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Abstract: We present a novel way to classify Calabi–Yau threefolds by systematically
studying their infinite volume limits. Each such limit is at infinite distance in Kähler
moduli space and can be classified by an associated limiting mixed Hodge structure.
We then argue that such structures are labeled by a finite number of degeneration types
that combine into a characteristic degeneration pattern associated to the underlying
Calabi–Yau threefold. These patterns provide a new invariant way to present crucial
information encoded in the intersection numbers of Calabi–Yau threefolds. For each
pattern, we also introduce a Hasse diagram with vertices representing each, possibly
multi-parameter, decompactification limit and explain how to read off properties of the
Calabi–Yau manifold from this graphical representation. In particular, we show how it
can be used to count elliptic, K3, and nested fibrations and determine relations of elliptic
fibrations under birational equivalence. We exemplify this for hypersurfaces in toric
ambient spaces as well as for complete intersections in products of projective spaces.
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1. Introduction

In the study of effective actions arising from string theory compactifications, Calabi–Yau
threefold backgrounds have been of interest for decades [1–3]. Compactifying the Type
II or heterotic string theories on such Calabi–Yau manifolds leads to four-dimensional
supergravity theories with N = 2 or N = 1 supersymmetry, respectively, while using
them to compactify M-theory or F-theory yields five- or six-dimensional supergravity
theories with minimal supersymmetry. It is a long-standing open problem to systemati-
cally classify the possible supergravity theories arising in these compactifications. In the
spirit of the swampland program, one can then ask whether one can identify conditions
on supergravity theories that need to be satisfied in order that they can be consistently
coupled to a UV complete quantum gravity. In this work, we will make progress on this
question by suggesting a new systematic way to classify Calabi–Yau manifolds, which
implies a classification of the associated supergravity theories. Our approach rests on
powerful mathematical results obtained in asymptotic Hodge theory. It continues recent
efforts [4–23] to use deep mathematical structures to test and extend the swampland
conjectures about effective theories that are consistent with quantum gravity.

While many examples of Calabi–Yau threefolds are known, it is extremely hard to
group them into equivalence classes that share common features. One way to approach
this problem is to use Wall’s theorem [24], which states that the homotopy types of
Calabi–Yau threefolds are classified by the numerical data given by the Hodge numbers,
the triple intersection numbers, and the divisor integrals of the second Chern class.
However, this data is not easy to handle in practice. In fact, even checking whether
or not two manifolds are homotopically equivalent can be a difficult task, since one
needs to compare the triple intersections up to basis transformations. While certain
basis independent invariants were identified in [2], these quantities capture only very
limited information about the geometry and become increasingly weak for larger Hodge
numbers.

In this paper, we introduce a new classification using so-called limiting mixed Hodge
structures [25,26]. These structures arise in all limits at the boundaries of the complex
structure and Kähler moduli space. Focusing on the complex structure moduli space of
Calabi–Yau threefolds, they encode, roughly speaking, how theHodge decomposition of
the third cohomology behaves at the boundaries of the moduli space. The construction
proceeds by first associating to each boundary a nilpotent orbit [25], which depends
on the monodromy transformations and holomorphic data associated to the boundary
component under consideration. Given a nilpotent orbit, one can then construct the
associated limiting mixed Hodge structure. Crucially, such mixed Hodge structures can
be classified and hence used in a classification of possible degeneration limits [27] (see
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also [8]). We will discuss this classification in detail in Sect. 2, where we also recall
general rules for intersections of boundary components at which the degeneration of a
Calabi–Yau threefold worsens.

Usingmirror symmetry, the classification of degeneration limits is also readily applied
to the Kähler moduli space [8,10]. In this case, it corresponds to a classification of all
decompactification limits. The monodromy transformations are given in terms of the
intersection numbers, while the additional holomorphic data on the boundary is fixed
by specifying the integrated second Chern classes. The limiting mixed Hodge structure
associated to a decompactification limit can be classified into 3h1,1 − 1 degeneration
types denoted by IIb, IIIc, and IVd . We propose in Sect. 3 that any Calabi–Yau threefold
can be associated with a corresponding enhancement pattern that can be determined by
successively performing all possible decompactification limits. Note that the so-derived
patterns naturally represent a partially ordered set, since they describe how the Hodge
structure of the smooth threefold splits into finer andfiner limitingmixedHodge structure
when sending more Kähler volumes towards the decompactification limit. It is therefore
natural to associate with each Calabi–Yau threefold a Hasse diagram summarizing all
its large volume degenerations. We will call these graphs in the following large volume
enhancement diagrams or, with the understanding that we are only at the large volume
point in this work, simply enhancement diagrams. This leads to a systematic grouping of
all Calabi–Yau threefolds into equivalence classes and constitutes a novel classification.
Recently, graphs [28–30] and Hasse diagrams [31–34] have been important tools in
classifying five- and six-dimensional SCFTs.

