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1 Introduction and discussion

Axion monodromy inflation [1–5] is an intriguing suggestion to realize large-field inflation
in string theory. In such models, an axion is initially placed at a transplanckian distance
away from its true vacuum and then rolls down towards the vacuum to drive inflation. The
naive axion periodicity is extended in axion monodromy models by first unfolding the field
range of the axion to the real line, i.e. by extending its field range to the universal covering
space of the periodic axion space. An axion scalar potential is then introduced to break the
approximate continuous shift symmetry of the axion. Such a potential is required to fulfil a
modified realization of a discrete axionic shift-symmetry in the sense that it is invariant
under a combined transformation of the axion and some of the parameters in the potential,
e.g. flux numbers. The combined transformation is called a monodromy transformation. In
potentials realizing such monodromy symmetries one can then hope to implement inflation
over multiple periods of the axion in a controlled fashion.
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Early studies [1, 2] of axion monodromy inflation focus on its realization in non-
supersymmetric Type II string compactifications with various NS-branes or D-branes. To
establish such compactifications delicate control issues have to be addressed to ensure the
validity of the reduction. To have from the outset more control over the stability of the
setting, so-called F-term axion monodromy models were proposed in [4–9]. These models
consider axion monodromy inflation in the context of supersymmetric flux compactifications
of string theory and will serve as the main motivation for this work. In these settings the
axion scalar potential is induced by turning on various background fluxes of higher form
fields and the monodromy is realized by simultaneously shifting the axion and some flux
numbers. An apparent merit of the F-term axion monodromy inflation is that various
moduli of the compactified string theory share the flux-induced F-term scalar potential
with the axion inflaton candidates, so that the study of the moduli stabilization and axion
inflation are naturally linked.

The connection between the axion and moduli scalar potential forces one to consider the
backreaction of the axion inflaton candidate on the vacuum expectation value of the moduli
fixed by the F-term scalar potential. Since large field inflation requires a transplanckian
displacement of the axion, it is alarming when such a large-field backreacts on the vacuum
expectation value of geometric moduli of the compactification, since this requires to consider
the dynamics of the combined axion-saxion system. This issue is pointed out in [10]
and further analysed in [11, 12], by investigating examples in various classes of string
compactifications. Their findings confirm the worry, that in these examples, a large axion
excursion does indeed backreact on the geometric moduli in a linear fashion, so that the
moduli is pushed towards the boundary of the moduli space at infinite distance. Invoking
the Distance Conjecture [13, 14] the axion monodromy inflation program then faces more
challenges as studied in the examples of [10–12]. More precisely, the Distance Conjecture
states that in an effective field theory consistent with quantum gravity, a transplanckian
displacement in field space is accompanied by additional light degrees of freedom, signalling
a breakdown of the effective field theory. The linear backreaction of the axion onto the
saxion can thus be responsible for a breakdown of the effective theory. It remains an open
debate [9–12, 15–19] whether or not this backreaction can be avoided or sufficiently delayed
to realize F-term axion monodromy models, see also the recent [20] where the authors argue
that the linear backreaction is the maximum non-geodesity that would be consistent with the
Distance Conjecture from a bottom-up perspective. The arising problems are also related
to the difficulty of creating mass hierarchies in flux compactifications, as studied in [15, 16].

In order to study the axion backreaction problem, it is desirable to identify a general
and controlled setting with a variety of axion-like fields. The complex structure moduli
space of Calabi-Yau manifolds provides such a general arena. Firstly, it has long been
known that the complex structure moduli descent to complex scalars in the effective theory.
Secondly, it became clear in the advent of flux compactifications that these fields can obtain
a scalar potential when allowing for non-trivial background fluxes [21, 22]. Within such
flux compactifications, it was found in [23, 24] that fields with approximate continuous shift
symmetry, i.e. axion fields, can only arise near certain boundary components of the complex
structure moduli space. Near such a boundary component, the monodromy as one loops
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around the boundary descents to an approximate continuous shift-symmetry of the real
part of the considered complex structure modulus, which is broken into a genuine discrete
axionic shift-symmetry by non-perturbative effects. Moreover, by turning on background
fluxes, one gets a scalar potential for the complex structure moduli which are decomposed
into the axionic-like fields and the moduli controlling the geometry, and it is the very same
monodromy transformation generating the shift-symmetry that is used as the monodromy
transformation in the axion inflation scenario.

A concrete setting that allows us to examine complex structure axions and their flux-
induced scalar potentials arises from F-theory compactifications on Calabi-Yau fourfolds.
Such compactifications lead to an N = 1 supersymmetric effective action [25, 26] with a
classical scalar potential induced by background four-form flux G4. It is also well-known
that a part of G4 induces a non-trivial F-term potential [27] and it will be this part which
will be relevant in the present work. The merit of studying complex structure axions in
F-theory compactifications is at least two-fold. Firstly, the complex structure axions include
the R-R zero-form axions of Type IIB string theory and also are dual to NS-NS two-form
axions of Type IIA via duality. Moreover, one consistently incorporates certain axions that
are associated to D-branes. Secondly, the scalar potential induced by the four-form flux in
F-theory is particularly amenable to be studied by asymptotic Hodge theory [28, 29] near
the boundary of the complex structure moduli space as demonstrated in [24, 30]. These
techniques have developed into a powerful tool to address various swampland conjectures in
an example independent way [24, 30–37]. In particular, it has been observed in [24] that
one can systematically analyze the axion backreaction using asymptotic Hodge theory.

In this work we generalize and complete the analysis of [24] and investigate, in full
generality, the backreaction within a single axion-saxion pair arising near any boundary of
the complex structure moduli space. Remarkably, we are now able to combine the insights
from asymptotic Hodge theory and Newton polygons associated with Puiseux expansions
to establish that there is universally a backreaction of the axion on its saxion partner
which grows when considering large field values of the axion. To achieve this goal we first
note that the asymptotic Hodge theory provides near every boundary in moduli space
an approximation to the all relevant functions in the effective theory via the so-called
nilpotent orbit [28]. The nilpotent orbit thus gives a near-boundary expansion that, by
using the results of [28, 29], can be encoded by a set of boundary data.1 A crucial part
of this boundary data is a set of commuting sl(2)-algebras which decompose the middle
cohomology of Calabi-Yau manifold into different sl(2)-representations. Also splitting a
general four-form flux into such representations gives us precise control about the limiting
behavior of Hodge norm and allows us to make the axion and saxion dependence in the
scalar potential explicit. In fact, we find that the underlying sl(2)-structure ensures that the
possible asymptotic scalar potentials generated by four-form fluxes form a rather constrained
set. Systematically going through all allowed cases we can then study the axion backreaction
generally. We do this by explicitly deriving the saxion vacuum expectation value determined
by the extremization equation of the scalar potential. We evaluate this saxion vacuum

1It was recently suggested in [30] that this is reminiscent of a holographic perspective, with an actual
underlying bulk and boundary theory.
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value depending on the axion as a parameter and study the behavior of the solution in the
limit when this parameter becomes large. The solution to this problem is given by Puiseux
expansions, which present the solution as a fractional power series whose leading power is
determined by a handy graphical tool called the Newton polygon. With the scalar potentials
derived using asymptotic Hodge theory the Newton polygon provides visual guidance to
the leading backreaction behavior of the saxion vacuum expectation value. This lets us
uncover a universal backreaction behavior generalizing the result of [10–12, 24] that is
present around any singularity in the Calabi-Yau fourfold complex structure moduli space.

Now we would like to state our results more concretely. In this work we focus on the
backreaction of one complex structure axion field φ on the saxion modulus s in the same
N = 1 multiplet. We find that, when a vacuum exists, a large displacement of the axion φ
always backreacts on the saxion vacuum expectation value s in the following fashion

s(φ) = cφγ +O
( 1
φ

)
, (1.1)

where the prefactor c > 0 is a positive number and the exponent 0 < γ ≤ 2 is a rational
number. There could be several different sets of c and γ corresponding to one flux config-
uration. We find that in almost every case, one has a solution with γ = 1, which agrees
with the linear backreaction behavior found in [10–12, 24]. The cases with γ > 1 are rather
restricted to the extent that only γ = 2 is allowed and they also need to satisfy a technical
condition which is discussed at the end of section 4.3. We find only two flux configurations
that generate γ = 2 backreaction and they have no γ = 1 branch. In contrast, we do not
find additional restrictions on cases with 0 < γ < 1 besides that the exponent γ should
be rational. However, we note that for these cases there is sometimes a co-existing γ = 1
branch. Regarding the prefactor c in the backreaction, the possibility that c depends on flux
numbers cannot be ruled out. Physically this implies that one cannot completely exclude a
delayed backreaction. In section 4.3 we give a simple condition on the flux such that the
delay cannot occur.

In view of our findings there are several interesting further studies that can be under-
taken. Recalling the relation with the Distance Conjecture, it would be interesting to study
the γ 6= 1 cases and the condition on the delay of a backreaction in the future. One first
extension is to take into account subleading corrections following the strategy in [30] and
check whether these extend the class of scalar potentials can arise. Furthermore, in this
work we have only exploited the conditions for s to be at an extremum of the potential
and not incorporated the additional constraints that actually is at a minimum. Hence,
the relation (1.1) gives the necessary behavior also at minima, but it could well be that
some of the cases with γ 6= 1 are not arising in an actual minimum. We would also like
to point out that while for finding extrema it is sufficient to focus on one axion-saxion
pair, the analysis of the conditions for having an actual minimum requires a more complete
treatment of all involved moduli. We have already formulate the setting and the analysis
in a general multi-variable language and we believe that it is desirable, while technically
more difficult, to generalize the study of backreaction to a multi-variable setting where the
vacuum expectation values of all saxions are considered.
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This paper is structured as follows. In section 2, we introduce the physical setting of
Calabi-Yau fourfold compactifications of F-theory, review variations of Hodge structures,
and rewrite the F-theory scalar potential using Hodge theory. In section 3, we discuss
the reason why only near the boundary of the complex structure moduli space axions can
emerge, review the relevant part of asymptotic Hodge theory, and provide the asymptotic
form of the F-theory scalar potential near the boundary. In section 4, after briefly setting
up the notation for sl(2)-representations and reviewing the notion of Puiseux series and
its associated Newton polygon, we expand the asymptotic scalar potential and solve the
backreacted vacuum expectation value of the geometric moduli. There we will not only
encounter the general backreaction behavior, but also collect apparent counterexamples.
Those counterexamples are then ruled out at the end of that section. Finally, in appendix A
we provide some technical details of asymptotic Hodge theory used in the main text.

2 F-theory on Calabi-Yau fourfolds with G4-flux

In this section we introduce in more detail the context in which we study axion backreaction
and moduli stabilization. More precisely, we will introduce part of the low-energy super-
gravity theory arising when considering F-theory compactified on a family of Calabi-Yau
fourfolds Y carrying G4-flux in section 2.1. We will then express the induced flux scalar
potential depending in terms of the Hodge decomposition in section 2.2 and comment on
the use of the Hodge filtration.

