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The genes of the leukocyte immunoglobulin-like receptor (LILR) family map to the
leukocyte receptor complex (LRC) on chromosome 19, and consist of both activating
and inhibiting entities. These receptors are often involved in regulating immune responses,
and are considered to play a role in health and disease. The human LILR region and
evolutionary equivalents in some rodent and bird species have been thoroughly
characterized. In non-human primates, the LILR region is annotated, but a thorough
comparison between humans and non-human primates has not yet been documented.
Therefore, it was decided to undertake a comprehensive comparison of the human and
non-human primate LILR region at the genomic level. During primate evolution the
organization of the LILR region remained largely conserved. One major exception,
however, is provided by the common marmoset, a New World monkey species, which
seems to feature a substantial contraction of the number of LILR genes in both the
centromeric and the telomeric region. Furthermore, genomic analysis revealed that the
killer-cell immunoglobulin-like receptor gene KIR3DX1, which maps in the LILR region,
features one copy in humans and great ape species. A second copy, which might have
been introduced by a duplication event, was observed in the lesser apes, and in Old and
New World monkey species. The highly conserved gene organization allowed us to
standardize the LILR gene nomenclature for non-human primate species, and implies that
most of the receptors encoded by these genes likely fulfill highly preserved functions.
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INTRODUCTION

The human immunoglobulin superfamily (IgSF) represents more
than 700 cell-surface and secreted receptors, which are
characterized by the presence of one or more immunoglobulin-
like (Ig) domains (1). Several IgSF subfamilies are encoded within
the leukocyte receptor complex (LRC), which spans approximately
900 kb on chromosome 19 (Figure 1A) (2). This complex encodes
the leukocyte immunoglobulin-like receptors (LILR), the killer
immunoglobulin-like receptors (KIR) and the leukocyte-
associated immunoglobulin-like receptors (LAIR) (Figure 1B)
(3–5). Other immune-related genes embedded in the LRC are
those encoding for the natural cytotoxicity receptor 1 (NCR1) and
the Fc-alpha receptor (FcAR) (2, 6). The extended LRC region is
located centromeric of the LRC, and was formed by multiple
duplication events, eventually resulting in the formation of
additional gene families, including sialic acid-binding
immunoglobulin-type lectins (SIGLEC), neonatal Fc receptor
(FcGRT), the carcinoembryonic antigen-related cell adhesion
molecule (CEACAM/CD66), and pregnancy-specific glycoprotein
(PSG) (6). Although the extended LRC region encompasses
multiple IgSF subfamilies, only the genomic organization of the
LRC region, encoding the LILR, KIR, and LAIR gene families, has
been reviewed on a regular basis (2, 6, 7).
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The KIR region, located on the telomeric side of the LILR gene
cluster, is known to be highly dynamic, and, at population level,
haplotypes may show considerable diversity in gene architecture
and allelic content (5, 8, 9). The diversity of the KIR region is a
result of substantial homologous recombination and unequal
crossing-over events (10–13). The KIR receptors are expressed
by NK cells and subsets of T lymphocytes, and play a key role in
immune regulation by interacting with polymorphic epitopes on
major histocompatibility complex (MHC) class I molecules,
designated in humans as human leukocyte antigen (HLA) (14–
17). Furthermore, KIR receptors play a pivotal role in the
recognition and elimination of cells lacking the expression of
MHC class I molecules (18, 19).

The LAIR gene family consists of two genes that encode a cell-
surface (LAIR1) and a soluble (LAIR2) receptor, and are located
in the center of the LILR region (6, 20, 21). The expression of
LAIR is broadly confined to peripheral blood lymphocytes,
including NK cells, T and B lymphocytes, neutrophils,
monocytes, and macrophages (21–25). LAIR1 and LAIR2 gene
products are both collagen-binding receptors, and play a key role
in controlling tissue inflammation (24, 26–29).

In contrary to the KIR gene family, the organization of the
LILR gene content is conserved in humans (9, 30). A
conventional LILR haplotype contains 13 genes, 11 of which
A

B

C

FIGURE 1 | Human LRC region and genomic organization of the LILR gene family. (A) The LRC region located on chromosome 19q13.4. (B) LILR (blue bars),
KIR (red bars), and LAIR (green bars) gene families located within the LRC. The remaining genes located in the LRC are indicated by grey bars. (C) The LILR region
(~ 497 kb), schematic illustration of the division of the 11 functional LILR genes on the centromeric (~154 kb) and telomeric side of the region (~211 kb) as well as
the pseudogenes LILRP1 and LILRP2 located on the telomeric side. LILRA3 is light blue to indicate the null haplotype observed in humans. The regions are
separated by a central region of approximately 58 kb that includes the genes TTYH1, LENG8, LENG9, and CDC42EP5. Between the centromeric and central region,
and the central and telomeric region, a stretch of 45 and 29 kb, respectively, is observed. Representing different genes, the arrows are aligned in such a way that
they point in the direction of transcription.
October 2021 | Volume 12 | Article 716289

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Storm et al. Genomic Organization Primate LILR Region
encode a functional protein, and two are classified as
pseudogenes (Figure 1C) (31). The human LILRP1 gene has
an apparent 5’ acceptor splice site in front of the exon encoding
the third Ig-like domain, resulting in a pseudo-exon, while
LILRP2 became inactivated due to a 7 bp insert as evidenced
of a tandem repeat in the exon encoding the second Ig-like
domain (32).

LILR gene products are widely expressed by immune cell
populations of both myeloid and lymphoid lineages, and several
members interact with HLA class I molecules (33–35). In
contrast to the KIR receptors, LILR receptors do not interact
with polymorphic epitopes on the alpha 1 and 2 domains of HLA
molecules, but engage with conserved epitopes on the alpha 3
domain and/or with the highly conserved b2-microglobulin
structure (a component of the MHC class I dimer) (33). The
KIR region has been extensively studied in different primate
species, including humans. The LILR region, on the other hand,
has only been thoroughly studied in humans, and its equivalents
in mice, chicken, and other vertebrates such as cattle and
pigs (36–43). In this communication, we aim to provide a
comprehensive overview of the LILR region in humans and
of the available genomic data in different non-human
primate species.
THE EMERGENCE OF
LILR-LIKE RECEPTORS

Information regarding the ancestry of any genetic system can be
recovered by comparing its presence or absence in different
Frontiers in Immunology | www.frontiersin.org 3
indicator species that once shared common ancestors.
Approximately 65 million years ago (mya), the first ancestral
mammalian species started to roam the earth. As mentioned
previously, the presence of a LILR system has been documented
in humans and several other species, including mouse and cattle.
These data suggest that the emergence of the LILR cluster
predates radiation of the mammalian lineage (Figure 2) (44).

Paired Ig-like receptors (PIR) are encountered in mice, and the
genomic architecture of the PIR region is comparable to the LILR
region in humans (39, 45). The order Artiodactyla, which includes
cattle, goat, and pig, emerged approximately 65 mya, with cattle
and goat diversifying approximately 20 mya. The LILR region in
pigs turned out to be similar to the human equivalent, but the
region itself shows an expansion of the LILR genes in the
centromeric region (41). In goats, the LILR region exhibits a
contraction in the number of genes as compared to its human
counterpart (42–44). These observations highlight not only that
the LILR system is subject to purifying selection but also that
specialization may have emerged during vertebrate evolution.

