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Abstract 
Estimating parameters of cognitive models is crucial to be able 
to accurately describe cognitive processing of individuals, 
under varying circumstances. To ensure that individual 
parameter estimates represent individual cognitive processes, 
it is important to consider model identification and specific 
influence. Model identification refers to whether a unique set 
of parameter estimates is associated with a particular pattern in 
the data; Specific influence means that certain experimental 
manipulations affect only specific cognitive processes, 
reflected in changes in only those parameters that represent 
those processes, and not others. These two general concepts 
also apply to cognitive models of more applied tasks and 
settings, such as driving. In the current work, we specifically 
test whether these two requirements hold in a commonly used 
cognitive model of visual control of steering behavior. For this 
model, we test the identifiability, and then estimate parameters 
of two experiments to understand how cognitive load and 
driving speed specifically influence parameter estimates of the 
model. The results indicate that the two-point visual control of 
steering model is identified, and that cognitive load and driving 
speed are related to different parameters. 

Keywords: cognitive models; parameter estimation; model 
identifiability; specific influence; driving. 

Introduction 
Manually driving a vehicle involves various cognitive 
processes ranging from the basic control and operation of the 
steering wheel, to maneuvering to change lanes, to 
strategically deciding what is the best way to move from A to 
B (e.g., the fast or scenic route) (Michon, 1985). Managing 
these requirements involves perception, decision-making, as 
well as executive control. Due to the dynamic interleaving 
and execution of all these tasks, driving is highly complex 
(Chong et al., 2014; Michon, 1985). This complexity causes 
driving error to be a high causal factor in road accidents (e.g., 
Dingus et al., 2016; Strayer et al., 2015).  

Cognitive science and cognitive modeling have the 
potential to inform our understanding of such complex 
dynamic tasks, and a wide variety of models exists for both 
manual and semi-automated driving (for reviews see e.g., 
Brumby et al., 2018; Janssen et al., 2020). Cognitive models 
help to quantify the extent to which specific cognitive 
processes (e.g., visual attention, memory) and environmental 

factors (e.g., amount of traffic on the road, weather) impact 
driving performance, and thereby safety. Such a quantified 
understanding can then eventually also help to guide the 
design of safer vehicles and in-car systems.   

In this paper we focus on one particularly promising 
cognitive model: the two-point visual control model of 
steering (TPVC, Salvucci & Gray, 2004). This model has 
been the basis of a wide variety of other driving models, 
specifically in the cognitive architecture ACT-R (Salvucci & 
Taatgen, 2010), which in turn inspired other cognitive models 
of visual attention interleaving in driving (e.g., Janssen & 
Brumby, 2010; Jokinen et al., 2020). 

The central idea of the TPVC model (Salvucci & Gray, 
2004) is that steering motion is determined by two focus 
points that the driver is assumed to monitor: a far point and a 
near point (Neumann & Deml, 2011). The far point can for 
example be the back of another vehicle or the distal point 
where the road disappears. The near point can be thought of 
as a target immediately in front of the car. In the context of 
lane-changing, the model assumes that both the far and near 
points change position to the target lane, to enable the driver 
to steer to that lane (Figure 1).  

The TPVC model controls the steering movement by 
controlling the angle between the car’s bearing and the two 
focus points. In particular, the model minimizes the change 
in angle with the near and far points. This allows for a smooth 
steering motion. To maintain a stable position on the road, 
the model additionally minimizes the angle of the car’s 
heading with the near point. Salvucci and Gray (2004) show 
that in principle this model accounts for a wide range of 
driving behaviors, by showing qualitative comparisons 
between simulated car movements, and measured car 
movements from a range of experimental studies. To show 
the match between simulated and measured car movements, 
Salvucci and Gray estimated parameters that determine the 
relative contributions of the angle with the near and far 
points, revealing how different movement patterns are 
supported by different sets of parameter estimates. 