2.1 Scalar potential and its complex structure dependence

To begin with, we first compactify M-theory with G4-flux on Calabi-Yau fourfolds Y to
obtain a three-dimensional N = 2 effective supergravity theory with a scalar potential for the
complex structure moduli and Kähler structure moduli induced by the flux [38]. To connect
this setting to an F-theory compactification we assume that Y admits a two-torus fibration.
The three-dimensional action is then lifted to a four-dimensional N = 1 supergravity theory
by shrinking the volume of the two-torus fiber of Y . This procedure defines the reduction of
F-theory on the Calabi-Yau fourfold Y to obtain a four-dimensional effective theory [25, 26].
Crucial for our considerations is the fact that the complex structure moduli of Y reside
in chiral multiplets both in the three-dimensional effective theory obtained from M-theory
and the four-dimensional effective theory derived by the lift to F-theory. It was shown
in [23, 24, 31] that within the complex structure moduli space, fields with approximate
shift symmetry, i.e. axion fields, can only arise near the boundaries of moduli space. These
boundaries will have to satisfy certain conditions, which we will recall below. It is with
these axions and their partner saxions that will be the focus of this work.

Let us now discuss the scalar potential induced by a background flux G4 ∈ H4(Y,Z/2).
It is well-known [38] that the three-dimensional scalar potential arising in the M-theory
reduction takes the form

V = 1
V3

4

(∫
Y
G4 ∧ ∗G4 −

∫
Y
G4 ∧G4

)
, (2.1)
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where ∗ is the Hodge-star operator of Y and V4 is the volume of the Calabi-Yau fourfold
Y . Note that the scalar potential depends on complex structure and the Kähler structure
deformations through the Hodge-star operator in the first integral. Furthermore, in V there
is an additional Kähler structure moduli dependence through the overall volume factor.
Without further inclusion of localized sources such as M2-branes filling the three-dimensional
spacetime, the G4-flux needs to satisfy the following tadpole cancellation condition [39]

1
2

∫
Y
G4 ∧G4 = χ(Y )

24 . (2.2)

The scalar potential (2.1) can be cast into a form compatible with N = 2 supersymmetry
in three dimensions. Instead of reviewing the whole construction of the characteristic N = 2
data, we will henceforth focus only on the complex structure moduli dependence of the
Hodge star in (2.1). This amounts to requiring that our G4-flux lives in the primitive
middle cohomology H4

p(Y,Z) [38], which is equivalent to stating that if J ∈ H1,1(Y ) is
the Kähler class of the Calabi-Yau fourfold Y the fluxes under consideration satisfy the
condition J ∧G4 = 0. Inserting this condition into (2.1), the resulting scalar potential can
be shown to arise from a Kähler potential K and a superpotential W [27, 38] given by

K = − log
∫
Y

Ω ∧ Ω̄ , W =
∫
Y

Ω ∧G4 , (2.3)

where Ω is the, up to rescaling, unique (4, 0)-form on Y and hence represents H4,0(Y,C).
Let us note that we make a further simplification that will keep our discussion accessible.

In order to not deal with integer cohomology and the many associated subtleties, we will
not be careful about the quantization of the G4 flux [40] and ofter write G4 ∈ H4

p(Y,R).
While imposing the quantization conditions on G4 is important in deriving numerical values
and establishing finiteness results [30, 41] it will not be altering the conclusions about
backreaction that we obtain in this work.

2.2 Scalar potential and the Hodge filtration

In order to identify the conditions for axions to arise in the complex structure moduli space
and to study their backreaction effects, we need to put the above expression for the scalar
potential into a Hodge-theoretic context. Let us review some of the relevant definitions in
order to establish notations. For more complete information, we refer the math article [42]
and the recent physics application [30, 32].

To begin with, we note that the primitive middle cohomology of a smooth Calabi-Yau
fourfold Y carries a pure Hodge structure of weight four, which is described by the Hodge
decomposition

H4
p(Y,C) = H4,0 ⊕H3,1 ⊕H2,2 ⊕H1,3 ⊕H0,4 , (2.4)

satisfying Hp,q = Hq,p. Note that the H2,2 here denotes primitive (2, 2)-forms, i.e. it is a
shorthand for H2,2 ∩H4

p(Y,C), and all subspaces Hp,q different from H2,2 are automatically
primitive in the Calabi-Yau fourfold setting. In practice it is more useful to use an equivalent
description in terms of the Hodge filtration

0 ⊂ F 4 ⊂ F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0 = H4
p(Y,C) , (2.5)
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satisfying F p ⊕ F 4−p+1 ∼= H4
p(Y,C). One can recover the Hodge decomposition by setting

Hp,q = F p ∩ F q. On the other hand, given a Hodge decomposition, the corresponding
Hodge filtration is given by

F p =
⊕
r≥p

H4−r,r . (2.6)

The Hodge structure will change as one deforms the complex structure of the Calabi-Yau,
and the merit of using Hodge filtration is that the filtration will change holomorphically
with respect to the complex structure moduli tI . The variation of Hodge structure is
captured by the period map F (t), which records the whole Hodge filtration F p, p = 0, . . . , 4,
corresponding to the complex structure moduli tI .

Moreover, the Hodge structure is polarized by the symmetric intersection form on the
Calabi-Yau fourfold

〈α, β〉 =
∫
Y
α ∧ β , (2.7)

for α, β ∈ H4
p(Y,C). There is also a Weil operator CF , depending on the Hodge filtration

F , defined by
CF (α) = ip−qα , for α ∈ Hp,q . (2.8)

It is a standard result that on the primitive middle cohomology of a Calabi-Yau fourfold,
the Weil operator coincides with the Hodge star operator. With the help of the polarization
form and the Weil operator, we can define the Hodge inner product and its associated
Hodge norm

〈α|β〉F = 〈CFα, β〉 , (2.9)
‖α‖2F = 〈α|α〉F , (2.10)

which depends on the Hodge filtration F .
For later reference, we also need to introduce the symmetry group of the variation of

Hodge structures: it is the group G of linear automorphisms of H4
p(Y,C) that preserves

the dimension of Hodge filtration and the polarization pairing 〈 · , · 〉. There is also a real
counterpart GR of this symmetry group that consists of the automorphisms of H4

p(Y,R).
More concretely, in the case of Calabi-Yau fourfolds, we have

G = SO(2 + h2,2
p + 2h1,3,C) , and GR = SO(2 + h2,2

p , 2h1,3) , (2.11)

where h2,2
p = h2,2−h1,1 is the dimension of the space of primitive (2, 2)-forms. This number

follows from the Lefschetz decomposition. Namely, one has

H2,2 = H2,2
p ⊕ JH1,1

p ⊕ J2H0,0
p , H1,1 = H1,1

p ⊕ JH0,0
p , H0,0

p = H0,0 , (2.12)

where JHp,p = {J ∧ α|α ∈ Hp,p} ⊂ Hp+1,p+1 contains the cup product between the Kähler
class and (p, p)-classes. Since we are working with Calabi-Yau spaces, h0,0 = 1. From the
last two equalities, one finds h1,1

p = h1,1 − 1. And then h2,2
p = h2,2 − h1,1 follows.

We can now re-express the F -term scalar potential in the Hodge theoretical language:
note that our G4 is real, so the scalar potential induced by G4 can now be written as

V (t) = 1
V3

4
(‖G4‖2F (t) − 〈G4, G4〉) . (2.13)
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The first term contains the Hodge norm of G4 evaluated at the Hodge structure F (t). This
is the term that we will focus on in the study of the backreaction of axions on the vacuum
expectation values of stabilized saxions.

3 Complex structure axions and asymptotic Hodge theory

In this section we explain that in order to identify axionic directions in complex structure
moduli space we have to be at its boundaries, i.e. approach a limit in which the associated
Calabi-Yau fourfold degenerates. Furthermore, we will see that the considered boundary
has to satisfy a set of conditions [23, 24, 31]. To formulate these conditions we have to
introduce some additional facts about the moduli space and, in particular, the behavior of
the Hodge decomposition (2.4) near its boundaries. This forces us to briefly review parts of
asymptotic Hodge theory that is relevant to our study of the axion backreaction problem.
In section 3.1 we will briefly recall why axions arise near the boundaries of the moduli
space and introduce the so-called nilpotent orbit that describes the asymptotic form of
the Hodge decomposition. In section 3.2 we then explain how one can associate to each
boundary sets of commuting sl(2)-triples and a well-defined boundary Hodge structure.
The asymptotic form of the scalar potential is then determined in section 3.3. We first
introduce the normal form of the period mapping F (t) near any boundary and use it to
find the asymptotic expression of the Hodge norm. That asymptotic expression will be used
in our study of the axion backreaction problem in the next section. The aim of this section
is to briefly introduce the relevant results without going into mathematical details. We will
supply further details in appendix A. The precise mathematical statements summarized in
this section are contained in the review [42] and the original papers [28, 29]. For a more
physical formulation that emphasizes similar parts of asymptotic Hodge theory, see [30, 32].

3.1 Axions at the boundary of moduli space

In this section we identify the regions in the complex structure moduli space in which
one can find fields that admit approximate continuous shift symmetries and hence can
be interpreted as axions. In order to do that we first recall that the discrete symmetries
of the moduli space are encoded by the so-called monodromy group. These monodromy
symmetries can then lead to an approximate continuous shift symmetry near the boundaries
of moduli space.

In the following we will introduce stepwise a local description of the region near the
boundaries in moduli space along which the associated Calabi-Yau manifold Y degenerates.
We begin by fixing local coordinates zI , where I = 1, . . . , h3,1, for a patch around a boundary
locus of codimension n in the complex structure moduli space. We choose these coordinates
such that the boundary is located at zi = 0 for all i = 1, . . . , n. It will also often be useful
to implement the coordinate transformation2

ti = 1
2πi log zi . (3.1)

2The coordinates ti are actually local coordinates on the universal cover of the near boundary patch in
the moduli space.
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The new set of coordinates ti take value in the upper half plane, and the singularity is now
located at ti → i∞, for i = 1, . . . , n. The coordinates ti can be further decomposed into
real and imaginary parts

ti = φi + isi . (3.2)

The real parts φi are the candidate axions if one is close to the boundary si = ∞ as we
will see below. In fact, the φi can enjoy an approximate shift-symmetry if the monodromy
transformation associated to the boundary satisfies certain conditions. In cases in which
the φi are identified as axions the imaginary parts si is often referred to as saxion. We
will sometimes use this terminology more loosely, by referring to the coordinates si, φi as
saxion and axion without always stressing the extra condition on the associated monodromy
transformation. Note that from (3.1) we see that ti takes value in the upper half plane,
so we have a basic constraint si > 0. The region close to the boundary is characterized
by si � 1.

The next data one needs to record is the monodromy operators that arise when encircling
the boundary locus zi = 0, i = 1, . . . , n. There are n monodromy operators and they are
defined as the monodromy of the period map F (t), introduced after (2.6), when one loops
around the singular locus: when ti → ti + 1 (equivalently zi → e2πizi), the period map
changes F (ti+1) = TiF (ti). In our geometric setting, where the variation of Hodge structure
is induced from the deformation of Calabi-Yau complex structures and that there is an
integral basis of the primitive middle cohomology H4

p(Y,C), one can choose the coordinates
in the complex structure moduli space such that the monodromy matrices take the form

Ti = eNi , (3.3)

where Ni are nilpotent matrices. Note that the operators Ti are elements of the real
symmetry group GR given in (2.11), while the Ni are elements of the associated real
algebra gR.