The marsupials radiated approximately 100 mya and is
represented here by the opossum (Figure 2). In opossums, 124
Ig-like domains with similarity to KIR and LILR Ig-like domains
were identified (46). The avian lineage, which emerged
approximately 300 mya, provided the next major informative
event (Figure 2) (44). The chicken immunoglobulin-like
receptor (CHIR) gene system is characterized by massive
expansion and diversification in comparison to the human LILR
region. Nonetheless, the highly similar structures found in both
humans and chicken suggest that the emergence of the LILR
cluster might date from before the avian lineage (40, 47, 48).
FIGURE 2 | Simplified phylogenetic scheme of vertebrate evolution.
October 2021 | Volume 12 | Article 716289

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Storm et al. Genomic Organization Primate LILR Region
The genes encoding for CHIR and marsupial Ig-like domains
have, however, a different transcriptional direction as compared to
their evolutionary equivalents in mammalian species.

Data obtained from the class of ray-finned fish (Actinopterygii)
evidenced that the origin of the LILR system might even date back
to approximately 450 mya (Figure 2). Ray-finned fish comprise
the largest class of vertebrates (~25000 marine and fresh-water
species) including, for instance, channel catfish (Ictalurus
punctatus) (44). In this species, leukocyte immune-type
receptors (LITR) have been identified, and have an evident
orthologous relationship to human LILR receptors (49).

In summary, there is compelling evidence that a LILR-like
system, in a way similar to that of the MHC complex, emerged
before the major expansion of the vertebrate lineage,
approximately 450 mya. Some of the LILR receptors have
MHC class I molecules as their ligands (Table S1), and it is
tempting to speculate that both systems co-evolved and had an
impact on each other. During vertebrate evolution, the LILR
complex was subjected to a modest number of expansions and
contractions. Some of the receptors may have experienced
purifying selection, and therefore still interact with their
original ligands. Alternatively, certain LILR receptors of
different species may have diverged and specialized, and
thereby acquired novel functions. Aside from that, pathogens
may have evolved strategies to misuse these types of receptors:
for instance, to invade the cell or escape the immune system. An
ancestral KIR gene existed approximately 50-100 mya, but the
primate KIR gene cluster arose approximately 30-45 mya (3, 5).
The most parsimonious explanation is that initially the presence/
absence of MHC class I was scanned by LILR receptors that can
diagnose the presence of conserved epitopes. Later, when the
Frontiers in Immunology | www.frontiersin.org 4
MHC complex expanded and staged extensive allelic
polymorphism, more sophisticated systems – like the KIR gene
system – arose, which are able to scan for the presence of
polymorphic epitopes on MHC class I molecules.
GENOMIC ARCHITECTURE OF
THE LILR REGION AND ITS
EVOLUTION IN HUMANS

Several receptors encoded within the LRC region, including FcAR,
NCR1, and various LILR and KIR receptors, function as activating
receptors (34, 50–52). The complexity of the immune response
and the need to control dangerous immune reactions probably
drove the onset of a large arsenal of inhibiting receptors.

It has been proposed that an ancestral gene encoding Ig
domains acted as progenitor for LILR, KIR, and other immune-
related genes such as FcAR and NCR1 (2). This progenitor gene
presumably encoded an activating receptor, as it likely featured a
positively charged arginine residue in the transmembrane region,
because the evolutionarily old FCAR, NCR1, and LILR genes
share this feature. The progenitor of LILRA1 may have acted as
the founder gene of the LILR cluster (2, 53, 54). Several LILRA1
duplication events shaped the first primitive LILR organization,
which contained LAIR2, LILRA1, LILRB1, and LILRP1
(Figure 3A). This event was followed by a relatively stable
period, after which time the region duplicated entirely, and
was reversely incorporated into the genome, forming the
centromeric LILR region. The genes in this region are LILRB3,
LILRB2, LILRA3, and LAIR1 (Figure 3B). Several autonomous
A
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FIGURE 3 | Schematic illustration of the evolution of the human LILR region. (A) As indicated by the curved arrows, the first primitive LILR region arose due to
independent LILRA1 duplication events, resulting in the emergence of LAIR2, LILRB1, and LILRP1 (depicted by grey arrows). LILRA1 is denoted as the ancestral
LILR gene and is therefore depicted by a black arrow. Genes encoding for receptors interacting with HLA epitopes are underlined. (B) The primitive LILR region was
subsequently duplicated and reversely incorporated into the genome, shaping the centromeric region containing LILRB3, LILRB2, LILRA3, and LAIR1, depicted by
blue arrows. (C) Next, several independent duplication events occurred in both regions, as indicated by the curved arrows, modeling both a centromeric and a
telomeric make-up. Representing the different genes, the arrows are aligned in such a way that they point in the direction of transcription. The colored arrows
highlight the different autonomous tandem duplication events. The location of KIR3DX1 gene is indicated (red arrow). The interception with two vertical lines indicates
the central region.
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tandem duplication events occurred within the centromeric and
telomeric region, and gave rise to the contemporary organization
of the LILR region in humans, as illustrated in Figure 3C (2, 9,
31). The human LILR region (~ 497 kb) is divided into the
centromeric region (~ 154 kb) and the telomeric region (~ 211
kb). Notably, KIR3DX1, previously known as KIR3DL0 or
LENG12, is embedded between LAIR2 and LILRA2 in the
telomeric region (Figure 3C). It represents an independent
ancestral and highly conserved KIR lineage with orthologs in
human, chimpanzee, gorilla, rhesus monkey, and common
marmoset (55). As the KIR gene family arose later in evolution
than the LILR gene family, it is likely that the KIR3DX1 gene
became inserted into the telomeric section after duplication of
the entire LILR region.

In humans, most gene products of the telomeric LILR region
interact with HLA class I ligands, except for receptor LILRB4. Gene
products of the centromeric region, however, may dock on HLA
and non-HLA molecules (Figure 3C) (35). This suggests that the
LILR receptors encoded in the telomeric region maintained more or
less the original functions, whereas receptors encoded by genes in
the centromeric region further specialized and acquired novel
functions. Receptor LILRB2, for example, mapping in the
centromeric region, mainly docks on HLA molecules but may
also interact with angiopoietin-like (ANGPTL) molecules, b-
amyloid, and Nogo-66, suggesting that this receptor gained new
functions as well (35, 56–59). The genomic architecture of the LILR
region in humans appears to be relatively stable, and the most
common haplotype organization found world-wide is as presented
in Figure 3C. However, a haplotype with a relative high frequency
lacking LILRA3 as result of a 6.7 kb deletion is also known (referred
to as a null haplotype) (60–63). The centromeric LILR region has an
average gene distance of 18 kb (8 kb – 27 kb) between the stop
codon and the start codon of adjacent genes, while the telomeric
region has an average gene distance of 23 kb (9 kb – 30 kb) (Figure
S1A). When the UTR regions are included, the centromeric region
has an average gene distance of 16 kb (7 kb – 26 kb), while the
telomeric region has an average gene distance of 18 kb (9 kb – 27
kb) (Figure S1B). Some LILR genes have long intergenic regions: for
example, the stretch between LILRB1 and LILRB4. Despite these
relatively long intergenic regions, no recombination events in the
LILR region have been recorded (3, 7). This is in sharp contrast to
the situation for the neighboring KIR region, which is characterized
as being highly dynamic and with variable gene numbers and gene
combinations, and consists of highly polymorphic genes (5, 12, 64).
LILR GENE NOMENCLATURE IN HUMANS
AND NON-HUMAN PRIMATES