The proposed classification possesses several interesting features, which wewill only
partly explore in this work. The enhancement graph can be used to determine whether
two Calabi–Yau threefolds are homotopically inequivalent. In contrast to the invariants
proposed in [2], this way of classifying threefolds becomes richer with increasing h1,1.
It is, however, important to stress that this classification is not fine enough to distinguish
all Calabi–Yau threefolds, e.g. certain rescalings of the intersection numbers will often
not change the enhancement diagram. Nevertheless, we are able to demonstrate that the
diagrams capture key features of the manifold, such as the presence of elliptic, K3, and
nested fibrations and the relation of elliptic fibrations under birational equivalence.

We illustrate our finding using Calabi–Yau threefolds that are constructed as the
anti-canonical hypersurface in a toric variety given by a reflexive polytope (as classified
by Kreuzer and Skarke (KS) [35]), and by complete intersection Calabi–Yau manifolds
(CICYs) in an ambient space that is given by a product of projective spaces [36,37].

This paper is organized as follows. In Sect. 2, we discuss how limiting mixed Hodge
structures can be used to classify degenerations of Calabi–Yau threefolds. We introduce
the degeneration types that arise at large volume limits. In Sect. 3 we then explain
how taking successive limits leads to a characteristic enhancement pattern that can be
captured by enhancement (or Hasse) diagrams. We explain how we treat Calabi–Yau
threefolds with simplical as well as non-simplicical Kähler cones, give an example how
geometric transitions via toric blowups lead to transitions among diagrams, and discuss
symmetries and constraints of enhancement diagrams. In Sect. 4, we study Calabi–Yau
manifolds from the KS and CICY list (up to h1,1 = 5 and h1,1 = 10, respectively),
and illustrate how geometric properties are encoded in the enhancement diagrams. We
illustrate how enhancement diagrams can be used to distinguish inequivalent Calabi–
Yau threefolds in Sect. 5. In Sect. 6, we present our conclusions and give an outlook
on future research directions involving these techniques. In the appendices, we give the
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necessary background on limiting mixed Hodge structure in Appendix A and collect the
enhancement diagrams from the KS and CICY scans for h1,1 ≤ 3 in Appendix B.

2. Classifying Degenerations Using Limiting Mixed Hodge Structures

In this section we briefly summarize the mathematical results that are used to classify the
limits in the Kähler moduli space of a Calabi–Yau threefold Y3 largely following [8,10].
Note that these tools are more directly applicable for the variation of the Hodge (p, q)-
decomposition of H3(Y3,C) over the complex structure moduli space and are translated
into the Kähler sector using mirror symmetry. The original results on the variation of
Hodge structures [25,26] are abstract and more generally applicable.

2.1. On the Kähler moduli space and decompactification limits. To begin with, we
recall some basic facts about the Kähler moduli space of a Calabi–Yau threefold Y3. The
Kähler structure is parametrized by the Kähler form J on Y3. The admissible Kähler
forms are those that guarantee that the complex submanifolds ofY3 have positive volume.
Concretely this is ensured by the conditions

∫
C

J > 0 ,

∫
D

J ∧ J > 0 ,

∫
Y3

J ∧ J ∧ J > 0 , (1)

where C, D are holomorphic curves and divisors, respectively.1 Note that the conditions
(1) define the cone of admissible Kähler forms, which is known as the Kähler cone. This
cone can be simplicial or non-simplicial depending on the considered Y3. In the former
case, it is generated by exactly h1,1(Y3) linearly independent forms ωI , while in the
latter case one is required to specify also linearly dependent forms to describe its edges.
In this work, we will study both CYs with simplicial and non-simplicial Kähler cones.

In order to proceed, we next expanded the Kähler form J = v I ωI in an integral basis
of two-formsωI ∈ H2(Y3,Z)with real coefficients v I . The basisωI can be chosen such
that the v I span a simplicial subcone of the full Kähler cone. We will pick such a basis
in the following and then consider all possible simplicial subcones whose union leads
to the full Kähler cone. Note that this implies that when taking a limit in Kähler moduli
space sending one or more v I → ∞, we have to specify in which simplicial subcone
this limit is taken. In this work, we exploit the fact that all such limits can be classified
using asymptotic Hodge theory. We will briefly introduce the necessary mathematical
machinery next. A more complete introduction to the mathematics can be found in the
reviews [38]. Application to Calabi–Yau manifolds, including a short introduction of the
mathematics, can also be found in [8].