The monodromy matrices Ti, or rather the associated Ni, are essential in evaluating
the Hodge decomposition (2.4) near the boundary. In general, the Hodge structure will
degenerate exactly on the boundary si = ∞ and has to be replaced by a more sophisti-
cated structure, a so-called ‘limiting mixed Hodge structure’, which we will describe in
section 3.2. The starting point for construction of this structure is Schmid’s nilpotent orbit
theorem [28, 29]. It states that around the boundary locus si =∞, i.e. when si � 1, the
period map F (t) is well approximated by the nilpotent orbit of the following form

Fpol(t) = et
iNiF0 , (3.4)

where we sum in the exponential over i = 1, . . . , n. In fact, the nilpotent orbit can be
viewed as the essential part of the period map that arises by dropping certain exponential
corrections O(e2πitj ), while still keeping a well-defined Hodge decomposition. Note that
this implies that in many limits non-perturbative corrections are still recorded in Fpol(t) as
discussed in more detail in [30, 43]. Note that (3.4) immediately implies that in order that
Re ti = φi is an axion with an approximate shift symmetry unbroken by O(e2πitj )-corrections
we have to consider a boundary with Ni non-vanishing.
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While we will bypass using the Kähler potential and superpotential (2.3), let us remark
that we have given these quantities in terms of the holomorphic (4, 0)-form Ω. In order
to get the naive nilpotent orbit approximation Knil for K we can now apply the fact that
also F 4 = H4,0 admits a representation (3.4). This implies that Ω, after possibly fixing an
overall rescaling, can be expressed as

Ω(z) = et
iNia0︸ ︷︷ ︸

Ωnil(t)

+O(e2πitj ) . (3.5)

Here a0 can still be a holomorphic function in the coordinates that are not sent to a limit.
Inserting this expression we can now write

Knil = − log〈Ωnil, Ω̄nil〉 = − log〈e2isjNja0, ā0〉 , (3.6)

which is thus a logarithm of a polynomial in the si with a finite number of terms. This
implies that Knil is independent of the axions φi, while Knil still depends on a considered
variable si if Nia0 6= 0. We therefore conclude that a sufficient condition that φi is an
axion with an approximate continuous shift symmetry φi → φi + ci is that N ia0 6= 0.
This latter condition is a necessary condition for the limit to be at infinite distance in the
metric derived from K [44]. The appearance of the continuous shift symmetries at infinite
distance singularities was discussed in [31] in the context of the Distance Conjecture. In the
following, we will not restrict our attention to cases where Nia0 6= 0, since this restriction is
not necessary for our arguments to go through. While we have not checked that the Kähler
metric indeed depends on the φi only through exponential corrections, we will see that in
either case this does not alter our analysis. In the following we will refer to φi as axions
whenever Ni 6= 0.

In a related matter, let us stress that, in general, the expression (3.6) cannot be used
to compute the Kähler metric, since taking the nilpotent orbit approximation and taking
derivatives with respect to the moduli does not commute. Nevertheless, we can use the
full result (3.4) for the nilpotent orbit of the complete Hodge filtration to compute the
Kähler metric or derivatives of the superpotential. As mentioned above, we will bypass
this issue completely by working directly with the scalar potential (2.13) and apply the
approximations to this expression. In the remainder of this section we will show how
starting from the nilpotent orbit (3.4) we can derive an approximate scalar potential with
an explicit dependence on the axions φi.

3.2 The boundary sl(2)-structures associated to a degeneration

In the last subsection we have argued that in order to have candidate axion fields φi in
complex structure moduli space some of the complex structure moduli need to be close to
the boundary of this moduli space. Furthermore, we have seen that the Ni associated to
this boundary have to be non-vanishing. To study the dynamics of the axions we thus need
to evaluate the asymptotic behavior of the scalar potential (2.13) near the boundary. As
will become apparent below the highly non-trivial SL(2)-orbit theorem developed in [28]
and [29] provides the necessary information about the near boundary region to attack this
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problem. In the following we will briefly review the ingredients of the SL(2)-orbit theorem
needed in this paper.

The main result discussed in section 3.1 is the fact that one can associate to each bound-
ary in moduli space a nilpotent orbit (3.4). This orbit encodes the Hodge structure (2.4)
near the boundary at si =∞, i = 1, . . . , n. In summary, we have the data (Fpol, N1, . . . , Nn),
which is regarded as the input of the SL(2)-orbit theorem. The data constructed by the
SL(2)-orbit theorem includes a collection of

commuting sl(2)-triples: (N−i , N
0
i , N

+
i ) , for i = 1, . . . , n , (3.7)

and a
boundary Hodge structure: F∞ . (3.8)

The commuting sl(2)-triples satisfy the standard relations

[N0
i , N

±
i ] = ±2N±i , [N+

i , N
−
i ] = N0

i , (3.9)

and the boundary Hodge structure is again a weight-four pure Hodge structure on the
primitive cohomology H4

p(Y,C) polarized by the intersection bilinear form 〈 · , · 〉. Unpacking
the definition, this means that one is able to define its associated Hodge decomposition

H4
p(Y,C) =

⊕
p+q=4

Hp,q
∞ , where Hp,q

∞ = F p∞ ∩ F
q
∞ , and Hp,q

∞ = H
q,p
∞ , (3.10)

such that the following polarization condition is satisfied

〈Hp,q
∞ , Hr,s

∞ 〉 = 0 , unless (p, q) = (s, r) . (3.11)

We can also define its associated Weil operator and Hodge norm according to equations (2.8)
to (2.10)

C∞(α) = ip−qα , for α ∈ Hp,q
∞ ,

〈α, β〉∞ = 〈C∞α, β〉 , (3.12)
‖α‖∞ = 〈α, α〉∞ ,

where we abbreviate the F∞ appearing in subscripts as ∞ to ease the notational burden.
To proceed further, it is convenient to denote the cumulated sum by braced subscripts.

For example, we have
N0

(i) = N0
1 + · · ·+N0

i . (3.13)

Because the operators N0
i commute with each other, their cumulated sums N0

(i) also mutually
commute [N0

(i), N
0
(j)] = 0, thus they have common eigenspaces. In other words, the operators

N0
(i) define a multi-grading

H4
p(Y,R) =

⊕
`=(l1,...,ln)

V` , (3.14)

where each V` is the simultaneous eigenspace of N0
(i) with eigenvalue li,3 i.e.

N0
(i)v` = liv` , for v` ∈ V` and i = 1, . . . , n . (3.15)

3Note that our convention differs from the convention in [24] by a constant shift of four.
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The multi-grading (3.14) is defined on the real cohomology because the operators N0
i are

elements of gR. In the following, we will also work with complexified multi-grading by
allowing complex linear combinations.

The multi-grading (3.14) and the boundary Hodge structure F∞ are compatible with
each other in the sense that the multi-grading is orthogonal with respect to the Hodge inner
product 〈 · | · 〉∞, i.e.

〈V`|V`′〉∞ = 0 , unless ` = `′ . (3.16)

Furthermore, this Hermitian Hodge inner product becomes a symmetric positive-definite
inner product after being restricted to the real cohomology H4

p(Y,R), hence we can always
choose a real orthonormal basis {ei`} for each V`:

V` = spanR{ei`} , and 〈ei`|e
j
`′
〉∞ = δijδ``′ . (3.17)

Such choice of orthonormal basis will be used in our analysis of the scalar potential (2.1)
near the boundary in section 4.

3.3 Asymptotic form of periods and the scalar potential

Now we come back to the study of the asymptotic behavior of the scalar potential (2.13)
near the boundary. Our focus will be its first term containing the Hodge metric evaluated at
F (t). We will first introduce a normal form of the period mapping F (t), which factors F (t)
into nice pieces. Moreover, each factor in the normal form has a good limiting property near
the boundary where si =∞. These limits combine into each other, yielding an asymptotic
form of the scalar potential that will be the object studied in section 4.

In order to write down the normal form, we need again the data of the nilpotent
orbit (Fpol, N1, . . . , Nn) defined in (3.3) and (3.4). In addition, we require an extra piece
of information: a holomorphic function Γ(z) valued in the Lie algebra gR. This function
satisfies certain properties that are reviewed in appendix A. For the moment we only need
to know its existence. Then the normal form of the period map [42] is given by

F (t) = et
iNieΓ(z)F0 = eφ

iNieisiNieΓ(z)F0 , (3.18)

where we remind the reader that the tj-dependence in the Γ(z)-function is introduced via
zj = e2πitj as in (3.1). The normal form provides a convenient factorization of the period
mapping into group elements eφiNi ∈ GR and eisiNi ,eΓ(z) ∈ GC acting on the filtration F0.

We will now introduce a natural action of GC on the Hodge norm, which will not only
let us factor out the axion dependence in the scalar potential, but also turn the general
study of Hodge norm in the bulk near the boundary into the study of the Hodge norm
induced by F∞ at the boundary. This action is defined as follows. For every element g ∈ GC
and form α, β ∈ H4

p(Y,C), there is a tautological relation

〈α|β〉F = 〈gα|gβ〉gF . (3.19)

This relation then equips the following action of g on the Hodge norm of α

‖α‖gF = ‖g−1α‖F . (3.20)
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These properties of the Hodge norm and the normal form of the period mapping allow us
to factor out the axion dependence in the scalar potential. More precisely, using the action
of GC on the Hodge norm we can write

‖G4‖F (t) =
∥∥∥e−φiNiG4

∥∥∥
eisiNieΓ(z)F0

. (3.21)

In accordance with the nilpotent orbit theorem discussed in section 3.1 (see appendix A for
more details) near the boundary si =∞, the term eΓ(z) will provide exponentially suppressed
corrections. It is in this sense that near the boundary the dependence of ‖G4‖F (t) in the axion
φi and saxion si are separated. Note also that the operator e−φiNi being an element in the
group GR by definition preserves the polarization form: 〈e−φiNiG4, e

−φiNiG4〉 = 〈G4, G4〉.
These facts instruct us to define the modified G4-flux including the axions in [24]

ρ(φ,G4) = e−φ
iNiG4 . (3.22)

This redefinition has also been motivated and discussed intensively in [45–47]. In this paper
we find it more convenient to not use this redefinition ρ(φ,G4), but rather always directly
display G4. In summary, the scalar potential expressed using the split (3.21) takes the form

V (t) = 1
V3

4

[∥∥∥e−φiNiG4
∥∥∥2

eisiNieΓ(z)F0
− 〈G4, G4〉

]
. (3.23)

Let us now turn to a more in-depth study of the asymptotic form of the scalar
potential (3.23) near the boundary. In higher-dimensional moduli spaces, the asymptotic
behavior can depend on the path along which one approaches the boundary si = ∞. In
order to regulate this, we need to introduce the growth sector

R1···n =
{
s1

s2 ≥ λ, . . . ,
sn−1

sn
≥ λ, sn > λ

}
, (3.24)

where we consider λ ≥ 1. The definition of the growth sector binds with an ordering of
the variables ti. Setting λ = 1 one can cover the entire neighborhood of the boundary by
growth sectors obtained by considering every ordering in the variables ti. In the following
we will focus on one of these sectors, namely R1···n, after possibly renaming the coordinates.
Gluing these sectors together can be a non-trivial task, but is not of importance in the
remainder of this work. Note that eventually we will work in the ‘strict asymptotic regime’,
i.e. we will assume λ� 1.