In the past, the terms Ig-like transcripts (ILT), leukocyte Ig-like
receptors (LIR), and CD85 were different names used to denote
LILR genes in humans (65, 66). In 2004, however, the LILR gene
nomenclature was officially standardized and accepted by the
HUGO Gene Nomenclature Committee (HGNC) (33, 67). LILR
family members are categorized as activating (termed LILRA1 to
LILRA6) or inhibitory receptors (termed LILRB1 to LILRB5).
Frontiers in Immunology | www.frontiersin.org 5
For LILR in non-human primates (NHP), the human LILR gene
nomenclature is loosely followed by annotation algorithms such as
those from NCBI and ENSEMBL. Due to the high levels of
similarity between the different LILR genes, difficulties may arise
in phasing the genomic regions, and therefore it may accidently
happen that orthologous genes are not given the corresponding
name. To root out such errors, we have selected the latest and
freely accessible genomes, which were sequenced by the latest next
generation platforms (Table S2). The LILR region including RPS9
and KIR was extracted from NCBI genome data viewer, and, if
available, ENSEMBL database. In Table S3, the genes located
within the LILR region are listed, and the coordinates of these
genes on the reference genome are indicated with specific LOC
numbers. Available genomic DNA and mRNA sequences were
downloaded from the NCBI database and compared to the human
LILR sequences using Geneious Prime 2020.2.4. Non-human
primate genomic DNA sequences were aligned using the
MUSCLE method (standard settings, eight iterations) against
human genomic sequences. However, different intron length
resulted in alignment issues. Therefore, all available primate
mRNA sequences were aligned, and a phylogenetic tree analysis
was performed using the Geneious tree builder (Jukes-Cantor,
Neigbor-Joining, no outgroup, resample tree, bootstrap, random
seed = 724,574, number of replicates = 100, create consensus tree,
support threshold % = 50). Each cluster with mRNA sequences
was aligned and compared to identify transcripts with a potentially
incorrect gene name. These sequences were then aligned against
the relevant human reference transcripts to sort out whether the
genes were annotated correctly or incorrectly in the public
database. Next the genomic gene location was defined in
relation to the human LILR region, before adjusting the gene
nomenclature in the relevant non-human primate species. Using
this approach, we have explored all available LILR data on different
nonhuman primate species: namely, chimpanzee, bonobo, gorilla,
orangutan, gibbon, rhesus and cynomolgus macaque, and
common marmoset, and have introduced a naming of LILR
genes based on the orthologous positions in the human genome,
which was taken as a reference (Tables S2, S3). Moreover, during
this study we have reannotated several of the LOC ID’s that
originally comprised two gene entities (Table S3). For the
chimpanzee and bonobo, we have renamed an additional
LILRA2-like gene probably encoding for a bona fide gene
product (LOC 100612450 and LOC117974252, respectively).
This gene locates in the centromeric region between LILRB2 and
LILRA3, and shares 99.3% similarity between the two species.
Comparative sequence analysis revealed that the domain and
intermediate intron sequences of this additional LILRA2-like
gene are approximately 94% similar to the adjacent LILRB2
gene. The sequence encoding the domains is comparable with
LILRB2, while the stem and transmembrane region are more
similar to activating LILR receptors; therefore, we have designated
this gene as LILRAB2. Although, the stem and transmembrane
region is comparable to activating LILR receptors, we were not
able to pinpoint which recombination event(s) generated the
LILRAB2 gene. There is no evidence for the presence of an
additional, maybe disrupted, human LILRA2 gene in the
October 2021 | Volume 12 | Article 716289
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centromeric region. The reannotation of LOC109024105 for
gorilla, LOC100432416 for orangutan, and LOC718403 for
rhesus macaque revealed evidence for the presence of a
LILRAB2 gene in these species (Table S3). For gorilla, however,
the transcription status for this gene is questionable because the
current genomic sequence shows a mutation in the transcription
initiation site. At this stage we are not certain about the presence
or absence of the LILRB2 and LILRAB2 genes in the cynomolgus
macaque genome. Additionally, in the non-human primates that
we have analyzed LILR genes that might encode for activating
receptors are located at the same position as human pseudogenes
LILRP1 and LILRP2. These activating genes belong to a divergent
lineage of the ancestral LILRA1 gene (Figure 3C), and we have
denoted them as LILRA7 and LILRA8 in non-human primates (2).

The KIR nomenclature has already been standardized in
humans and NHP (68–70). In humans and great and lesser
apes, the first KIR gene located at the boundary of the KIR and
LILR region is KIR3DL3. In rhesus and cynomolgus macaques,
KIR3DL20, which was previously designated as KIR3DL2, is
located at the corresponding position and depicted in relevant
schemes (12, 71). Furthermore, the LAIR gene family consists of
two genes that are easily differentiated, and therefore no
nomenclature conflicts are reported.
COMPARATIVE GENOMICS OF THE LILR
REGION IN GREAT AND LESSER APES

The chimpanzee and bonobo, gorilla, and orangutan are all great
ape species, and they shared a common ancestor with the human
lineage approximately 4.5-6, 6-8, and 12-16 mya, respectively
Frontiers in Immunology | www.frontiersin.org 6
(Figure 4) (72–75). For the purpose of this communication, the
reference genomes of the chimpanzee, bonobo, western lowland
gorilla, and Sumatran orangutan were extracted from the NCBI
database and their LILR gene organization was thoroughly
compared and analyzed using both genomic and mRNA
sequences with the human LILR region as reference (Tables
S2, S3) (76, 77).

In great apes, the LILR gene region is fixed on chromosome
19, and includes the flanking genes RPS9 and KIR3DL3. In
general, the human (~ 600 kb) and chimpanzee LILR region
(~ 605 kb) are highly similar (Figure 5), and orthologs have been
reported; they include LILRA2, LILRA4, LILRB4, and LILRB5
(78, 79). In contrast to humans, however, the chimpanzee LILR
region contains a LILRAB2 gene in the centromeric region. At
the same position as the human pseudogenes LILRP1 and -P2,
two genes are identified in chimpanzees, named LILRA7 and
LILRA8 (Figure 5). These sequences are, however, defined as low
quality and modeled from the genome sequence (Table S3), and
thus might feature inactive genes, comparable to the human
pseudogene tandem. In the bonobo, the LILR organization
(~ 546 kb) is similar to that of the chimpanzee, but the
transcription status of several genes, including LILRA6, LILRB5
and LILRA7, could not be confirmed. The LILRA8 gene
appears to be non-functional, as sequence analysis revealed two
frameshift mutations that result in the introduction of a
premature stop codon, and, therefore, this gene is considered to
be a pseudogene (Figure 5 and Table S3). The centromeric LILR
region in gorillas seems to lack LILRB5, while the transcription
status for four other LILR genes is uncertain. The start codon of
LILRA1, for instance, seems to be interrupted by an insertion.
Inactive orthologs of the LILRA7 and LILRA8 genes are identified
in the telomeric region. The inactivation of LILRA7 is a result of a
FIGURE 4 | Evolutionary relationship between the different primate species.
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mutation in the exon encoding the first Ig-like domain, resulting
in a premature stop codon, while LILRA8 became non-functional
due to a similar inactivation event as described in human LILRP2.
The orangutan centromeric region lacks a LILRA6 gene, while
LILRB5, LILRA3, LILRA7 and LILRA8 are defined as low quality
sequences (Figure 5 and Table S3). In the telomeric region near
the haplotype center, three additional KIR genes are annotated in
the orangutan reference genome, and a FCAR gene could be
identified adjacent to them. This region (~ 240 kb) most likely
represents an assembly error introduced by the shotgun approach
Frontiers in Immunology | www.frontiersin.org 7
that is used to sequence the reference genome and is therefore not
illustrated in Figure 5.