Although introduced over a decade ago, it has not been 
studied whether the parameters of the TPVC model represent 
single cognitive processes. The current paper fills this gap by 
addressing two related questions on (1) identifiability and (2) 
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specificity. The first question is whether the parameters are 
identified. That is, given a particular (measured) car 
movement, is there a unique set of parameters that best 
predicts that car movement (Moran, 2016; van Maanen & 
Miletić, 2020). Having a stable set of parameters 
(identifiability) is needed to make quantitative predictions 
(based on those models) for novel experiments and settings. 
If the model is not identified, and it occurs that one particular 
measured car movement is best predicted by two or more sets 
of parameters, inferences about these parameters become 
impossible. That is, there is no guarantee that when 
optimizing the parameters of the model, two identical car 
movements give the same optimal set of parameters, since 
there are more sets that equally well fit the observed data. 
Consequently, conclusions about the estimated parameters 
are invalid. 

Once the identifiability question has been answered 
affirmatively, the second question on specific influence then 
becomes whether estimated parameters systematically vary 
between empirical conditions. That is, if we assume that each 
parameter is a reflection of a single cognitive process, then 
changes in behavior that are hypothesized to reflect changes 
in specific cognitive processes should uniquely affect only 
those parameters that represent the cognitive process under 
scrutiny. No other parameters should be affected. 

Implementation of the TPVC Model 
Following Salvucci and Gray (2004), we implemented a 
discrete version of the TPVC model: 
 

∆𝜑𝜑 = 𝑘𝑘𝑓𝑓∆𝜃𝜃𝑓𝑓 + 𝑘𝑘𝑛𝑛∆𝜃𝜃𝑛𝑛 + 𝑘𝑘𝐼𝐼𝜃𝜃𝑛𝑛Δt 
 
In this equation, 𝜑𝜑 indicates the angle that the car makes 
relative to its original bearing, 𝜃𝜃𝑓𝑓 and 𝜃𝜃𝑛𝑛 indicate the angle 
between the car and the far and near points, respectively, and 
Δt represents a time constant of the update cycle. 𝑘𝑘𝑓𝑓, 𝑘𝑘𝑛𝑛, and 

𝑘𝑘𝐼𝐼 are the contributions of each of these components to the 
angular change. 

In addition to the basic model, we assume a visual 
processing time that leads to a delayed response to visual 
events that happen while driving. The implementation of the 
TPVC model in the ACT-R cognitive architecture introduced 
a similar mechanism (Salvucci, 2006), but in that model 
optimization of the delay period to the individual driver is not 
possible.  

The delay period (𝑡𝑡0), together with the parameters 
governing the steering control (𝑘𝑘𝑓𝑓, 𝑘𝑘𝑛𝑛, and 𝑘𝑘𝐼𝐼) determine the 
steering behavior of a driver. Figure 2 shows the predicted 
steering motion for four example parameter sets, with default 
parameters of �𝑘𝑘𝑓𝑓,𝑘𝑘𝑛𝑛 ,𝑘𝑘𝐼𝐼 , 𝑡𝑡0� = (0.2, 0.2,0.2,0.0). The first 
set (in black) represents a driver with a relatively high 𝑡𝑡0 
(𝑡𝑡0 = 0.15) who responds relatively slowly to a warning 
signal to change lanes. In contrast, a driver with a relatively 
high 𝑘𝑘𝑓𝑓 of 𝑘𝑘𝑓𝑓 = 0.7 focusses mostly on the far point, and 
therefore steers more smoothly, taking more time to finish the 
lane change (in green). A driver with a relatively high 𝑘𝑘𝑛𝑛 
(𝑘𝑘𝑛𝑛 = 0.7, in red) minimizes the angle between the car and 
the near point, resulting in a relatively abrupt steering motion. 
A driver with a relatively high 𝑘𝑘𝐼𝐼 (𝑘𝑘𝐼𝐼 = 0.7, in blue) aims to 
maintain the bearing to the near point, and attends less the 
change in angle. Consequently, the steering motion requires 
overcompensation once the target lane is reached. This 
appears in Figure 2 by the high lateral deviation at t = 0.6s. 

