-

forms from neutrino-driven CCSN 3D simulations injected
in Gaussian noise considering the spectral sensitivity curve
of Virgo during the third observing run (O3). Training was
performed with about 25 000 random injections in the sky
at distances between 0.01 and 10 kpc. To test the robustness
of the method they also accounted for short duration
detector noise transients, known as glitches, in simulated
data. When using different waveforms for training and
testing, they obtain an efficiency of ∼90% of all triggers
with a ∼10% false alarms (all distances in the range). When
using the same waveforms for testing and training they
observe a drop in the efficiency, below 50%, for values of
the SNR in the range 11–16, depending on the waveform.
Despite the differences with earlier works, overall our

results seem consistent with other machine learning
approaches. The drop of the efficiency at SNR ∼ 10–15
is common for all algorithms (except for Ref. [15] that does
not show this metric), which makes one wonder if there is
some intrinsic limitation of machine learning algorithms
that prevents getting closer to SNR ∼ 8, the typical value
for optimal template-matching algorithms. It could also be
possible that more complex architecture or training sets
with different pixel resolutions might improve the effi-
ciency of this method. These are aspects that we would like
to explore in the future.

VIII. CONCLUSION

We developed a new machine learning algorithm to
further improve the detectability of a GW signal from
CCSN, following the path traced in Ref. [14]. Regarding
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the applicability of our method for the GW detection, we
have considered a detection threshold, θ� ¼ 65%, that
results in a FAR of about 5% at SNR ∼ 15 (or a FPR of
∼10% at TPR ¼ 50%). These values could be appropriate
for an observation with high confidence of an event in
coincidence with a neutrino signal. In those cases the
neutrino signal is expected to be bounded within 20 s
during the initial SNEWS alert [52] and very likely well
within 1 s in the detailed analysis of high sensitivity
neutrino detectors such as Super-K [53]. If the method
were to be used in all-sky nontriggered searches, the range
of values of FAR needed to make a detection with high
confidence could be achieved by using values of θ very
close to 100%. The efficiency of the algorithm in this
regime is something that could be explored in future work.
These results are very promising for future detections of

GWs from CCSN, because the network allows us to
observe more than half of the events within 15 kpc.
This work has multiple possible extensions. At present

the entire data processing is rather fast: The training and
validation phase, performed in the real detector noise, is
done in 2 h and 21 min using a GPU Nvidia Quadro P5000,
while predicting the test set takes 3 ms for each 2 s long
image. Given that we take advantage of the Keras/
TensorFlow framework, widely used within the machine
learning community, it should be easy to increase the
complexity of our current CNN or to incorporate the latest
developments in machine learning algorithms, with a
reasonable increase of the computational cost of the signal
search. Furthermore, we could increase the number of
classes to be able to detect other GW sources with the
same architecture. In the future, the new algorithm pre-
sented here should be compared under realistic conditions

with the methods currently in use within the LIGO-Virgo
Collaboration to evaluate the real advantages of the method.
In particular, CNNs have the advantage that, once the
training phase is performed, they have a very low computa-
tional cost, which could provide an advantage in the design
of new low-latency detection pipelines for CCSN.
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