The hylobatidae – also known as the lesser apes, and to which
the Northern white-cheeked gibbon belongs – shared a common
ancestor with humans approximately 18-20 mya (Figure 4) (75).
The gibbon LILR region is located on chromosome 10, and
comprises approximately 494 kb. As compared to other primate
species, gibbons frequently feature chromosome re-
arrangements (80, 81). In the gibbon, part of an ancestral
chromosome 19 was re-arranged and incorporated in a
A

B

D

C

FIGURE 5 | Genomic organization of the LILR region in different primate species. Genomic organization of the LILR region in human and great apes (A), lesser
ape (B), and representatives of the OWM (C) and NWM (D) species (Table S2). Each different LILR gene present on a genome is indicated by a colored arrow
aligned in such a way that it points in the direction of transcription: RPS9 (purple), LILRA (light blue), LILRB (dark blue), LAIR (green), KIR (red), FCAR (yellow),
and pseudogenes or genes indicated by NCBI as non-functional, such as bonobo LILRA8 (grey). The arrows with only a gray outside line represent genes that are
indicated by NCBI with low quality protein (Table S3), and the expression status of these genes is currently uncertain. The sequence of cynomolgus macaque LILRA1,
found after reannotation of LILRA2 (Table S3), shows only a correct alignment up to the exon encoding for the third domain structure, and most likely represents a
pseudogene. The absence of LILRB2 and LILRAB2 on the reference genome of cynomolgus macaques might be an assembly error, as a stretch of approximately
35 kb is identified in this region, which contains an unrelated gene (Table S3). The central region is indicated by an interception with two vertical lines. The dotted line
(common marmoset) illustrates a large genomic region between LILRB4 and the FCAR lacking annotation. The genes indicated with an asterisk have been renamed
using standardized LILR gene nomenclature (previously used names are listed in Table S3), and particular of these genes were found by re-annotation (Table S3).
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reversed form into chromosome 10 (81), which probably resulted
in shifting the LILR region toward chromosome 10. In
comparison to humans, the centromeric region in the gibbon
lacks LILRB5, while LILRA7 is absent in the telomeric region
(Figure 5). For five LILR genes, the transcription status is
uncertain. Moreover, a second KIR3DX gene is observed
within the telomeric region, and has been denoted as KIR3DX2.
GENOMIC ORGANIZATION OF
THE LILR REGION IN OLD AND
NEW WORLD MONKEYS

The cercopithecidae, also known as Old World monkeys
(OWM), shared a common ancestor with humans
approximately 25-33 mya (Figure 4) (75, 82). The majority of
the OWM species can be found in Africa. Most macaque species,
however, inhabit various parts of Asia, and one species, the
Barbary macaque, lives on the island of Gibraltar in Europe as
well as in sections of Northern Africa. Genomes of the Indian-
origin rhesus macaque and cynomolgus macaque originating
from Tinjil island were available at the NCBI Genome data
viewer and Ensembl release 103 and 102, respectively, and were
manually explored and annotated for the LILR region make-up
(Tables S2, S3) (76, 77). Both the NCBI and Ensembl developed
their own unique automatic annotation pipeline, which may
result in minor differences between the assemblies. The LILR
region of rhesus and cynomolgus macaques is located on
chromosome 19, and spans approximately 557 and 566 kb,
respectively. In rhesus macaques and humans, the make-up of
the centromeric LILR region appears to be highly similar. The
rhesus macaque genome seems to contain, however, a LILRAB2
gene that might be an orthologue of the chimpanzee and bonobo
LILRAB2, while it is not certain whether this gene, as well as
LILRB2, is present or absent in cynomolgus macaques (Figure 5).
The LILRA7 and LILRA8 genes, located at the same position as the
equivalent pseudogenes in humans, seem to encode bona-fide
activating receptors in macaques, as in-frame transcripts are
expected to be transcribed from these genes. In rhesus macaques
the transcription status of LILRB3, LILRA6, and LILRB2 is
uncertain. In cynomolgus macaques, the LILRA1 gene may be
disrupted by an insertion subsequent to exon 5, which indicates a
secreted gene product or an inactive copy, and the transcription
status of LILRB3 is uncertain. In addition, like found in the gibbon,
also the telomeric region of macaques contains an additional gene
that belongs to the KIRDX lineage, termed KIR3DX2.

Platyrrhini, or New World monkeys (NWM), shared with
humans a common ancestor that lived approximately 27-52 mya
(Figure 4) (75, 82). The common marmoset is likely the most
prominently studied NWM organism; its genome is available at
the NCBI Genome data viewer, and it was manually explored
and annotated for the LILR region (Table S2, S3) (76, 77). The
common marmoset LILR region is located on chromosome 22,
and spans approximately 365 kb. Comparative karyotyping of
the chromosomes of common marmosets and humans showed
the homology of marmoset chromosome 22 with human
Frontiers in Immunology | www.frontiersin.org 8
chromosome 19 (83). In marmosets, both LILR regions,
centromere and telomere, show a substantial contraction with
regard to the number of genes as compared to the human LILR
region (Figure 5). The centromeric region contains LILRB3,
LILRB5 (which became a pseudogene), LILRB2, and LILRA4. In
the telomeric region LILRA1, LILRB1, and LILRB4 were
encountered. LILRB2 and LILRB4 are, however, defined as low
quality sequence. Furthermore, a tandem of KIR3DX1 and
KIR3DX2 genes was observed. Adjacent to LILRB4, an
unannotated stretch of ~ 280 kb is identified, which does not
contain a LILR or KIR equivalent. This might reflect an error in
the assembly of the reference genome.