In order to analyze the asymptotic behavior of the Hodge norm, i.e., the first t-dependent
term in (3.23), we will introduce an operator e(s) following [42]. It is defined by

e(s1, . . . , sn) = exp
{1

2(log sr)N0
r

}
, (3.25)

where r is being summed from 1 to n. One of the motivations behind the introduction of
the e(s)-operator is the property

e(s)eφjNje(s)−1 = exp
{

n∑
j=1

φj

sj

[
N−j +

∑
αj>0

N ′j,αj(
s1

s2

)αj
1/2 · · ·

(
sj−1

sj

)αj
j−1/2

]}
, (3.26)
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where Nj is the log-monodromy operator introduced in (3.3), N−j is the corresponding
lowering operator in the commuting sl(2)-triples introduced in (3.7). The operators N ′j,αj

are nilpotent operators living in gR. The derivation of this expression together with the
precise definition of the operators N ′j,αj can be found in appendix A. The main point is
that if one moves towards the boundary si =∞ within the growth sector R1···n, while not
keeping the candidate axion φi finite, the terms proportional to N ′j,αj are polynomially
suppressed. This implies that in the limit of large si we find within R1···n the limiting
behavior

e(s)eφjNje(s)−1 → exp
( n∑
j=1

φj

sj
N−j

)
, (3.27)

e(s)eisjNje(s)−1 → exp
(

i
n∑
j=1

N−j

)
, (3.28)

where the second line can be obtained from the first by formally setting φj = isj . If we look
at the normal form of the period mapping (3.18), we see that some limiting expressions
related to eΓ(z) and F0 are also needed. We state the correct form of the limits here, and
refer to appendix A for their derivation

e(s)eΓ(z)e(s)−1 → 1 ,

exp
(

i
n∑
j=1

N−j

)
e(s)F0 → F∞ , (3.29)

where F∞ is the boundary Hodge filtration.
Combining the normal form of the period mapping (3.18) and equations (3.27) to (3.29)

gives us the following limiting expression of the period mapping F (t) near the boundary
si =∞ in the growth sector R1···n

F (t)→ e(s)−1 exp
( n∑
j=1

φj

sj
N−j

)
F∞ . (3.30)

The above result can be applied immediately to the study of the scalar potential (3.23).
Combining the action of GC on the Hodge norm and the asymptotic expression of the
period mapping (3.30), we have4

∥∥∥e−φiNiG4
∥∥∥
eisiNieΓ(z)F0

=
∥∥∥e(s)e−φiNiG4

∥∥∥
e(s)eisiNieΓ(z)F0

∼
∥∥∥∥ exp

( n∑
j=1
−φ

j

sj
N−j

)
e(s)G4

∥∥∥∥
∞
.

(3.31)

So in the strict asymptotic regime λ � 1 in (3.24), the scalar potential (3.23) has the
following asymptotic form

V (t) ∼ 1
V3

4

[∥∥∥∥exp
( n∑
j=1
−φ

j

sj
N−j

)
e(s)G4

∥∥∥∥2

∞
− 〈G4, G4〉

]
. (3.32)

4As usual, the symbol ∼ indicates that the quantities on both sides approximate each other increasingly
well as one move towards the considered boundary.
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This asymptotic form of the scalar potential is the main result from asymptotic Hodge
theory that we will use in the following. The important thing to note is that all dependence
in (3.32) on the axions φi and the saxions si is explicit and given in terms of the boundary
structure. In particular, the norm ‖ · ‖∞ is both well-defined and independent of ti, but can
depend still on the coordinates not considered to be near the boundary. Combined with the
underlying sl(2)-structure we can use this form of the potential to tackle the stabilization
of saxions in the presence of large displacement of axions.

Let us close this section with a short comment on the apparent discrepancy be-
tween (3.32) and our result in section 7 of [24]. The reason of the discrepancy is that
in [24] we replaced all Ni in the expression of ρ(φ,G4), given in (3.22), by their commuting
sl(2)-counterparts N−i . This was done to simplify the computation, but it neglected the
contributions from the difference between Ni and N−i . Had the replacement not been done,
the two approaches are equivalent because

‖e(s)ρ(φ,G4)‖∞ ∼
∥∥∥∥ exp

( n∑
i=1
−φ

i

si
N−i

)
e(s)G4

∥∥∥∥
∞
, (3.33)

which is the step deriving (3.31). The left-hand-side of the above equation is the object
studied in [24] whereas the right-hand-side is the object studied in this note.

4 Axion backreaction on the saxion vacuum

In this section we study the backreaction of a large displacement of an axion, denoted by
φk, on the saxion vacuum expectation values. This forces us to discuss moduli stabilization
within the general scalar potential (3.32), which is a very hard problem. In particular,
while we know the field dependence of (3.32) on the fields ti, we have no control over its
dependence on the coordinates of complex structure moduli space not considered close to the
boundary. Here the power of asymptotic Hodge theory comes to the rescue, since it allows
us to control at least the positivity properties and the hierarchy of certain couplings that
cannot be further specified. We will then focus on one pair of axion and saxion (φk, sk) and
study the stabilization of the saxion sk via the potential (3.32) to its vacuum expectation
value sk. To simplify notation we use in this section the definition:

s ≡ sk , φ ≡ φk . (4.1)

We then find that whenever we try to fix s and assume that the associated axion φ is large,
we find the following universal relation

s(φ) ∼ c φγ +O
( 1
φ

)
, (4.2)

where c is a positive number, and 0 < γ ≤ 2 is a rational number. While our expression
is slightly more general, the relation (4.2) shows that one always encounters the type of
backreaction that was found in [10–12]. In fact, we will argue in the end of section 4.3 that
in most cases one indeed has γ = 1, and in general γ < 1 can appear if some special choices
of parameters are allowed. The γ > 1 cases are even rarer in the sense that only two valid
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special cases with γ = 2 are found. In other words, the fact that one cannot displace the
axion by very large values without destabilizing the saxion is a consequence of the boundary
sl(2)-structure introduced in the last section. We stress, however, that we will not be able
to make statements about the precise value of c and its dependence on the fluxes and other
moduli. While c cannot be made zero, we will not exclude the possibility that it can be
made small by fine-tuning leading to a somewhat delayed backreaction [11, 15–17]. A short
discussion on the dependency of c and the flux numbers can also be found at the end of
section 4.3.

Our study relies heavily on the action of the commuting sl(2)-triples on the coho-
mology H4

p(Y,R), hence we will start with reviewing some elementary facts about sl(2)-
representations in section 4.1. The boundary sl(2)-structure then allows us to bring the
asymptotic scalar potential into a convenient form and can be extremized in the limit of
large axion. This amounts to solving a one-parameter family of one-variable polynomial
equations and study how the root depends on the parameter in certain limits. This kind of
problem is exactly studied by a well-known mathematical tool called the Puiseux expansion,
whose information is registered in a pictorial way in the so-called Newton diagram. We
will review the notion of Puiseux expansions and their associated Newton diagrams in
section 4.2. Having introduced these additional tools we turn in section 4.3 to the detailed
study of the asymptotic scalar potential and its extremization condition. With the help
of the boundary sl(2)-structure and the Newton diagram, we will show that almost all
flux configurations will give an axion backreaction behavior of the form (4.2). We will
also enumerate all possible flux configurations that can potentially generate a backreaction
behavior different from (4.2). These flux configurations are then studied case-by-case in
section 4.4. Interestingly, none of them actually yields a valid solution, in the sense that each
case generates a saxion vev leading term that is either negative or imaginary. We conclude
this section with a list of bad cases, where some explicit examples are also provided.

Before we start, let us state again the scalar potential (3.32) focusing only on a single
axion-saxion pair (φ, s), but allowing for a slight generalization with an overall factor. More
precisely, we will consider in the following the scalar potential

V (φ, s) := 1
sα

[∥∥∥∥exp
(
− φ

s
N−

)
e(s)G4

∥∥∥∥2

∞
−Aloc

]
, (4.3)

where we have set N− ≡ N−k and recall that the e(s)-operator is defined in (3.25). The
localized contribution that does not depend on the complex structure moduli is collectively
denoted by Aloc. Following [24], we have included the overall scaling 1/sα with an undeter-
mined power α. This factor can be thought of as arising from V4 in (3.32) and enables a
comparison between the F-theory potential and the IIA scalar potential [48, 49]. Around
the weak coupling limit of F-theory, the value of α is known to be 3 when s is related to
the Type IIA dilaton as discussed in detail in [24]. In general it is not known how large
α is near other singularities. However, requiring that the scalar potential (4.3) is finite as
s→∞ restricts the possible range of α. We will find that after imposing this restriction
the backreaction (4.2) is universal.
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4.1 A brief review of representations of the sl(2)-algebra

It turns out that asymptotics of (4.3) with respect to (φ, s) ≡ (φk, sk) only depends on the
behavior of the G4-flux under the action of the k-th commuting sl(2)-triple, whose lowering
and number operators are denoted by (N−, N0), respectively. We will abuse the notation
and denote the k-th sl(2)-triple (N−k , N0

k , N
+
k ) just by (N−, N0). In this subsection let

us recall some elementary facts of sl(2)-algebra representations [50]. We work over the
real numbers since the sl(2)-triple and G4-flux are real, nevertheless the theory holds for
complex representations as well. We align with the notation in section 4.2 of [30].

For any integer d ≥ 0, there is a (d+ 1)-dimensional irreducible representation Wd of
the sl(2)-algebra (N−, N0). One can specify a special state |d, d〉 in Wd called the highest
weight state of weight d. It satisfies the property

(N−)d |d, d〉 6= 0 and (N−)d+1 |d, d〉 = 0 . (4.4)

A basis of the representation Wd can then be constructed out of the highest weight state
|d, d〉 and the lowering operator N− as follows

Wd = spanR{|d, d〉 , |d, d− 2〉 , . . . , |d,−d〉} , (4.5)

where
|d, d− 2n〉 = 1

n! (N
−)n |d, d〉 , (4.6)

for n = 0, . . . , d. These vectors are also eigenstates of the N0 operator, satisfying

N0 |d, l〉 = l |d, l〉 . (4.7)

We call the eigenvalue l the weight of the state |d, l〉. This state also satisfy

(N−)
d+l
2 |d, l〉 6= 0 and (N−)

d+l
2 +1 |d, l〉 = 0 . (4.8)

Note that by construction, d+ l is always an even non-negative number.
Now we make contact with the boundary sl(2)-structure. In equation (3.7), a series

of commuting sl(2)-triples is introduced at the boundary of the complex structure moduli
space. These commuting sl(2)-algebras act on H4

p(Y,R) and, in particular, turn H4
p(Y,R)

into a real representation of the k-th sl(2)-algebra (N−, N0). According to the above
discussion of representations of sl(2)-algebras, H4

p(Y,R) enjoys the following decomposition

H4
p(Y,R) =

4⊕
d=0
W[d] , (4.9)

where
W[d] =Wd

1 ⊕ · · · ⊕Wd
µd

(4.10)

consists of µd copies of irreducible representations Wd
id

of dimension d+ 1. Different highest
weight states with the same d-label are distinguished by the index id = 1, . . . , µd: they are
denoted by |d, d; id〉 ∈ Wd

id
and their descendants are denoted similarly by |d, ld; id〉. One

also sees that each basis vector in (4.5) has a well-defined eigenvalue under the action of
N0. Hence we relate the orthonormal basis (3.17) adapted to the multi-grading to the basis
vectors in (4.5) in a one-to-one manner. We fix the basis (4.5) in this way, so that two basis
vectors in (4.5) are orthogonal to each other unless they carry identical indices d, ld and id.
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4.2 A brief review of the Puiseux expansion

To determine the backreacted saxion vacuum expectation value, we need to study how
the root of a one-parameter family of polynomial equations change with respect to the
parameter. This type of question can be studied expanding the solution into Puiseux series.
In this subsection we briefly review the use of the Puiseux expansion and Newton diagram.
We will not show any proof of the facts and the interested reader can find the proof in [51].