Taking any limit v I → ∞ leads to a decompactification of the Calabi–Yau manifold
Y3, which implies that we are approaching the boundaries of the moduli space and our
standard tools of working with forms and integrals become obsolete. This has a clear
interpretation if we map limits in the Kähler moduli space to limits in the complex
structure moduli space by using mirror symmetry. In fact, one finds that in such limit the
Hodge structure of H3(Y3,C), i.e. the decomposition into (p, q)-forms, degenerates.
In order to apply the mirror map, one first has to complexify the Kähler volumes v I

into complex coordinates t I = bI + iv I . For string theory on Y3, the scalars bI have

1 The closure of the Kähler cone is the cone NE
1
(Y3) of nef classes, which is dual to the closure of the

Mori cone NE1(Y3) of effective two-cycles.
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the interpretation as modes of the B2-field under which the string is charged. Mirror
symmetry then exchanges the large volume regime Im t I � 1, with the large complex
structure regime by identifying t I with the complex structure deformations z I of amirror
Calabi–Yau threefold Ỹ3. In the following, we will simultaneously talk about the large
volume regime for Y3 and the large complex structure regime for Ỹ3, keeping in mind
that these two regimes are interchanged by mirror symmetry.

The metric on the complex structure moduli space of the mirror Calabi–Yau three-
fold Ỹ3 is the famous Weil-Petersson metric and can be obtained from the Kähler poten-
tial

K (z, z̄) = − log(i�̄ Î η Î Ĵ � Ĵ ) . (2)

Here we have introduced the pairing η Î Ĵ and the periods � Î , arising by expanding

the holomorphic (3,0)-form � in a real integral basis γ Î , Î = 1, . . . , 2h2,1(Ỹ3) + 2, via

� = � Î γ Î , η Î Ĵ = −
∫

Ỹ3

γ Î ∧ γ Ĵ . (3)

Note that these expressions are evaluated in a certain basis γ Î of three-forms, and
it will be crucial to pick an appropriate one to find a simple match with the Kähler
moduli. In fact, one can show that there is a choice of basis such that the (2h1,1(Y3)+2)-
dimensional period vector � takes the following form in the large complex structure
regime Im t I � 1:

�(t I ) =

⎛
⎜⎜⎝

1
t I

1
2KI J K t J t K + 1

2KI J J t J − cI
1
6KI J K t I t J t K − ( 16KI I I + cI )t I + iζ(3)χ

8π3

⎞
⎟⎟⎠ . (4)

Here we have introduced the topological quantities

KI J K =
∫

Y3

ωI ∧ ωJ ∧ ωK , cI = 1

24

∫
Y3

ωI ∧ c2(Y3), χ =
∫

Y3

c3(Y3), (5)

whereKI J K are the triple intersection numbers, and c2(Y3), c3(Y3) are the Chern classes
of the tangent bundle of Y3. Note that the expression (4) can be derived by evaluating the
so-called 
-class in a certain K-theory basis for D6-, D4-, D2- and D0-branes wrapping
the whole threefold, divisors DI , curves C I and points in Y3. The definition of the curves
C I is non-trivial and is discussed for example in [39]. The reader will also find a related
discussion of (4) in [40].

Note that the period vector (4) transforms non-trivially under the shift bA → bA + 1
of any of the h1,1(Y3) scalars bI . This defines a monodromy transformation TA via

�(t1, ..., t A + 1, ...) = T −1
A �(t1, ..., t A, ...) . (6)

It turns out that the TA derived for the large complex structure periods (4) are all unipotent.
For each TA we can then define the log-monodromy matrix NA by setting

NA = log(TA) , (7)
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which yields a nilpotent matrix. We will see in the following the these are key in the
classification of limits in the Calabi–Yau moduli space. Using (4), they are readily
determined to be

NA =

⎛
⎜⎜⎝

0 0 0 0
−δAI 0 0 0

− 1
2KAAI −KAI J 0 0

1
6KAAA

1
2KAJ J −δAJ 0

⎞
⎟⎟⎠ . (8)

A second crucial ingredient is the pairing η introduced in (3). In the special basis
introduced above it takes the form

η =

⎛
⎜⎜⎝

0 − 1
6KJ J J − 2cJ 0 −1

1
6KI I I + 2cI

1
2 (KI I J − KI J J ) δI J 0

0 −δI J 0 0
1 0 0 0

⎞
⎟⎟⎠ . (9)

Note that the expression (4) can be written in a particularly simple form as

� = exp
(

−
∑

I

t I NI

)
a0 , a0 =

(
1, 0,−cI ,

iζ(3)χ

8π3

)T

. (10)

As we will discuss in the following, this is not a special feature of the large complex
structure periods (4), but rather a consequence of a powerful theorem of [25] that as-
sociates a so-called nilpotent orbit to each limit in complex structure and hence Kähler
moduli space. Using (10), it is immediate that � transforms as in (6) when using (7).