To the best of our knowledge, we present here the first
comprehensive comparison of the LILR region in different
primate species. We should note, however, that for most non-
human primate species only one or a few complete genomes have
been sequenced. The LILR organization in this study is based on
a single reference genome per species. Although the LILR cluster
seems to be an ancient and conserved set of genes, subtle
variation in the gene organization might exist per individual or
per population, as is demonstrated for the null haplotype in
humans that lacks the presence of LILRA3. Moreover, the
transcription status of several genes was also not confirmed on
the current reference genomes and requires additional
characterization studies before definitive conclusions can
be drawn.
A KIR3DX GENE TANDEM IN
LESSER APES AND OLD AND
NEW WORLD MONKEYS

In primates and cattle, two distinct KIR gene clades, KIR3DL and
KIR3DX, have been defined (55, 84). The KIR3DL lineage is
duplicated, and generated a KIR gene family in simian primates,
while the KIR3DX lineage in cattle was subjected to expansion,
resulting in a functional KIR gene family (84, 85). It is
hypothesized that an ancestra l KIR gene emerged
approximately 135 mya before radiation of the placental
mammal resulting in KIR3DL and KIR3DX daughter genes. In
primates, the KIR3DX gene is embedded within the LILR region,
while the KIR gene family is located telomeric of the LILR gene
family (Figure 1). In humans, KIR3DX1 is regarded as a
pseudogene due to a 7 bp deletion at the end of exon 5,
resulting in the introduction of a premature stop codon in
exon 7, and the frameshift was confirmed in 86 healthy
individuals (55). Although human KIR3DX1 is classified as a
pseudogene by HUGO, KIR3DX1 cDNA could be cloned from a
human NK cell line (NK-92), suggesting that transcription of the
gene may occur (55).

In the genomes of several NHP species analyzed, we observed
a second KIR3DX gene that most likely arose by an ancient
duplication event of KIR3DX1, and the sister gene has been
termed KIR3DX2 (Figures 5, 6). The NCBI database classifies the
KIR3DX2 as a protein coding gene, but it lacks the exons
encoding the transmembrane and signaling regions, and
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therefore may encode a secreted gene product (Figure 6B). In
marmoset, the two gene copies are arranged head-to-head
(Figure 5), and it is postulated that this orientation arose due
to a species-specific duplication event (55). However, we
observed two KIR3DX copies arranged head-to-tail in the
lesser apes and OWMs, suggesting that both gene entities
might already be present in a common ancestor with NWM
and remained conserved, while one of the KIR3DX genes was lost
during evolution of the human and great ape lineage. From this
perspective, the head-to-head arrangement in common
marmoset might be a genome assembly failure, and the
orientation should be head-to-tail as well. Additional genome
analysis must be performed to sort out if this arrangement is a
species-specific duplication event or an assembly failure. The
presence of two related KIR3DX genes is, however, not specific
for macaques residing in Asia, but can be found in the NCBI
database available genomes of olive baboon and green monkey as
well (data not shown), both of which inhabit Africa.

KIR3DX1 exon sequences are compared with chimpanzee
KIR3DX1 using Geneious Prime 2020.2.4, since the full-length
human KIR3DX1 transcripts would contain the 7 bp deletion,
and the chimpanzee is most closely related to humans (Table S4)
(86). Comparative analysis of the exons revealed a high level of
interspecies sequence similarity to chimpanzee KIR3DX1 for
gorilla (97.9%), orangutan (95.1%), gibbon (94.3%), rhesus
macaque (90.8%), and cynomolgus macaque (91.0%). In
contrast, KIR3DX1 in common marmoset is 68.4% similar to
chimpanzee KIR3DX1. Furthermore, the coding region of
KIR3DX1 in rhesus and cynomolgus macaque is 99.4% similar,
indicating that this gene is highly conservated in macaque
species. When introns are included in the sequence similarity
comparison, higher levels of diversity are determined. In
orangutans, for instance, the genomic KIR3DX1 sequence
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displays 83.5% similarity to chimpanzees, and the difference
are mainly explained by insertions and deletions in the introns.
The genomic sequence of chimpanzee KIR3DX1 is 76.6% and
78.7% similar to the sequences of rhesus and cynomolgus
macaques, respectively. These observations suggest a selective
pressure to largely conserve the KIR3DX1 exons, whereas the
introns might be more prone to diversification, which may
impact the regulation of expression levels and transcript
splicing. Overall, the KIR3DX1 coding sequence is highly
conserved between human, great apes, lesser apes, and OWM,
whereas the KIR3DX1 gene in NWM diverged during evolution.
The function of KIR3DX1 is still unknown. However, it has an
inhibitory potential due to the presence of two ITIM motifs in
the cytoplasmic tail (55). Full-length KIR3DX1 transcripts were
identified in peripheral blood mononuclear cells of rhesus
macaques, in addition to an isoform that lacked exon 5, but
quantification indicated low expression levels (55). To date, no
ligand for KIR3DX1 has been reported.

Comparing the sequences of KIR3DX2, up to exon 5 that
encodes the third extracellular Ig-like domain, more species-
specific variation is observed. Taking the rhesus macaque
sequence as most well-defined reference, the gibbon KIR3DX2
only shows 73.1% and 35.9% similarity at the exons and genomic
level, respectively. Cynomolgus macaques, which shares a
relatively close common ancestor with the rhesus macaques
approximately 1-3 mya, have almost an identical KIR3DX2
gene in the coding (99.9%) and genomic (99.5%) sequence
regions. In marmosets, the KIR3DX2 gene largely deviated at
the genomic DNA level, with 57.5% similarity to rhesus
macaques, whereas the exon sequences were more
conserved (80.4%).

The most likely explanation for an additional KIR3DX gene in
lesser apes, OWM and NWM is a duplication of KIR3DX1 in a
A

B

FIGURE 6 | Genomic organization of KIR3DX1 and KIR3DX2 genes in primates. Schematic illustration of the genomic organization of the chimpanzee KIR3DX1
gene that is representative for human, bonobo, gorilla, orangutan, gibbon, rhesus and cynomolgus macaque, and common marmoset (A), and of the KIR3DX2 gene
in gibbon and rhesus macaque, of which the latter is representative for cynomolgus macaque and common marmoset (B). Exons 1 and 2, encoding the leader
peptide (L), are depicted in orange; exons 3-5, encoding Ig-like domains (D), are in blue; exon 6, encoding the stem (S), is in green; exon 7, encoding the
transmembrane (TM) region, is in purple; and exons 8 and 9, encoding the cytoplasmic tail (C), are in grey. Even though the start codon of gibbon KIR3DX2 is
identified, the first three exons could not be defined, and are therefore represented by white boxes. The putative corresponding protein structures are schematically
depicted adjacent to the genomic organization.
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common ancestor that is lost during radiation towards human
and great apes. The KIR3DX2 sequence in gibbons is, however,
far from similar to KIR3DX1 in chimpanzees (59.4% on exons
and 40.6% on gDNA). In contrast, the coding regions of
KIR3DX2 in both macaque species and in the common
marmoset seem to be more conserved, with 83.7/83.8% and
85.7% sequence similarity to the coding sequence of KIR3DX1 in
chimpanzees, respectively. This substantiates an ancient
KIR3DX1 duplication event, which remained more conserved
in OWM, while the duplicated gene diverged during evolution
in gibbons.
LILR GENE FUNCTION IN HUMANS