Estimating Parameters 
To reveal individual driver’s profiles, we optimize the set of 
parameters that best describe the steering behavior of every 
individual. To this end, we predict the lateral deviation of a 
car under one set of parameters, and minimize the mean 
squared distance between the observed lateral deviation and 
the predicted lateral deviation. The lateral deviation depends 
on the change in angle and the speed of the car in the 
following way:  

Figure 1: Illustration of a lane change according to the 
two-point visual control model of steering. θf and θn 

indicate the angle between the car and the far and near 
points, respectively. Initially, the car drives straight (1). 
Once the decision to change lanes has been initiated, the 
far and near points change relative to the car, creating a 
non-zero angle (2). Consequently, the car steers to the 

left lane (3), minimizing the angle between the heading 
of the car and the far and near points (4). 

Figure 2: Individual steering profiles predicted by 
the TPVC model. The goal of the model here is to 
steer four meters to the left, beginning at time 0. 
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Δ𝑥𝑥 = 𝑣𝑣 tan(𝜑𝜑)Δt 
 
with v the speed of the car (in m/s). 

Because of the potential complexity of the parameter 
space, we applied particle swarm optimization with multiple 
restarts (Clerc, 2010). 

Model Identification 
To study whether the model is identified, we generated 
artificial data using parameters values for 𝑘𝑘𝑓𝑓, 𝑘𝑘𝑛𝑛, 𝑘𝑘𝐼𝐼, and 𝑡𝑡0 
that were randomly selected from a uniform distribution 
(between 0 and 2). The range of this distribution was 
informed by initial analyses of one of the data sets reported 
below. Then, we applied the procedure introduced above to 
estimate back the parameters based on the artificial car 
movement. This process was repeated 100 times. If the model 
is identified, we should observe that the parameter estimates 
are close to the parameters used to generate the artificial data 
(Anders et al., 2016; Miletić et al., 2017; Van Maanen et al., 
2019).  

The far and near points where set at 1m and 20m in front 
of the car, similar to Salvucci and Gray (2004). After 𝑡𝑡0 
seconds had passed, the lateral position of the far and near 
points was moved 4m to the left, initiating the actual steering 
movement. The car’s speed was kept constant at 80km/h. 

Results 
We found very high correlations between the true and 
estimated parameters of the same type (Table 1). Moreover, 
the strongest correlation between true and estimated 
parameters of different types was r=-0.18 between the true 𝑘𝑘𝑓𝑓 
and the estimated 𝑘𝑘𝑛𝑛, indicating a small trade-off between 
these parameters (the inverse correlation between true 𝑘𝑘𝑛𝑛 and 
estimated 𝑘𝑘𝑓𝑓 was slightly smaller). Overall, these results 
indicate that the model is identified, since in the absence of 
noise, there seems to be a unique set of parameters that best 
predicts a specific car movement. 

A Test of Specific Influence 
After having established that the TPVC steering model is 

identified, and therefore the estimated parameters are stable 
across multiple instances of the same behavioral profile, we 
address the question whether the parameters are 
systematically related to specific external factors; a test of 
specific influence (Van Maanen et al., 2019; Van 
Ravenzwaaij et al., 2012). To this end, we reanalyzed the car 

movements from two recent studies (Pavlidis et al., 2016; van 
der Heiden et al., 2019) in which participants were asked to 
drive a car through a simulated environment in different 
cognitive load conditions. 

Study 1: Van der Heiden et al. (2019) 
In this study, participants driving a simulated vehicle were 
signaled at unpredictable moments that a lane change was 
required as quickly as possible. The study manipulated 
cognitive load by a secondary task (3 levels) and vehicle 
speed (80 km/h or 130 km/h). If the parameters of the TPVC 
model are meaningful representations of the cognitive 
processes involved in steering, then these external factors 
(cognitive load and speed) should affect only a single or 
limited set of parameters. 