For simplicity, we work over the complex numbers in this subsection so that every
polynomial always has roots. When we apply the Puiseux expansion to analyze the axion
backreaction, we will always require the existence of a vacuum. This means that the
polynomial arising from the first derivatives of the scalar potential, see (4.23) below, is
assumed to have a real root. The method of expanding the root into a Puiseux series also
applies in such circumstances.

The Puiseux expansion studies generalized polynomial equations in two variables
F (s, φ̂) = 0, with the variable φ̂ being distinguished in the sense that the powers of φ̂ are
allowed to be negative. The equation F (s, φ̂) = 0 can also be regarded as a one-variable
polynomial equation with a parameter φ̂. Around φ̂ = 0, any s satisfying F (s, φ̂) = 0 can
be regarded as a function of φ̂. The series representation of s(φ̂) is given by the Puiseux
expansion, which is a fractional power series. More precisely, let us assume the following
form of a generalized polynomial

F (s, φ̂) = a0(φ̂) + a1(φ̂)s+ · · ·+ an(φ̂)sn , (4.11)

where every ai(φ̂) is a polynomial in φ̂ and 1/φ̂ with complex coefficients

ai(φ̂) =
∑
j

aijφ̂
j . (4.12)

Then the Puiseux expansion states that, near φ̂ = 0, any root of the equation F (s, φ̂) = 0,
regarded as a function s = s(φ̂), can be expanded as

s(φ̂) = c

φ̂γ
+
∞∑
i=0

ciφ̂
i/m , (4.13)

where c and ci are complex numbers, γ is a rational number and m is a positive integer. Our
focus is on the leading power γ. Knowing that any s-root must admit a fractional power
series expansion (4.13), the determination of γ is standard: one inserts the expansion (4.13)
back to the original equation (4.11) and solves for the γ that makes the lowest order terms
cancel. This whole procedure was encoded by Newton into an intuitive gadget called
the Newton polygon which we introduce next. We would like to comment that despite
determining γ is straightforward once one has the Ansatz (4.13), the significance of the
Puiseux expansion lies in the proof of convergence of the fractional series [51].

To determine γ pictorially, we need to first define the Newton diagram ∆(F ) of F (s, φ̂)
as follows

∆(F ) =
{

(i, j) ∈ R2 | aij 6= 0 in F (s, φ̂)
}
, (4.14)
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j

i

−2

2 5

Figure 1. The Newton diagram ∆(F ) of the polynomial (4.15) consists of the four solid dots shown
in this figure. The corresponding Newton polygon, the lower convex hull of the Newton diagram, is
labelled by double lines. The vertical axis labels the powers of φ̂ while the horizontal axis labels the
powers of s.

which simply consists of the dots (i, j) on the plane such that a term siφ̂j with non-vanishing
coefficient aij 6= 0 appears in the generalized polynomial F (s, φ̂). By our assumption on
the polynomial F , its Newton diagram ∆(F ) will only occupy the half plane i ≥ 0. Then
the Newton polygon of F is defined to be the lower convex hull of ∆(F ). To illustrate the
definition with an example let us consider the polynomial

F (s, φ̂) = a1

φ̂2
+ a2s

2 + a3

φ̂2
s3 + a4s

5 , (4.15)

where a1, a2, a3 and a4 are non-zero numbers. This polynomial arises in a specific 2-moduli
degeneration of Calabi-Yau fourfolds.5 The Newton diagram and Newton polygon is shown
in figure 1.

The Newton polygon consists of several segments. Each segment with slope γ determines
a possible leading exponent γ in the Puiseux expansion (4.13). In our example (4.15), with
Newton polygon shown in figure 1, the polygon consists of two segments with slopes 0
and +1. So around φ̂ = 0, the equation has the following roots represented by Puiseux
expansions

s1(φ̂) = c1

φ̂
+
∞∑
i=0

c1,iφ̂
i/m , (4.16)

s2(φ̂) = c2 +
∞∑
i=1

c2,iφ̂
i/n , (4.17)

where m,n are positive integers. In our application, the φ̂ here actually stands for the
inverse of an axion field 1/φ and s stands for the corresponding saxion partner s. Hence
the first solution s1(φ̂) represents a linear-backreacted saxion vacuum expectation value,
while the second solution s2(φ̂) stays finite at large φ.

4.3 Determining the backreacted saxion vacuum

We now have all the tools we need to attack the axion backreaction problem. Using the
sl(2)-basis, we will first expand the asymptotic scalar potential (4.3) into a generalized

5The degeneration is classified as of type I01 → V22 with the G4 flux chosen to be G4 = g42v42 + g34v34

in the convention of [24].
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polynomial in (s, φ). Then we will look closer at the shape of the Newton diagram to deduce
the leading term in the backreacted saxion vev s(φ).

Let us begin by decomposing the G4-flux according to (4.9) as

G4 =
4∑
d=0

µd∑
id=1

d∑
nd=0

gd,d−2nd;id |d, d− 2nd; id〉 , (4.18)

where gd,d−2nd;id is the flux-component of the highest weight representation Wd with weight
d − 2nd. Note that the e(s)-operator defined in (3.25) acts on a basis state |d, ld; id〉 by
scalar multiplication

e(s) |d, ld; id〉 = s
ld
2 f̂d,ld;id |d, ld; id〉 , (4.19)

where f̂d,ld;id can be a non-vanishing function6 of all other complex structure coordinates.
Then by a direct computation, the asymptotic scalar potential is found to be

V (φ, s) = 1
sα

[∥∥∥∥exp
(
− φ

s
N−

)
e(s)G4

∥∥∥∥2

∞
−Aloc

]
(4.20)

= 1
sα

 4∑
d=0

µd∑
id=1

d∑
nd=0

d∑
bd=nd

(
bd
nd

)2

sd−2bdφ2(bd−nd)g2
d,d−2nd;id f̂

2
d,d−2nd;id −Aloc

 ,
where in the last step we have used the orthonormal property of the basis states. We have
highlighted the dependency of V only on the pair (φ, s) and moved the dependencies on the
other complex structure moduli into the various f̂ . Note that the flux number gd,d−2nd;id
is always accompanied by the non-vanishing function f̂d,d−2nd;id . We therefore introduce
the redefinition ĝd,d−2nd;id = gd,d−2nd;id f̂d,d−2nd;id to shorten the equations. The expanded
asymptotic scalar potential now takes the form

V (φ, s) = 1
sα

 4∑
d=0

µd∑
id=1

d∑
nd=0

d∑
bd=nd

(
bd
nd

)2

sd−2bdφ2(bd−nd)ĝ2
d,d−2nd;id −Aloc

 . (4.21)

With the expansion of the asymptotic scalar potential, we can impose a constraint on the
undetermined exponent α. We require that the potential V (φ, s) does not blow up in the
limit s→∞. Physically this means that the boundary of the moduli space is viable, not
obstructed by the potential. This translates to the constraint that

α ≥ max
gd,d−2nd;id

6=0
{d− 2nd, 0} , (4.22)

which says that α should not be smaller than the largest weight carrying a non-zero flux
component appearing in G4.

Since we are going to study the situation where φ is large, it is instructive to change
variable to φ̂ = 1/φ so that the limit φ → ∞ corresponds to φ̂ → 0. In this coordinate

6Note that in our multi-grading notation in [24], the ld here corresponds to the lk− lk−1 index of |d, ld; id〉
in the [24].
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(s, φ̂), we denote the derivative of V with respect to s by F (s, φ̂). A simple computation
leads to

F (s, φ̂) = ∂V

∂s
= 1
sα

αAloc
s

+
4∑
d=0

d∑
nd=0

Fd,nd
(s, φ̂)

 , (4.23)

where we have grouped the summand according to d and nd as

Fd,nd
(s, φ̂) =

d∑
bd=nd

Cd,nd;bd
sd−2bd−1φ̂−2(bd−nd) , (4.24)

and the coefficient is given by

Cd,nd;bd
=

µd∑
id=1

(−α+ d− 2bd)
(
bd
nd

)2

ĝ2
d,d−2nd;id . (4.25)

Note that in general Cd,nd;bd
6= 0 unless for special combinations of α, d, and bd. For the

sake of discovering the general properties of the solution that are directly related to the
boundary sl(2)-structure, let us temporarily assume that the value of α does not make any
of the coefficients Cd,nd;bd

vanish. We will discuss the consequence of special choices of α
that kill some coefficients Cd,nd;bd

in the end of this subsection.
Now we have the stage set up: in order to study the backreacted saxion vev, we should

solve the extremization condition F = 0 with the polynomial F given in (4.23) by the
Puiseux series. In order to find the Puiseux series, we should draw the Newton diagram
of the polynomial F . It turns out that it is more instructive to first look at the Newton
diagram of every Fd,nd

and then assemble them together into the Newton diagram of F .
For every d and nd, we first note that not every power of s in Fd,nd

is positive. In order
to apply the method of Puiseux expansions, we need to pull out sufficient power of 1/s so
that the remaining polynomial has only positive powers on s. So we define

F̃d,nd
= sd+1Fd,nd

=
d∑

bd=nd

Cd,nd;bd
s2(d−bd)φ̂−2(bd−nd) . (4.26)

Let us check the shape of ∆(F̃d,nd
). Denote the powers of s by a, the powers of φ̂ by b, and

draw the Newton diagram on the (a, b) plane. It is easy to see that it has all dots aligned
along the line segment of slope +1 intersecting the a-axis at (2(d− nd), 0) and the b-axis at
(0,−2(d− nd)). This immediately prompts the following important observation as we fix a
d and perform the sum over nd.