In humans, LILR receptors are expressed both on myeloid and
lymphoid immune cells, including monocytes, B and T
lymphocytes, natural killer (NK) cells, neutrophils, and
dendritic cells (DC), and it is generally accepted that they
control a variety of immune responses and maintain
homeostasis (54, 59, 87, 88). Each LILR receptor is expressed
on a unique repertoire of cell populations (Table 1). Inhibitory
LILR receptors probably function as immune checkpoints by
screening and eliminating manipulated immune cells, which lack
HLA class I expression, as depicted in the “missing self”
hypothesis (19, 59, 107). For example, LILRB1 interaction with
MHC class I molecules may regulate cell phenotype and function
(108). Several immune checkpoint receptors are present in the
human immune system, including programmed cell death
protein-1 (PD-1). PD-1 is not a member of the IgSF
superfamily, but the intracellular signal transduction is equal to
inhibitory LILR receptors, resulting in negative regulation of the
immune system. Furthermore, the inhibitory receptor LILRB2
regulates neuronal functions such as axonal regeneration and
synaptic plasticity (57–59). Interaction between LILRB2 and
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ANGPTL molecules might play a role in angiogenesis, although
its precise role is at present poorly understood (56). Both LILRB1
and LILRB2 interact with HLA-G, a non-classical MHC class I
molecule, resulting in a dominant immunosuppressive effect that
plays a role in pregnancy as well as in transplant tolerance, infection,
and cancer (6, 109–111).

Activating and inhibitory LILR receptors consist of two or four
extracellular Ig-like domains (Figure 7A) (33). In addition, LILR
receptors are classified based on amino acid sequence similarity in
the ligand binding sites, distinguishing class I and II type receptors
(Table 1). Class I includes LILRA1, LILRA2, LILRA3, LILRB1, and
LILRB2, and interacts with classical and non-classical HLA class I
molecules (88). Class II includes LILRA4, LILRA5, LILRA6,
LILRB3, LILRB4, and LILRB5, and seems to have ligands other
than HLA molecules. An exception is formed by LILRB5, which
interacts with ANGPTL, but binding to HLA class I heavy chains
was recently reported as well (88, 113). As is known so far, class II
receptors appear to interact with one or two specific ligands, like
bone marrow stromal antigen 2 (BST2/CD317) and an activated
leukocyte cell adhesion molecule (ALCAM/CD166), while class I
receptors can interactwith a broader repertoire ofHLA-ligands (35,
88, 114–116). Caution should be exercised in this regard, however,
because the ligands of LILRA5, LILRA6, and LILRB3 are unknown
at present.

Activating LILR receptors do not possess a cytoplasmic tail
that has the capacity to transduce a signal and therefore associate
with the g-chain of Fc receptors via a positively charged arginine
residue in the transmembrane region of the LILRA receptor (114,
117). Immunoreceptor tyrosine-based activation motifs (ITAM)
located in the g-chain of Fc receptors are phosphorylated, and
activate downstream activation pathways (118). Inhibitory LILR
receptors have a cytoplasmic tail containing three or four
immunoreceptor tyrosine-based inhibitory motifs (ITIM),
which downregulate cell activation by recruiting phosphatases
of the Src kinase family (119–121). Phosphorylated ITIM motifs
TABLE 1 | Cell distribution and ligands of human LILR receptors.

Receptor Type Cell distribution Ligand Reference

LILRA1 Class I Monocytes, B-cells, mast cell progenitor Classical HLA class I (89, 90)
LILRA2 Class I Monocytes, macrophages, T-cells, NK cells, DC,

eosinophils, basophils, neutrophils, granulocytes, mast cell
progenitor

Microbially cleaved antibodies, soluble HLA class I
molecules

(90–94)

LILRA3 Class I Monocytes, B-cells, T-cells, NK cells, neutrophils HLA-C, HLA-G (62, 90, 94, 95)
LILRA4 Class II DC BST2 (96)
LILRA5 Class II Monocytes, neutrophils Unknown (94, 97)
LILRA6 Class II Monocytes Unknown (98)
LILRB1 Class I Monocytes, B-cells, T-cells, NK cells, DC, eosinophils,

neutrophils, mast cell progenitor
HLA class I (classical and non-classical), UL18,
S100A9, Staphylococcus aureus, Escherichia coli,
RIFIN

(65, 66, 89, 90, 94, 96,
99–101)

LILRB2 Class I Monocytes, macrophages, DC, eosinophils, neutrophils,
mast cell progenitor

HLA class I (classical and non-classical), ANGPTL,
CD1, nogo66, beta-amyloid

(89, 94, 102, 103)

LILRB3 Class II Monocytes, macrophages, DC, eosinophils, basophils,
neutrophils, granulocytes, mast cell progenitor

Unknown (89, 90, 93, 94, 98)

LILRB4 Class II Monocytes, macrophages, DC, mast cell progenitor,
plasmablast

ALCAM/CD166 (89, 90, 96, 101, 103–105)

LILRB5 Class II Monocytes, T-cells, NK cells, mast cells HLA-B27 free heavy chain, ANGPTL (90, 106)
October 2021 |
Cellular distribution on immune cells and corresponding ligands according to the literature. DC, dendritic cells; NK, natural killer cells; HLA, human leukocyte antigen; BST2, bone marrow
stromal cell antigen 2; RIFIN, repetitive interspersed family; ANGPTL, angiopoietin-like protein; and ALCAM, activated leukocyte cell adhesion molecule.
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serve as docking sites for other enzymes such as Src homology
region 2 domain-containingphosphatase-1 (SHP-1), Src homology
region 2 domain-containing phosphatase-2 (SHP-2), and Src
homology 2 domain containing inositol polyphosphate 5-
phosphatase 1 (SHIP), resulting in the negative regulation of
immune cell activation. The fine balance between activating and
inhibitory LILR receptors is necessary for the modulation of
immuneresponsesand themaintenanceof immunecell homeostasis.
LILR RECEPTORS IN
NON-HUMAN PRIMATES

To date, nine chimpanzee LILR genes have been thoroughly
characterized, of which eight seem to encode for a functional
Frontiers in Immunology | www.frontiersin.org 11
protein, seven with four Ig-like domains and one with two Ig-like
domains (78). As expected, the position of the cysteine residue
essential for disulfide bridge formation in the domains is
conserved between humans and chimpanzees. Comparable
with humans, the activating LILR receptors in chimpanzees
contain an arginine residue in the transmembrane region,
while the inhibitory LILR receptors in chimpanzees have a
cytoplasmic tail containing three or four ITIM motifs.

In rhesus macaques, LILR receptors comprise the same
characteristics as human LILR receptors, including two or four
Ig-like domains, the presence of a positively charged arginine
residue in the transmembrane region of activating LILR, and the
intracellular region of inhibitory LILR containing two or four
ITIM motifs (Figure 7B) (112).