Specifically, we hypothesized that an increase in cognitive 
load increases the delay period 𝑡𝑡0. This reflects the idea that 
a secondary task typically results in distraction (e.g., Iqbal et 
al., 2010; Kunar et al., 2008; Strayer & Johnston, 2001), and 
therefore the signal that indicates a lane change may be 
processed later. We did not have a specific hypothesis 
regarding the driving speed manipulation. 

Methods 
The study involved twenty-four participants (9 women, age 
range 28-70 years). The primary driving task was to stay in 
the middle lane (3.5 m wide) of a straight three-lane highway. 
A simulated navigation system was shown at the bottom right 
of the screen. When a lane change was imminent, the 
interface showed which lanes were closed. Participants were 
instructed to change to the open lane once they noticed the 
alert. On the cognitive load trials, an audio task created 
distraction. There were two audio conditions. In both audio 
conditions, participants heard a stream of words, presented at 
a steady pace of 1 word every 4s. In the Repeat condition, 
participants had to repeat the word they heard. In the 
Generate condition, participants had to respond with a new 
word that started with the last letter of the word they heard. 
For more details on the experiment see Van der Heiden et al. 
(2019). 

 
Parameter Estimation The parameters were optimized for 
all time series of all conditions and individuals, excluding 
trials in which participants either did not change lanes, or 
started from the incorrect lane (3.4%). All time series were 
down sampled to 20 Hz, to obtain 𝛥𝛥𝛥𝛥=50ms, which has been 
argued is the update time of the human cognitive system (e.g., 
Anderson, 2007; Salvucci & Gray, 2004; Stocco et al., 2010), 
and which also is an interval that is used in other models of 
driver distraction (Salvucci, 2006, 2009). 

Because the fitting results in separate parameter estimates 
for every time series (i.e., each trial), we can apply linear 
mixed-effect modeling to analyze the resulting parameter 
estimates (Baayen et al., 2008). In these regression models, 
we typically assume a random intercept for individuals, 
controlling for individual differences. Starting with the full 
models, we performed stepwise backward regression to 

Table 1: correlation matrix between true (rows) and 
estimated (columns) model parameters. 

 
 𝑘𝑘𝑓𝑓 𝑘𝑘𝑛𝑛 𝑘𝑘𝐼𝐼 𝑡𝑡0 
𝑘𝑘𝑓𝑓 .97 -.18 .05 .00 
𝑘𝑘𝑛𝑛 -.18 1.00 .15 -.07 
𝑘𝑘𝐼𝐼 .05 .14 1.00 -.13 
𝑡𝑡0 -.01 -.07 -.14 1.00 
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identify the most important factors that contribute to the 
variance in the data (Crawley, 2013). 

Results 
Goodness-of-fit As a qualitative impression of the fit, Figure 
3 (left) shows two example participants’ lane deviation 
during a leftward lane change, which overlaid the model 
predictions according to the best fitting model parameters. 
Although the model does not account for brief movements of 
the car, it captures the overall pattern of the movement very 
well. The right panels of Figure 3 illustrate that the model 
also predicts the steering angle of the car, even though it was 
not fit on this property of the data.  

Moreover, Figure 4 shows that the delay period predicts the 
initial reaction time (T1). T1 was computed as the time at 
which the driver makes the first steering motion that exceeds 
one degree (van der Heiden et al., 2019). The delay period 
seems to be an important component of T1.  

Backward stepwise regressions shows that the best 
regression model predicting T1 includes t0 (ßt0=0.32; t=12.0; 
p<.001), a non-significant effect of car speed (ßspeed=0.06; 
t=1.9; p=.067), and the interaction of these factors (ß=-0.17; 
t=-4.1; p<.001). In addition, the regression model includes a 
positive intercept of 0.51, suggesting that the t0 is consistently 
lower than T1 (Figure 4). 
 