Let us now consider a limit in which n of the h1,1(Y3) coordinates t I are send to
constant real parts plus i∞. These limits lead to a decompactification of Y3 and we will
henceforth call them degeneration limits. Of course, there are many different ways a
degeneration limit can be taken and it turns out that we have to restrict to subsectors in
the Kähler cone to classify these limits. For example, a limit falls into a certain subsector
if we fix an ordering in which the t I are sent to the limit. To be more concrete, let us
introduce an index set I = (i1, ..., in), which labels the coordinates t ik that are send
to the limit. For a given limit we can then identify a growth sector. These sectors are
defined by

RI ≡ Ri1···in =
{

t ik = bik + ivik

∣∣∣∣ vi1

vi2
> λ , . . . ,

vin−1

vin
> λ , vin > λ , bi < δ

}
,

(11)

with positive δ > 0 and λ � 0. Roughly speaking the growth sector defines which
of the coordinates grows the fastest, which is the second fastest and so on. It therefore
defines an ordering in the set of coordinates sent to the limit.2 One example of a limit
lying in (11) is an ordered limit, where we first send vi1 → ∞, then vi2 → ∞, up to
vin → ∞. The RI cut out a subregion of the Kähler cone. Of course, we can always
reorder the coordinates t I , such that the considered limit corresponds to sending the
first n coordinates to i∞ as done in [8,10]. However, as mentioned above, in the non-
simplicial case the t I correspond to a specific simplicial subcone. The full Kähler cone
is then obtained by gluing these subcones together and ensuring consistency of the limits

2 Note that this defines a partial ordering on the set of growth sectors.
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in the variousRI . In these cases, we need to use different index sets I. In order to keep
the discussion general, we will use index sets throughout this work.

Having introduced the limits t ik → i∞, one can now use a powerful result of
asymptotic Hodge theory known as the nilpotent orbit theorem [25]. It asserts that one
can associate to each limit in complex structure moduli space a so-called nilpotent orbit
�nil. This orbit approximates the periods up to exponentially suppressed corrections of
order eitik in any of the variable taken to the limit. Importantly, for the large complex
structure periods, the nilpotent orbit associated to a limit is easily read off from (10) and
reads

�
[I]
nil = exp

(
−
∑
i∈I

t i Ni

)
a[I]
0 , (12)

where a[I]
0 contains the t I , NI that are not taken to the limit,

[I] = (1, . . . , 2h1,1 + 2) \ I . (13)

A second important result of [25,26] is that to each nilpotent orbit (12) one can associate
a limiting polarized mixed Hodge structure. We will define such structures in appendix
A. For us, it is crucial that such structures can be classified, as we discuss next.

2.2. Classifying infinite distance limits in Kähler moduli space. To introduce the clas-
sification [8,27], we first note that we can associate a certain log-monodromy matrix
N(I) to each limit, defined by3

tI ≡ (t i1, ..., t in ) → i∞ −→ N(I) = Ni1 + ... + Nin , (14)

where I = (i1, ..., in) is an ordered index set specifying the growth sector (11). Note that
each t ik can have a constant real part in the limit, which we set to zero in the following.4

The association of log-monodromy matrices to a limit can actually be done for any
degeneration limit in complex structuremoduli space. The large complex structure limits,
which are mirror to degeneration limits in Kähler moduli space, are thus only specific
examples. It is therefore no extra effort to introduce the general classification of log-
monodromy matrices for Calabi–Yau threefolds before returning to the large complex
structure/large volume setting. Let us consider an m-dimensional complex structure
moduli space.Wealso abbreviate the log-monodromymatrix associated to the considered
degeneration limit by N , rather than N(I). The pairing between two three-forms is
denoted by η as in (3). The allowed pairs (N , η) can be classified into 4m degeneration
types denoted by

Ia, a = 0, ..., m,

IIb, b = 0, ..., m − 1,

IIIc, c = 0, ..., m − 2,

IVd , d = 1, ..., m. (15)