Let us fix a d, and let ñd be the smallest nd such that gd,d−2nd;id 6= 0. If there are
multiple possible id for such flux components, we just arbitrarily pick one since only the
values of d and nd matter. This flux component corresponds to one of the highest weight
components gd,d−2ñd;id of G4 inside W[d]. The sum over nd with the fixed d takes the
following form

d∑
nd=ñd

Fd,nd
= 1
sd+1

d∑
nd=ñd

F̃d,nd
. (4.27)
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The Newton diagram of each F̃d,nd
has been analyzed above. We notice that if we take

the lower convex hull to find the Newton polygon of (4.27) at this stage, the polygon only
depends on the lowest line in the Newton diagram, i.e. the one generated by F̃d,ñd

. This
implies that when we further sum over d as in (4.23) and aiming to find the Newton polygon
of the entire F , only the Newton diagram of F̃d,ñd

matters for every d. This observation
instructs us to just focus on the highest weight component gd,d−2ñd;id for every d.

With the above discussion, the derivative of V (4.23) becomes

F (s, φ̂) = αAloc
sα+1 +

4∑
d=0

F̃d,ñd
(s, φ̂)

sα+d+1 + · · · , (4.28)

where we put the summation that correspond to nd > ñd for each d into dots since, as
discussed above, they will not compete for the Newton polygon hence will not alter the
analysis with the Puiseux expansion.

Now we are ready to build the Newton polygon for the polynomial F . Firstly we
stack all the Newton diagrams of F̃d,ñd

on one (a, b)-plane. Generic pictures coming from
a G4-flux containing two different d’s are shown in the left pictures in figure 2 and 3. In
order to apply the Puiseux expansion, we need to further eliminate all negative powers of s
in F . Denote the highest d in G4 by d̃, and note that

F̃ = sα+d̃+1F = αAlocs
d̃ +

4∑
d=0

sd̃−dF̃d,ñd
+ · · · (4.29)

no longer has negative power of s so we can in turn study the solution of F̃ = 0 by Puiseux
expansions. The extremization condition F = 0 is equivalent to F̃ = 0 since we assume
s > 0.

The resulting Newton diagram of F̃ is simply a combination of the Newton diagrams
of various sd̃−dF̃d,ñd

, and each of which is itself the Newton diagram of F̃d,ñd
with a shift

towards the a-direction, i.e. along the horizontal axis in figure 2 and 3, by an amount of
d̃− d. In particular, the Newton diagram of sd̃−dF̃d,ñd

will have dots aligned along a line
of slope +1 that intersects the a-axis at (d̃+ d− 2ñd, 0). Moreover there will be an extra
point (d̃, 0) coming from the term with Aloc as coefficient, if α 6= 0. The Newton polygon is
then found by taking the lower convex hull of the Newton diagram of F̃ . Generic pictures
of the Newton diagram and Newton polygon of F̃ generated by a G4-flux containing two
different d’s are shown in the right pictures in figure 2 and 3.

According to the general structure of the Puiseux expansion reviewed in section 4.2,
each segment in the Newton polygon of F̃ with a positive slope γ > 0 corresponds to an
axion backreaction behavior of the following form

s(φ) = cφγ +O
( 1
φ

)
, (4.30)

which generalizes the linear backreaction behavior found previously in the literature [10–12].
Here c is a constant that could depend on the flux numbers. We cannot formulate an
general condition on the independence of c on the flux numbers, nevertheless an obvious
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b

a

−→

b

a

Figure 2. One typical configuration of the Newton diagram generated by a G4-flux containing
two different d’s. In the left figure, we superpose all Newton diagrams of F̃d,ñd

. The solid line
corresponds to F̃d̃,ñd̃

of the highest d̃, and the dashed line corresponds a possible lower d. On the
right we show the end result. The double lines correspond to the Newton polygon of F̃ . In the
situation shown in this figure, the two segments of the Newton polygon have both positive slopes,
indicating an axion backreaction behavior (4.30) that drives one into the regime of the Distance
Conjecture.

β

α

−→

β

α

Figure 3. Another typical configuration of the Newton diagram generated by a G4-flux containing
two different d’s. In the left figure, we superpose all Newton diagrams of F̃d,ñd

. The solid line
corresponds to F̃d̃,ñd̃

of the highest d̃, and the dashed line corresponds a possible lower d. On the
right we show the end result. The double lines correspond to the Newton polygon of F̃ . In the
situation shown in this figure, the segment of the Newton polygon with positive slope will generate an
axion backreaction behavior similar to figure 2, while the segment with negative slope will generate
a backreaction (4.33) that drives s away from the boundary of the complex structure moduli space.

situation is when there is only a single component G4 = g |d, ld; id〉, such that ld > 0. In
such simple cases, the flux number g will be factored out in the equation determining
c, leading to a prefactor c independent from the flux-number g. Note that the analogs
of such sl(2)-elementary fluxes play a special role in the analysis of the Weak Gravity
Conjecture in [35, 37].
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We also find additional constraints on the possible value of γ. Recall that our assumption
on the value of α is such that it does not make any of the dots in the Newton diagram
disappear. This implies that the right-most segment of the Newton polygon will be always
of slope +1 when it is not formed by translating a single dot, i.e. it is neither from a
component of the form |d,−d〉 nor from the term containing Aloc. Note that the convexity
condition on the Newton polygon implies that the slope of its various segments increase from
left to right. We thus conclude that the backreaction of the large axion on the saxion vev
always satisfy γ ≤ 1. The γ = 1 cases exactly agree with the linear backreaction behavior
found in [10–12]. The 0 < γ < 1 cases are more subtle. One can look for these cases by the
method that is used study to bad cases discussed below, and we find that the 0 < γ < 1
cases appear exactly when the right-most segment in the Newton polygon is a point. The
physical significance of such cases still remains unclear.

Until this point we have assumed that α takes a general value such that none of the
coefficients Cd,nd;bd

defined in (4.25) vanishes. Let us relax this assumption and check the
consequences. Following the same arguments above, for every d that appears in the flux
G4, we need to focus on the highest weight component |d, ñd; id〉 which generates a series of
terms in the polynomial F̃d,ñd

that draw a segment of dots in the Newton diagram of F̃ .
Since we are interested in the lower convex hull in order to obtain the Newton polygon,
only missing dots at each end of the segment will likely cause trouble. We see from (4.25)
that for a fixed |d, ñd; id〉, if α = −d then the leftmost dot of the segment disappears, and if
α = d− 2ñd then the rightmost dot vanishes. Let us first check what happens if a leftmost
dot disappears: taking into account the condition on the range of α in (4.22), we see that
only the dot corresponding to the state |0, 0〉 could disappear in such a circumstance when
α = 0. However this will extend the possible values of γ and we have also checked that it
will not invalidate the discussion of the bad cases in the following subsection, either. On
the other hand, when the rightmost dot disappears, new phenomena do appear. We check
all possible cases with the method that is used to study bad cases discussed below and find
two possible cases that generate backreaction with γ = 2. They all require α = 1 and are
given by

G
(A)
4 = g1 |3, 1〉+ g2 |2, 0〉 =⇒ sA(φ) = 8g2

1
Aloc − g2

2
φ2 +O

( 1
φ

)
, (4.31)

G
(B)
4 = h1 |1, 1〉+ h2 |0, 0〉 =⇒ sB(φ) = 2h2

1
Aloc − h2

2
φ2 , (4.32)

where we require that g1, h1 6= 0, while g2, h2 can be switched off. Note that a missing
rightmost dot can surely also generate a backreaction with 0 < γ < 1. Note that a
backreaction with γ 6= 1 could potentially generate a polynomial dependence of the
backreacted saxion field on the axion travel distance that is in tension with the exponential
dependence found in [10]. This implies that, in the case that our solutions with γ 6= 1
can be established to exist, our findings are in conflict with the Swampland Distance
Conjecture. We stress, however, that we cannot make a conclusive statement about this,
since we only focused on the implication of the general asymptotic Hodge theory on the
leading contribution in the backreaction of an axion φ on a single saxion s satisfying the
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extremization condition ∂V /∂s = 0. It would be interesting to further investigate the
implication of these γ 6= 1 cases, for example by constructing concrete models realizing
them and determine the backreaction effect by imposing minimization conditions.

Having finished the discussion on the cases with γ > 0, let us look at its contrary: each
segment with a negative slope −δ < 0 corresponds to the following solution

s(φ) = c

φδ
+O

( 1
(φ)δ+1

)
, (4.33)

which implies that the saxion will move away from the boundary of the moduli space as the
axion traverse a large field distance. A typical configuration causing such cases is shown in
figure 3. It remains to rule out the backreaction solution of type (4.33). A flux configuration
potentially generating solution (4.33) is dubbed as a bad case. In the next subsection we
systematically look for bad cases and show that these solutions (4.33) are all invalid.

4.4 Bad cases and their elimination

In this section, we systematically analyze bad flux configurations that can potentially
generate the following backreaction behavior

s(φ) = c

φδ
+O

( 1
φδ+1

)
, (4.34)

where δ ≥ 0. The Newton polygon of F makes a systematic enumeration of these cases
possible.

Let us start by noting that for a root of type (4.34) to appear, there must be segment
of negative slope in the Newton polygon of F . Translating this condition to the G4 flux,
one sees that there must be at least two different d̃ > d′, whose highest weight components
correspond to the basis vectors |d̃, d̃− 2ñd̃〉 and |d′, d′ − 2ñd′〉, such that

d′ − ñd′ ≥ d̃− ñd̃ . (4.35)

This instructs us to enumerate the bad cases according to their number of highest
weight components, and there are only three possibilities: two, three and four different d’s
appearing in G4. Using the enhancement rules [24, 32], we can further reduce the possible
cases by noting that d = 4 and d = 3 components cannot co-exist. The same argument also
shows that bad cases with four different highest weight components cannot exist, either.
Thus we are only listing two- and three-component bad cases in the following subsections.

4.4.1 Bad cases with two different d’s

These are the fluxes of the following form

G4 = g1 |d̃, d̃− 2ñd̃〉+ g2 |d2, d2 − 2ñd2〉 , (4.36)

where d̃ > d2 and ñd̃ and ñd2 satisfy condition (4.35). There are 16 possible such fluxes and
they are listed in table 1.

We hereby present an analysis of case 13. We denote its flux configuration as

G4 = g1 |3,−3〉+ g2 |2, 0〉 . (4.37)
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Case g1 g2 δ c Reason
1 |4, 0〉 |2, 2〉

0 √
− (α+4)g2

1
(α+2)g2

2

Imaginary

2 |4,−2〉 |2, 0〉
3 |4,−4〉 |2, 0〉
4 |4,−2〉 |2, 2〉 1
5 |4,−4〉 |2, 2〉 2

6 |4,−2〉 |1, 1〉 0 3

√
− (α+4)g2

1
(α+1)g2

2

7 |3,−1〉 |1, 1〉 0 √
− (α+3)g2

1
(α+1)g2

28 |3,−3〉 |1, 1〉 1

9 |4,−4〉 |1, 1〉 2
3

3

√
− (α+4)g2

1
(α+1)g2

2
(1, ω, ω2)

10 |3, 1〉 |2, 2〉 0

− (α+3)g2
1

(α+2)g2
2

Negative

11 |3,−1〉 |2, 0〉
12 |3,−1〉 |2, 2〉 213 |3,−3〉 |2, 0〉
14 |3,−3〉 |2, 2〉 4
15 |2, 0〉 |1, 1〉 0 − (α+2)g2

1
(α+1)g2

216 |2,−2〉 |1, 1〉 2

Table 1. Bad cases with two different d’s. In the c column we have omitted non-essential
normalization factors to display their shared properties. The last column points out the reason that
invalidates the solution to c. Case 9 has three solutions to its prefactor c, and they differ from each
other by a factor of ω = e2πi/3.