Inferential Analyses For every parameter, we developed 
linear mixed-effects models that included speed and 
cognitive load as fixed effects, and participant as random 
intercept. Backward stepwise deletion of the factors that 

 
1 The data descriptor paper (Taamneh et al., 2017) mentions that 

the lane change occurred after 4.4 km in all but the RD conditions, 
but this seems incorrect. 

explained the least amount of variance reveals that the best 
description of the kf parameter is a model in which kf only 
differs for the speed condition (ßspeed=0.37; t=5.2; p<.001). 
The optimal model for the kn parameter is the same, but with 
an inversed effect size (ßspeed=-0.62; t=10.8; p<.001). The 
model for the kI parameter is also dependent on the speed 
condition (ßspeed=-0.67; t=-10.8; p<.001). Together, these 
results suggest that when participants drove faster, they 
shifted their attention from the far point to the near point, 
resulting in more myopic driving styles. 

In contrast, the t0 parameter seems to differ according to 
the cognitive load condition drivers were in. In particular, in 
both load conditions, t0 was estimated higher than in the 
Drive only condition (ßDG=0.10; t=2.7; p=.006; ßDR=0.11; 
t=3.0; p=.003). Thus, compared to the driving only 
condition, participants required about 100ms more to react to 
the lane change signal when performing a secondary task. 

Study 2: Pavlidis et al. (2016) 
This section entails a reanalysis of a larger data set (Pavlidis 
et al., 2016; Taamneh et al., 2017), with multiple cognitive 
load conditions, to see if we replicate the t0 effect that was 
observed in Study 1. 
 
Methods 
In this driving simulator experiment, 68 participants drove a 
10.9 km stretch of four-lane highway under five different 
conditions. After 5.2 km1, the highway contained a lane 
deviation, forcing drivers towards the left lane. In the relaxed 
driving (RD) condition, there was limited traffic on the 
oncoming lanes. In the four other conditions, the cognitive 
load of participants was increased by increasing the traffic 

Figure 3: Two example participants with different 
steering profiles were fit by the TPVC model. Left: 

Observed (black) and predicted (red) lateral deviation 
from the initial road location. Dashed lines indicate the 
initial road location and the target road location. Right: 

Observed and predicted steering angle. Dotted line 
indicates that steering wheel is in the upright position. 

Figure 4: The TPVC model predicts the initial 
reaction time (T1). Correlation between the T1 

computed from the data and delay period t0 from the 
model. The dashed line indicates the identity line. 
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density on the oncoming lanes, by presenting road works 
along the side of the road, and by asking participants to do a 
secondary task before and after the lane change. The four 
conditions differed in the nature of the secondary task. In the 
no-secondary task (ND) condition, there was no secondary 
task; In the cognitive secondary task (CD) condition, the 
secondary task consisted of analytical questions; In the 
emotional secondary task (ED) condition, the experimenter 
asked emotionally stirring questions; In the sensorimotor 
secondary task (MD) condition, participants were asked to 
type on a smartphone. The highway had a posted speed limit 
of 70km/h (but participants were free to adjust their speed). 
Each participant made a single leftward lane change in every 
condition. For more details see (Pavlidis et al., 2016; 
Taamneh et al., 2017). 
 
Parameter Estimation We focused the analysis of the 
steering motion on the section of highway 600m before and 
after the indicator of the lane change. This way we ensured 
that the model only describes the critical lane change, and no 
other unrelated steering motions. The parameters were 
optimized using the same procedure as before, for all 
conditions and individuals separately. 𝛥𝛥𝛥𝛥 was set to 𝛥𝛥𝛥𝛥=1s, 
which was the measurement frequency of the lane position.  