As far as we know, ligand-binding studies have not been
conducted for chimpanzee and rhesus macaques. LILR/MHC
A

B

FIGURE 7 | Schematic illustration of the structure of LILR family members in human and rhesus macaque. A structural comparison between LILR family
members in humans (A) and rhesus macaques (B) (112). LILR receptors are classified based on the presence or absence of the transmembrane region and the
cytoplasmic tail. Activating receptors associate with the g-chain of Fc receptors, while the inhibitory receptors contain cytoplasmic immunoreceptor tyrosine-
based inhibition motifs. Based on the conserved nature of the LILRA receptors it is plausible that also in rhesus macaque these types of receptors associate
with FcRg, however, because this is not officially documented it is not illustrated in the figure. LILRA3 is a soluble receptor lacking the transmembrane region and
cytoplasmic tail. Ig-like domains are indicated by a domain structure containing disulfide bridges; transmembrane region is indicated by orange boxes including an R,
which refers to the presence of the positively charged arginine residue, for the activating LILR receptors and by green boxes for the inhibitory LILR receptors; Fc receptor
transmembrane by dark grey boxes containing an S; immunoreceptor tyrosine-based activation motifs by white boxes; and immunoreceptor tyrosine-based inhibition
motifs by light-grey boxes.
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dynamics was, however, studied recently in HIV infection in
humans and compared to an early SIV-infection model in
cynomolgus macaques (122). A monoclonal antibody specific
for the extracellular part of human LILRB2 showed cross-
reactivity with cynomolgus macaque cells. In humans and
cynomolgus macaques, the expression of LILRB2 and a
LILRB2-like protein, respectively, was shown on a similar
immune cell subset, which included monocytes, classical DC,
plasmacytoid DC, and polymorphonuclear leucocytes. Overall,
the data illustrated that during a SIV/HIV-infection the
cynomolgus macaques LILRB2-like protein seems to negatively
regulate the same immune cell population as human LILRB2. So
far, MHC class I is the only known ligand engaging with
cynomolgus macaque LILRB2.

Considering the conserved LILR function in humans, and the
structural similarities reported for chimpanzees and rhesus
macaques, it is tempting to speculate that NHP LILR receptors
engage with MHC equivalents of HLA ligands (45, 78, 112, 122).
ROLE OF HUMAN LILR RECEPTORS IN
HEALTH AND DISEASE

In healthy individuals and during pregnancy, the modulation of
immune activity is tightly regulated by a complex mechanism that
involves different members of the HLA family and multiple
regulatory gene systems, including LILR, KIR, and NKG2.
Pregnancy is an exquisite example of a balanced immune
regulation and adaption to protect the embryo against an
unintended maternal immune response. Expression of HLA-A
and -B is limited during pregnancy to avoid alloreactivity by B and
T cells, whereas classical HLA-C and non-classical HLA-E and -G
are expressed on fetal trophoblasts (123, 124). During the early
stages of pregnancy, a distinctive subset of uterine NK (uNK) cells
is involved in placental formation. Different combinations of KIR
and HLA-C allotypes regulate these uNK cells, in which the
extensive genetic variation of both gene systems associates with
successful pregnancy or with complications, such as recurrent
miscarriage (125). The role of the KIR gene family is reflected by
interactions of KIR2DL4 with soluble HLA-G, which has been
described (126, 127). In short, these interactions probably
modulate the production of cytokines and chemokines to
promote vascular remodeling in early pregnancy (128).
Activating receptors NKG2D, as well as DNAM-1- and NKp44
mediate the regulation of NK cell and modulate NK cell activity
(126, 129). HLA-G expression is restricted to trophoblast cells and
might also be recognized by LILRB1, which is highly expressed on
NK cells found in the maternal decidua, and by LILRB2, which is
expressed on maternal decidual macrophages (124, 130, 131).
These mechanisms protect the embryo against NK- directed cell
lysis (131). Furthermore, multiple LILR receptors are described as
beneficial, resulting in individuals with a protective phenotype
against multiple sclerosis, or in individuals who can control virus
infections such as HIV-1 (132, 133). However, LILR receptors
might play a negative role as well, and are associated with the
outcome of several diseases. In some diseases, LILR receptors can
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be regarded as a genetic risk factor (Table 2). Therefore, LILR
receptors might be useful as diagnostic markers and a target for
immunotherapies (58, 59). The role of LILRs in different kinds of
diseases is briefly discussed in the following paragraphs. We would
like to emphasize, however, that these mainly concern diseases
with an immunological component that we have highlighted here
exclusively in the context of LILR.
AUTOIMMUNE AND
AUTOINFLAMMATORY DISEASES

Rheumatoid arthritis patients abundantly express LILRA2,
LILRA3, LILRA5, and LILRB2, with the presence of LILRA2,
LILRA5, and LILRB2 significantly correlating with disease
activity (95, 134, 145). The underlying mechanisms are not yet
fully understood, but it is postulated that disrupted gene
expression may contribute to an excessive inflammatory
immune response. In addition, insufficient inhibitory signaling
as a result of single nucleotide polymorphisms (SNP) in the
promotor region or of post-transcriptional regulation might
contribute to rheumatoid arthritis susceptibility (147). LILRA3
is identified as a genetic risk factor for rheumatoid arthritis,
systemic lupus erythematosus, and Sjogren’s syndrome (137–
139). In systemic lupus erythematosus patients, disrupted
LILRB1 expression and/or deficient inhibitory signaling is
observed (148). This observation is comparable with the
postulated cause of the excessive inflammatory immune
response in rheumatoid arthritis patients. In addition,
polymorphisms may impact disease association. Polymorphisms
found in LILRB4 resulted in a loss of function, and, as a
consequence, increased inflammatory cytokine levels in systemic
lupus erythematosus were observed (162). LILRA2 splice site
polymorphism affects alternative splicing, resulting in a different
isoform, which is associated with systemic lupus erythematosus
and microscopic polyangiitis (135).

Likewise, several LILR disease associations are reported in
chronic disorders, and the majority of these associations are
genetic. In a cohort of family-related atopic disease patients, a
single copy of LILRA6might be related to the development of the
disease (146). LILRA3 and LILRB3 are both identified as
susceptibility genes in Takayasu’s arteritis (161). Furthermore,
LILRA3 is associated with ankylosing spondylitis susceptibility in
different cohorts, including Han Chinese subpopulations and a
Polish population, underlying the genetic differences between
different ethnicities (140, 149). Associations involving disruptive
gene expression are seldom reported. LILRA3 expression is
increased in intestinal bowel disease patients, probably
resulting in suppression of the anti-inflammatory immune
response (141).
NEURODEGENERATIVE DISORDERS

Human LILRB2 and its murine ortholog PirB interact with
soluble b-amyloid, leading to enhanced cofilin signaling, which
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is observed in the brains of humans with Alzheimer’s disease (58,
165). In a transgenic mice Alzheimer’s disease model, memory
deficits in adult mice are caused by PirB deficiency, which results
in the loss of synaptic plasticity in the juvenile visual cortex. It is
postulated that due to the orthologous relationship between
LILRB2 and PirB, LILRB2 may contribute to Alzheimer’s
disease neuropathology, and might be a suitable therapeutic
target. The LILRA3 null haplotype might increase the risk of
relapsing multiple sclerosis in Spanish patients (133). These
findings were confirmed in German and French multiple
sclerosis patients of Caucasian descent (142). In contrast, in a
Polish cohort, no association for disease susceptibility was found,
but it was shown instead that a LILRA3 deletion is associated
with the later onset of multiple sclerosis (143). In multiple
sclerosis patients, LILRB2 and HLA-G are co-expressed on
central nervous system cells and in areas with microglia
activation, while HLA-G expression is barely detectable in
healthy controls (166). LILRB2 and HLA-G play a role in
immune reactivity in the central nervous system, which might
act as an inhibitory feedback mechanism to downregulate the
damaging effect of T-cell infiltration in neuroinflammation.
Frontiers in Immunology | www.frontiersin.org 13
INFECTIOUS DISEASES

The immune response to bacteria often results in increased
expression of LILR receptors on the cell surface. For example,
in lepromatous patients, LILRA2 is upregulated in the lesions,
and suppresses the innate host immune response by shifting
cytokine production from interleukin-12 (IL-12) toward IL-10
(136). LILRB1 expression is elevated on CD56dimCD16+ NK cells
during active pulmonary tuberculosis (150). It is postulated that
CD56dimCD16+ NK cells correlate with the disease severity of
pulmonary tuberculosis, because CD56dimLILRB1+ NK cells are
not capable of eliminating infected cells. Also, during Salmonella
infection, LILRB2 and LILRB4 are upregulated, which results in
the expansion of tolerogenic antigen-presenting cells owing to an
insufficient response to toll-like receptor signaling (158).