Such a flux configuration can appear, for example, in a degeneration of Calabi-Yau fourfold
with h3,1 = 3. Following the notation of the singularity types in [24], the enhancement of
singularity type can be II0,1 → V3,3.

The asymptotic scalar potential reads

V (s, φ) = 1
sα

(
ĝ2

1
s3 + ĝ2

2 + 2ĝ2
2φ

2

s2 −Aloc

)
. (4.38)

The extremization condition is given by

0 = F̃ (s, φ̂) = α(Aloc − ĝ2
2)s3 − 4(α+ 2)ĝ2

2φ̂
−2s− (α+ 3)ĝ2

1 . (4.39)

Upon inspecting the scalar potential (4.38), a necessary condition for it to be not
blowing up when s→∞ is α ≥ 0. Furthermore, we impose Aloc > 0, otherwise there will
be a runaway towards s→∞. We display the Newton polygon in figure 4.

From the Newton polygon in figure 4, we read out that there are two possible solutions,
one with leading term proportional to φ and the other with leading term proportional to
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b

a1

φ̂−2s

s3

Figure 4. The Newton polygon of (4.39). It has a segment generating backreaction s ∼ cφ and
another segment corresponding to s ∼ cφ−2.

1/φ2. More explicitly, they are

s1,±(φ) = ±
√

4(α+ 2)ĝ2
2

α(Aloc − ĝ2
2)
φ+O

( 1
φ

)
,

s2(φ) = − (α+ 3)ĝ2
1

4(α+ 2)ĝ2
2

1
φ2 +O

( 1
φ3

)
. (4.40)

Note that among these three roots, only s1,+ is positive when Aloc > ĝ2
2. We thus

conclude that for the flux (4.37), either there is a runaway in s, or there is a vacuum with
the linear backreaction behavior

s(φ) =
√

4(α+ 2)ĝ2
2

α(Aloc − ĝ2
2)
φ+O

( 1
φ

)
, (4.41)

when the axion φ is large. We would also like to point out the ĝ2 is actually a product
between g2 and a non-vanishing function on the saxions other than s. Depending on the
value of these saxions, the linearly backreacted s could even disappear. Another remark
is that the leading coefficient in s(φ) depends on the flux number g2 and the localized
contribution Aloc, indicating that the backreaction effect could be delayed. A further
investigation into such cases is left for future work.

4.4.2 Bad cases with three different d’s

In this subsection, we list all essential flux configurations containing three different d’s that
are likely bad. By essential, we mean that the focus will be on the cases whose leading
backreaction coefficient is determined by all three components. In the situation where this
coefficient is only determined by two components, it reduces to one of the cases listed in
table 1. Upon inspecting possible shapes of the Newton diagram, one sees that we need to
find a flux configuration

G4 = g1 |d̃, d̃− 2ñd̃〉+ g2 |d2, d2 − 2ñd2〉+ g3 |d3, d3 − 2ñd3〉 , (4.42)

satisfying the following conditions

d̃ > d2 6= d3 , (4.43)
d̃− ñd̃ = d2 − ñd2 = d3 − ñd3 , (4.44)
d̃− 2ñd̃ < d2 − 2ñd2 < d3 − 2ñd3 . (4.45)
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In the end there are only two bad cases and we discuss them in turn. The first one is
given by

G
(1)
4 = g1 |4,−2〉+ g2 |2, 0〉+ g3 |1, 1〉 , (4.46)

which induces a scalar potential of the form

V1(s, φ) = 1
sα

(16ĝ2
1φ

2

s4 + ĝ2
1
s2 + ĝ2

2 + 4ĝ2
2φ

2

s2 + ĝ2
3φ

2

s
+ ĝ2

3s−Aloc

)
. (4.47)

The condition one imposes on α is that α ≥ 1. The extremization condition F̃1 = 0 is
given by

F̃1 =(1−α)ĝ2
3s

5 +α(Aloc− ĝ2
2)s4−(1+α)ĝ2

3φ̂
−2s3−(2+α)(ĝ2

1 +4ĝ2
2φ̂
−2)s2−16(4+α)ĝ2

1φ̂
−2 ,

(4.48)
whose Newton diagram is given in the left picture in figure 5. From the diagram we see
that there is a potential bad root with δ1 = 0. The pre-factor c1 should satisfy the following
cubic equation

(1 + α)g2
3c

3
2 + 4g2

2(2 + α)c2
2 + 16(4 + α)g2

1 = 0 . (4.49)

Note that the coefficient in every term in the above equation is positive. In other words,
there is no sign-flip in the list of coefficients in the above polynomial equation with real
coefficients. The Descartes’ rule of signs tells us that the number of positive root of a real
polynomial equation is bounded by the number of sign-flips in its list of coefficients. Hence
we conclude that even if the above quartic equation has a real root c2, it will nevertheless
be negative. This rules out the first bad case.

The last case to consider is given by

G
(2)
4 = g1 |3,−1〉+ g2 |2, 0〉+ g3 |1, 1〉 . (4.50)

The corresponding scalar potential has the form

V2(s, φ) = 1
sα

(9ĝ2
1φ

2

s3 + ĝ2
1
s

+ ĝ2
2 + 4ĝ2

2φ
2

s2 + ĝ2
3φ

2

s
+ ĝ2

3s−Aloc

)
. (4.51)

And one has again the constraint α ≥ 1. Its extremization condition F̃2 = 0 is given by

F̃2 =(1−α)ĝ2
3s

4 +α(Aloc− ĝ2
2)s3−(1+α)(ĝ2

1 + ĝ2
3φ̂
−2)s2−4(2+α)ĝ2

2φ̂
−2s2−9(3+α)ĝ2

1φ̂
−2 ,

(4.52)
whose Newton diagram is given in the right picture in figure 5. It indicates again a potential
bad root with δ2 = 0, whose pre-factor c2 satisfies the following quadratic equation

ĝ2
3c

2
2 + 4(2 + α)ĝ2

2c2 + 9(3 + α)ĝ2
1 = 0 , (4.53)

which has no positive real root again by Descartes’ rule of sign. Hence this case is ruled out.
To conclude, we have ruled out all possible bad cases which induce the backreaction

behavior (4.34) by showing that their accompanying pre-factor c is either negative or
purely imaginary. This leads to our conclusion that a large displacement of an axion φ can
only backreacts on its saxion partner s in the way shown in equation (4.30) with rational
exponent 0 < γ ≤ 2.
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β
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−2

2 4 5
β

α

−2

2 3 4

Figure 5. The left picture is the Newton diagram of equation (4.48), and the right picture
corresponds to (4.52). Note the both diagrams show a possible linear backreaction behavior in
addition to the bad constant backreaction solution.
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A More detailed properties of the commuting sl(2)-triples

This appendix fills in some detail of the derivation of (3.26) and (3.29). We follow the proof
of lemma (4.5) in [42]. In order to do this we need to take a closer look at the limiting
mixed Hodge structure and the induced splittings on the infinitesimal isometry Lie algebra
g. For definiteness we will (mostly) align with the mathematical notations in [42] in this
appendix.

Recall that the Lie algebra gR consists of the infinitesimal isometries for weight four
variation of Hodge structure. Concretely, it can be identified with gR = so(2 + h2,2

p , 2h1,3),
where hp,q are the Hodge numbers of the family of Calabi-Yau fourfolds and h2,2

p is the
complex dimension of the space of primitive (2, 2)-forms. The complexification of gR is
denoted by g and can be identified with g = so(2 + h2,2

p + 2h1,3,C). We present these
identifications merely to make the exposition more concrete but these will not be used in
the following discussion.

Recall further that the log-monodromy operators N1, . . . , Nn introduced in (3.3) define
the monodromy weight filtration W (n) = W (N1 + · · · + Nn)[−4] on the primitive middle
cohomology H4

p(Y,C). The monodromy weight filtration together with the limiting Hodge
filtration Fpol introduced in (3.4) define the limiting mixed Hodge structure (Fpol,W

(n)) on
H4

p(Y,C). We denote the Deligne splitting associated to the (Fpol,W
(n)) by

H4
p(Y,C) =

⊕
p,q

Ip,q , (A.1)

satisfying

F ppol =
⊕
r≥p

Ir,s , W
(n)
k =

⊕
r+s≤k

Ir,s , and Ip,q = Iq,p mod
⊕
r<p
s<q

Ir,s . (A.2)
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The Deligne splitting is functorial, which puts a Deligne splitting on the Lie algebra

g =
⊕
p,q

gp,q , (A.3)

whose components can be concretely identified as

gp,q =
{
X ∈ g | X(Ir,s) ⊂ Ir+p,s+q

}
. (A.4)

Recall that the SL(2)-orbit theorem constructs a set of commuting sl(2)-triples, whose
lowering and number operators are denoted N−r and N0

r , respectively in section 3.2. We
have also defined the partial sums

N0
(r) = N0

1 + · · ·+N0
r , for all r . (A.5)

Moreover, the SL(2)-orbit theorem constructs a series of R-split special mixed Hodge
structures from the limiting mixed Hodge structure (Fpol,W

(n)). We denote these mixed
Hodge structures by (F(r),W

(r)) and briefly state their relation to the nilpotent orbit
data (Fpol, N1, . . . , Nn). Firstly, there is a Hodge filtration F(n) built out of the data
(Fpol, N1, . . . , Nn). The R-split mixed Hodge structure (F(n),W

(n)) is called the SL(2)-
splitting of the limiting mixed Hodge structure (Fpol,W

(n)). Then each of the remaining
(F(r),W

(r)) is built recursively by taking the SL(2)-splitting of the mixed Hodge structure
(eiNr+1 ,W (r+1)), where the weight filtration is give by W (r) = W (N1 + · · ·+Nr)[−4]. The
construction of SL(2)-splitting is a bit involved and we refer to the math papers [29] and [42]
for more precise information. This is also reviewed recently in a physics paper [32].

We will need three important properties of the mixed Hodge structures (F(r),W
(r)).

Firstly, although the weight filtrations W (r) are defined using the operators N1, . . . , Nr, it
turned out (by SL(2)-orbit theorem) that it agrees with the monodromy weight filtration
defined by the lowering operators in the commuting sl(2)-triples

W (r) = W (N1 + · · ·+Nr)[−4] = W (N−1 + · · ·+N−r )[−4] . (A.6)

Secondly, denote the Deligne splitting of (F(r),W
(r)) by

H4
p(Y,C) =

⊕
p,q

Ip,q(r) . (A.7)

We have
N(r)(I

p,q
(r) ) ⊂ Ip−1,q−1

(r) . (A.8)

Lastly, the eigenspaces of the number operators N0
(r) are defined in terms of Ip,q(r) as

N0
(r)v = lv , for all v ∈

⊕
r+s=l+4

Ir,s(r) . (A.9)

There is another splitting of the real Lie algebra gR coming from the commuting
sl(2)-triples. Since the number operators commute with each other, their partial sums also
mutually commute

[N0
(r), N

0
(s)] = 0 , for all r, s . (A.10)
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Using the Jacobi identity, one sees that the adjoint actions adN0
(r)

( · ) = [N0
(r), · ] on the Lie

algebra g also commute with each other

[adN0
(r)
, adN0

(s)
] = 0 , for all r, s . (A.11)

Hence these commuting adjoint actions induce a multi-grading on the Lie algebra g

g =
⊕

`=(l1,...,ln)
g` , (A.12)

where each component is the simultaneous eigenspace of all adN0
(r)
:

[N0
(r), X] = lrX , for all X ∈ g` and r = 1, . . . , n . (A.13)

The eigenvalues l1, . . . , lr are all integers due to the general property of sl(2)-representations.
These two splittings (A.3) and (A.12) will be the central objects in this appendix.