Results 
The model’s goodness-of-fit was comparable to the fit to 
Study 1. A mixed-effects regression model with cognitive 
load condition as fixed effect and random intercepts for 
participants was fit separately to the optimal parameter 
estimates. The RD condition was characterized by a 
substantially higher kf (ßRD=0.072; t=4.0; p<.001) as 
compared to the ND condition (which was set as the reference 
condition for convenience), as well as a substantially lower t0 
(ßRD=-12.7; t=-19.4; p<.001). For the other parameters there 
was no significant difference.  

Moreover, the CD and MD conditions differ from ND with 
respect to t0 as well (ßCD=-3.2; t=-5.1; p<.001; ßMD=-3.1; 
t=-4.8; p<.001; but ßED=-0.7; t=-1.2; p=.25). There were no 
other significant differences between the various cognitive 
load conditions. Thus, compared to the cognitive load 
condition without a secondary task (ND), participants that 
performed a cognitive or sensorimotor secondary task prior 
to the lane change initiate their steering motion sooner.  

These effects seem to indicate that the lower traffic density 
and limited visual input in the RD condition as compared to 
the ND condition was reflected in a faster identification of the 
lane change indicator, consistent with the experiment of Van 
der Heiden and colleagues (2019). However, it is surprising 
that the two conditions that seem even more cognitively 
demanding are characterized by a shorter t0 parameter. 
Possibly, because the extra cognitive load manipulation was 
administered before and after the lane change, this additional 
cognitive demand resulted in a more focused driving style as 
compared to the ND condition.  

Discussion 
To understand the applicability of the TPVC model in terms 
of estimating individual steering profiles, we tested the 
identifiability as well as the specificity of the model’s 
estimated parameters. With respect to model identifiability, 
we found that the model parameters have unique 
contributions to the predicted steering motion. This means 
that through parameter optimization procedures the set of 
parameters can be identified that best fits a steering profile in 
empirical data.  

With respect to parameter specificity, we estimated 
parameters for two data sets in which participants made a 
steering motion with the intend of a lane change. Both data 
sets included experimental conditions that involved higher 
cognitive load, for which we hypothesized that a decreased 
level of attention towards the primary driving task would 
result in a higher estimate of the onset of the steering motion. 
Moreover, we hypothesized that driving speed would 
influence the focus point that drivers attended when 
performing a lane change, with a more myopic focus for 
faster driving. Both hypotheses were confirmed. 

Finding evidence for the identifiability and specificity of 
cognitive models is important, as it allows for the 
specification of parametrized models of individual users. 
This can be scientifically interesting, to study how individual 
differences in cognitive processes (reflected by individual 
differences in parameters) are related to other measures, such 
as mental workload scores (e.g., van Maanen et al., 2019), 
neuroscientific measures (e.g., Turner et al., 2017), or other 
behavioral measures (e.g., Miletić & van Maanen, 2019).  

An important aspect of the original TPVC model that we 
did not explore here, is the choice of time constant Δt. In 
Study 1, we set the Δt to 50ms, following the rationale that 
this possibly reflects the update time of the cognitive system 
(e.g., Anderson, 2007). In study 2 however, we set Δt at 1s, 
since this was the sampling frequency of the car locations in 
this data set. This difference entails that the parameter 
estimates cannot be directly compared across experiments. 
Rather, the parameters should be interpreted relative to the 
time constant (cf. van Maanen & Miletić, 2020). 

Relatedly, Salvucci (2006) suggests that the time constant 
parameter may not be constant at all, but rather that steering 
updates may be skipped when the cognitive system is already 
engaged, for example with a secondary task (e.g., Janssen et 
al., 2012; Janssen & Brumby, 2010; Jokinen et al., 2020; 
Salvucci et al., 2009; Salvucci & Taatgen, 2008). Such 
interleaving may affect the precision of the observed steering, 
and could potentially affect the parameter estimates. 
Estimating the probability of skipping an update cycle due to 
interleaving seems an important next step in this line of work. 
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