Viruses developed other strategies to dysregulate the host
immune response by abusing immune receptors. The most studied
viral infection with regard to LILR receptors is cytomegalovirus
(CMV) infection, which expresses UL18, an MHC class I homolog,
on infected cells. The engagement of UL18 and LILRB1 may inhibit
the clearance of CMV-infected cells, and, therefore, CMV might
TABLE 2 | Overview of human LILR receptors and their associations with disease.

Receptor Type Disease Reference

LILRA1 No disease associations documented according to literature
LILRA2 Autoimmune and autoinflammatory diseases Rheumatoid arthritis (134)

Systemic lupus erythematosus (135)
Microscopic polyangiitis (135)

Infectious diseases Hansen’s disease (136)
LILRA3 Autoimmune and autoinflammatory diseases Rheumatoid arthritis (95, 137, 138)

Systemic lupus erythematosus (137)
Sjögren’s syndrome (139)
Ankylosing spondylitis (140)
Intestinal bowel disease (141)

Neurodegenerative disorders Multiple sclerosis (133, 142, 143)
Cancer Prostate cancer (144)

LILRA4 No disease associations documented according to literature
LILRA5 Autoimmune and autoinflammatory diseases Rheumatoid arthritis (134, 145)
LILRA6 Autoimmune and autoinflammatory diseases Atopic disease (146)
LILRB1 Autoimmune and autoinflammatory diseases Rheumatoid arthritis (147)

Systemic lupus erythematosus (148)
Ankylosing spondylitis (149)

Infectious diseases Pulmonary tuberculosis (150)
CMV (99, 151)
Dengue (152, 153)
Malaria (154)
HIV (132)

Cancer Non-small cell lung cancer (155)
Leukemia (156)
Gastric cancer (157)

LILRB2 Autoimmune and autoinflammatory diseases Rheumatoid arthritis (134)
Neurodegenerative disorders Alzheimer’s disease (57, 58)
Infectious diseases Salmonella infection (158)

HIV (159)
Cancer Colorectal cancer (160)

LILRB3 Autoimmune and autoinflammatory diseases Rheumatoid arthritis (134)
Takayasu’s disease (161)

LILRB4 Autoimmune and autoinflammatory diseases Systemic lupus erythematosus (162)
Infectious diseases Salmonella infection (158)
Cancer Gastric cancer (157)

Leukemia (163, 164)
LILRB5 No disease associations documented according to literature
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escape the innate immune response (99). During the adaptive
immune response, CMV-infected cells expressing UL18 are lysed
by CD8+ T cells, while CMV-infected cells lacking UL18 are not
eliminated, and therefore CMV might escape this host immune
response as well (151). Recurrent CMV infection or deficient
immune response is frequently observed in transplant patients.
Another example was observed during a dengue infection, where
LILRB1 was shown to engage with an unknown dengue virus-related
ligand, resulting in the obstruction of FcgR activation and allowing
host cell entrance and viral replication (152, 153). Recently, an
association with LILRB1 and malaria was observed. Plasmodium
falciparum, the causative agent of malaria, produces repetitive
interspersed family (RIFIN) proteins, which are displayed on
infected erythrocytes (167). Some RIFINs interact with LILRB1,
which could potentially result in tempering the host immune
response by suppressing NK cell function response (154).
CANCER

In chronic lymphocytic leukemia, a significant increase of
LILRB1 expression is detected on NK cells, resulting in a lack
of elimination of leukemic cells (156). In acute myeloid leukemia,
LILRB4 is expressed on monocytic leukemia cells, generating an
immunosuppressive microenvironment contributing to the
infiltration of other tissues, including the central nervous
system (163, 164). Co-expression of LILRB2 and HLA-G is
observed in tissues of human primary colorectal cancer, while
different expression patterns of LILRB1 and LILRB4 are observed
in gastric cancer patients (157, 160). Differential expression may
contribute to the proliferation, migration, and invasion of tumor
cells. In addition, genetic risk factors have been reported in
different types of cancer. A genome-wide association study in
Chinese men revealed that LILRA3 SNP rs103294 and LILRB1
SNP rs16985478 may be a risk factor for prostate cancer and
non-small cell lung cancer, respectively (144, 155).
CONCLUDING REMARKS

In this communication, we provided an overview on the genomic
organization of the LILR region in primates with which we
illustrate that the LILR region remained largely conserved
throughout primate evolution (Figure 5). Minor differences in
gene content were observed, but at this stage it is not clear
whether allelic variation influences the complexity of the system.
Further research is necessary to arrive at a solid conclusion. By
comparing channel catfish, chicken, opossum, primates, mice,
cattle, goat, and pig, we estimated that the LILR gene family likely
emerged more than 450 mya, probably in the same time frame as
Frontiers in Immunology | www.frontiersin.org 14
the MHC system. It is thought that the evolution of the MHC
system influenced KIR gene evolution (and vice versa), but it is
not evident whether it influenced LILR gene evolution as well
(36, 49, 55, 168). Some LILR receptors engage with the highly
conserved a3-domain of MHC class I molecules and the b2m
subunit, suggesting that the main function of LILR receptors is
immune surveillance by scanning immune cells for the presence
or absence of MHC class I. More sophisticated systems, like that
of the KIR genes, appeared later in evolution, and are able to scan
for the presence of polymorphic epitopes on MHC class I
molecules. In humans, KIR3DX1 is classified as a pseudogene,
while KIR3DX1 in the non-human primates is seen to code for a
functional gene product. A duplication of KIR3DX1 was
observed in the lesser apes, OWMs, and NWMs, suggesting
that this duplication might be present in the ancestor and was
lost in great apes and humans. As far as we know, the function
and ligand of KIR3DX1 is not yet resolved. At last, LILR
receptors are placed in context for the role they may play in
health and disease. It is tempting to speculate that old genes are
frequently associated with diseases. However, one would expect
that serious disease associations linked to old genes have been
weeded out during evolution. The other issue is that disease
association in a highly conserved region with limited levels are
hard to pick up due to linkage phenomena. Since the LILR region
in primates is remarkably conserved, non-human primates are
an excellent tool to thoroughly study the functional aspects of
LILR genes. This type of undertaking might enhance the
available non-human primate disease models in order to
improve the health both of humans and animals.
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