A.1 The map e(s)eφiNie(s)−1

Let us reproduce the definition of the e(s)-operator for convenience

e(s1, . . . , sn) = exp
{1

2(log sr)N0
r

}
, (A.14)

where in the exponential we sum over r. It turns out that rewriting the above definition in
terms of the partial sums N0

(r) is more suitable for our purpose in this appendix. To achieve
this we formally set sn+1 = 1 and redefine variables

σr = sr

sr+1 , for all r = 1, . . . , n . (A.15)

With the variables σr one has

e(s1, . . . , sn) = exp
{1

2(log σr)N0
(r)

}
. (A.16)

We will proceed using the new form (A.16) of the e(s)-operator.
Let us spell out the expression e(s)eφiNie(s)−1 we want to compute

e(s)eφiNie(s)−1 =
∞∑
k=1

(φi)k

k! e(s)Nk
i e(s)−1

=
∞∑
k=1

(φi)k

k! (Ade(s)(Ni))k

= eφ
i Ade(s)(Ni) , (A.17)

where Ade(s)(Ni) = e(s)Nie(s)−1 is the adjoint action of the group element e(s) on the Lie
algebra element Ni. Recall that the adjoint action of the Lie algebra on itself is defined to
satisfy

AdeX (Y ) = eadX (Y ) , for all X,Y ∈ g . (A.18)
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So we have reduced the quantity that we want to compute into

e(s)eφiNie(s)−1 = exp
{
φie

1
2 (log σr) ad

N0
(r) (Ni)

}
, (A.19)

where summation over i and r are assumed and we have used the new form (A.16) of e(s)-
operator. From this expression we see that the important data one needs is the commutator
[N0

(r), Ni]. This commutator depends on the relative position of r and i.
Let us first consider the case when r ≥ i. From the property (A.8), we see (by

contradiction) that the same property must hold for each Ni with i ≤ r

Ni(Ip,q(r) ) ⊂ Ip−1,q−1
(r) , for i = 1, . . . , r . (A.20)

This automatically forces the relation

[N0
(r), Ni] = −2Ni , for all r ≥ i , (A.21)

by the characterization (A.4) of the Deligne splitting on the Lie algebra and the prop-
erty (A.9).

Next we look at the case r < i. In such case we no longer have good control over the
commutator [N0

(r), Ni]. The best result one has is simply that Ni preserves the filtration
W (r). One way to see this is to use an explicit characterization of the monodromy weight
filtration in remark (2.3) of [52] with the (−4)-shift

W
(r)
l =

∑
j≥max{−1,l−4}

(KerN j+1
(r) ) ∩ (ImN j−l+4

(r) ) , (A.22)

and note that Ni commutes with N(r).
Using again (A.4), (A.9), and the general property of the Deligne splitting (A.2), we

conclude that the eigen-decomposition of Ni with respect to the action of adN0
(r)

has only
non-positive eigenvalues.

We can have more control over the eigenvalues by investigating the multi-grading (A.12).
Remembering that r < i, let us diagonalize actions of all adN0

(r)
on Ni simultaneously. We

split Ni = N−i + N ′i , such that adN0
(r)

(N−i ) = 0 for all r = 1, . . . , i − 1. And further
decompose the remaining N ′i according to the multi-grading (A.12)

N ′i =
∑

αi
1,...,α

i
i−1>0

N ′i,αi
1,...,α

i
i−1
, (A.23)

where αir > 0 labels the eigenvalue of adN0
(r)

on Ni,

[
N0

(r), N
′
i,αi

1,...,α
i
i−1

]
= −αirN ′i,αi

1,...,α
i
i−1

, for i > r. (A.24)

Moreover, it can be checked that each αir is also an integer, and the components N−i , N ′i,αi

are nilpotent.
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To summarize, for every i = 1, . . . , n, one has a decomposition

Ni = N−i +
∑
αi>0

N ′i,αi , (A.25)

where αi = (αi1, . . . , αii−1) denotes the collection of positive integer eigenvalues, such that
[N0

(r), N
−
i ] = 0 for all r > i, and

[N0
(r), Ni] =

−2Ni , for i ≤ r ,
−
∑
αi>0 α

i
rN
′
i,αj , for i > r .

(A.26)

It is then straightforward to plug (A.26) into (A.19) and conclude

e(s)eφiNie(s)−1 = exp


n∑
i=1

φi

si

N−i +
∑
αi>0

N ′i,αi

( s1
s2 )αi

1/2 · · · ( si−1

si )α
i
i−1/2

 . (A.27)

This finishes the derivation of equation (3.26). We would like to point out that due to the
nilpotent operators, this equation is actually polynomial in φ and s. This is in contrast to
the quantity we want to compute in the next subsection.

A.2 The map e(s)eΓ(z)e(s)−1 in the limit

Following the procedure in the previous subsection, we have

e(s)eΓ(z)e(s)−1 = exp
{
e

1
2 (log σr) ad

N0
(r) (Γ(z))

}
= 1 + e

1
2 (log σr) ad

N0
(r) (Γ(z)) + · · · , (A.28)

where a summation over r under the exponential is assumed. In the above expression we
only displayed up to the first order term in the outer exponential in hindsight as it will turn
out that this first order term will be exponentially suppressed in the limit σr →∞, so that
the expression (A.28) will approach 1 exponentially as shown in the first equation in (3.29).

The expression (A.28) again instructs us to look into the commutator [N0
(r),Γ(z)].

Unfortunately, we cannot work out an expression for (A.28) as “concrete” as (3.26). The
best general result we have here is the limit.

Let us first state some general property of the mapping Γ(z) following [42]. Firstly, the
mapping Γ(z) is holomorphic in z and satisfies Γ(0) = 0, which means that it enjoys a series
expansion around z = 0

Γ(z1, . . . , zn) =
∑

k1,...,kn≥0
Γk1,...,knzk1

1 · · · z
kn
n , (A.29)

with Γ0 = 0. Secondly, proposition (2.6) in [42] states that Γ(z) satisfies

[Nj ,Γ(z1, . . . , zj = 0, . . . , zn)] = 0 , for all j = 1, . . . , n . (A.30)

Combining the above identity for all j ≤ r, we have

[N(r),Γ(0, . . . , 0, zr+1, . . . , zn)] = 0 , for all r = 1, . . . , n . (A.31)
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Let us decompose the series expansion of Γ(z) in (A.29) further with respect to the
multi-grading (A.12)

Γk1,...,kn =
∑

`

Γk1,...,kn

` . (A.32)

The conclusion here is that, for a fixed set of ` = (l1, . . . , ln), if a component lr > 0, then

Γ0,...,0,kr+1,...,kn

l1,...,lr>0,...,ln = 0 , for all kr+1, . . . , kn . (A.33)

This can be seen, e.g., again by looking at the general expression of the weight filtration
on the Lie algebra g. Note that the monodromy weight filtration on the Lie algebra g no
longer has the (−4)-shift, so one concludes that operators commute with N(r) lives below
level lr ≤ 0.

Define
Γ`(z) =

∑
k1,...,kn

Γk1,...,kn

` . (A.34)

Let us check the first order term in (A.28). For a fixed ` = (l1, . . . , ln), we have

e
1
2 (log σr) ad

N0
(r) (Γ`(z)) = (σ1)

l1
2 · · · (σn)

ln
2 Γ`(z) . (A.35)

We would like to find the limit e(s)eΓ(z)e(s)−1 as σr → ∞ for all r. In order to do
so, we choose any norm ‖ · ‖ on the Lie algebra g and first check ‖Γ`(z)‖. For all possible
j = 1, . . . , n, there are two possibilities: if lj > 0, then with (A.33), we have

∥∥∥Γl1,...,lj>0,...,ln(z)
∥∥∥ =

∥∥∥∥∥∥
∑

k1,...,kj>0
Γk1,...,kn

l1,...,ln
zk1

1 · · · z
kn
n

∥∥∥∥∥∥ ≤M
j∑
i=1

e−cis
i
, (A.36)

for some positive constants M and ci in the limit σr → ∞ for all r. We have used the
relation zi = e2πiti = e−2πsi

e2πiφi . Plug this back into (A.35) and we have∥∥∥∥∥e
1
2 (log σr) ad

N0
(r) (Γ`(z))

∥∥∥∥∥ ≤M(σ1)
l1
2 · · · (σn)

ln
2

j∑
i=1

e−ciσ
i···σn

. (A.37)

Note that we have used the relation sj = σj · · ·σn.
A second possibility is lj ≤ 0 and in such cases the estimate (A.37) holds trivially

(recall that Γ`(0) = 0 for all `).
In conclusion, the first order term in (A.28) satisfies the estimate (A.37), which

means that in the limit σr → ∞ it goes to 0 exponentially. We have thus conclude
that e(s)eΓ(z)e(s)−1 → 1 with exponentially suppressed corrections in the limit σr →∞ for
all r.

A.3 The filtration e(s)F0 in the limit

We will be short in this section and mainly refer the reader to the papers [29] and [42]. The
result we would like to show is that in the limit where all σr →∞, one has

e(s)F0 → F(n) . (A.38)
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Combining with the definition that

F∞ = e
iN−(n)F(n) , (A.39)

this shows the second equation of (3.29).
Here are some facts [42] about the relation between F0 and F(n). There exists an

operator η ∈ gR such that
F0 = eηF(n) . (A.40)

The operator η satisfies
η(Ip,q) ⊂

⊕
r<p
r<q

Ir,s . (A.41)

Moreover the operator η commutes with every (r, r)-morphism of the mixed Hodge structure
(W (n), F(n)).

Let us decompose the operator η with respect to the multi-grading (A.12)

η =
∑

`

η` . (A.42)

Then the property (A.41) implies that ln < 0. Furthermore, recall from (A.20) every Nr

with r = 1, . . . , n − 1 is a (−1,−1)-morphism of the mixed Hodge structure (W (n), F(n)),
we have [Nr, η] = 0 for all r = 1, . . . , n− 1. According to the definition of the monodromy
weight filtration, this implies that lr ≤ 0. So we have

e(s)eηe(s)−1 = exp
{
e

1
2 (log σr) ad

N0
(r) (η)

}

= exp
{ ∑
l1,...,ln−1≤0

ln<0

(σ1)
l1
2 · · · (σn)

ln
2 ηl1,...,ln

}
→ 1 , (A.43)

in the limit where every σr →∞.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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