One can now show that these degeneration types classify the limiting mixed Hodge
structures that can arise at any limit in complex structure moduli space reaching its

3 Let us stress that any positive linear combination of the Nik would work equally well [41].
4 The boundary component approached in the limit (14) is of complex co-dimension n.
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Table 1. Classification of pairs (N , η) allowed at limits of the complex structure moduli space of Calabi–Yau
threefolds

Type Rank of Eigenvalues of ηN

N N2 N3

Ia a 0 0 a negative
IIb 2 + b 0 0 2 positive, b negative
IIIc 4 + c 2 0 not needed
IVd 2 + d 2 1 not needed

Table 2. List of all allowed enhancements of degeneration types [27], where m is the dimension of the moduli
space

Starting type Enhanced type

Ia

Iâ for a ≤ â
IIb̂ for a ≤ b̂, a < m
IIIĉ for a ≤ ĉ, a < m
IVd̂ for a < d̂, a < m

IIb

IIb̂ for b ≤ b̂
IIIĉ for 2 ≤ b ≤ ĉ + 2
IVd̂ for 1 ≤ b ≤ d̂ − 1

IIIc
IIIĉ for c ≤ ĉ
IVd̂ for c + 2 ≤ d̂

IVd IVd̂ for d ≤ d̂

boundaries. The types are distinguished [8] by the conditions listed in Table 1, where
we stress that the categorization of cases Ia and IIb needs both η and N , while cases IIIc
and IVd only depend on N .

Having introduced a classification of the possible degeneration types of (N(I), η)

occurring at any limit (14), we can now use this to perform successive limits. More
precisely, we can successively send the t ik → i∞ for k = 1, ..., n and record the
occurring degeneration type at each step. Let us denote the degeneration type (15) that
occurs at the kth step by Type A(ik )

. We then find what we call an enhancement chain
of the form

I0
t i1→i∞−−−−−→ Type A(i1)

t i2→i∞−−−−−→ Type A(i2)
t i3→i∞−−−−−→ ...

t in →i∞−−−−−→ Type A(in) ,

(16)

where I0 represents the non-degenerate geometry. Remarkably, one can now show that
there are various constraints on allowed enhancement chains [27] (see [8] for a discus-
sion focused on the Calabi–Yau threefold case). For example, one can show that the
degeneration type can only increase or stay the same. Hence, a general enhancement
chain always takes the form

I0 → ... → Iak → IIb1 → ... → IIbl → IIIc1 → ... → IIIcp → IVd1 → ... → IVdq .

(17)

The full list of allowed enhancements can be found in Table 2. Note that these conditions
arise non-trivially from the fact that a polarizable mixed Hodge structure is associated
to each degeneration type.
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Table 3. List of types in the large volume regime in the limit tI = (t i1 , ..., t in ) → i∞. For numbers and

vectors, we define the ranks rk(K (I)) and rk(K(I)
I ) to be either 0 or 1, depending on whether rk(K (I)) = 0

and K(I)
I = 0 ∀ I

Type rkK(I) rkK(I)
I rkK(I)

I J

IIb 0 0 b
IIIc 0 1 c + 2
IVd 1 1 d

It is important to stress that the constraints of Table 2 only restrict the form of an
enhancement chain, but do not yet cover all rules specifying which types are compatible
when considering all possible limits. For example, let us denote byType Aa andType Ab
the types occurring when sending ta → i∞ and tb → i∞, respectively. Clearly, one
can also consider sending both ta, tb → i∞ yielding a type denoted by Type Aa+b. The
interesting question is then which combinations of Type Aa , Type Ab, and Type Aa+b
are allowed and ensure the existence of a polarized mixed Hodge structure. These rules
are not yet known, but first results and a study of specific examples can be found in [27].

Having discussed the general classification, let us now return to the large complex
structure and large volume regime Im t I � 1 and discuss the structures arising in the
possible limits. Firstly, using (8), it is straightforward to determine N(I) in terms of the
intersection numbers as

N(I) =

⎛
⎜⎜⎝

0 0 0 0
−∑i∈I δi I 0 0 0

− 1
2

∑
i∈I Ki i I −∑i∈I Ki I J 0 0

1
6

∑
i∈I Ki i i

1
2

∑
i∈I Ki J J −∑i∈I δi J 0

⎞
⎟⎟⎠ . (18)

In this case it is not hard to show by using (8), (9) together with the fact thatKI J K ≥ 0
for a simplicial subcone of the Kähler cone, that the case Ia actually does not arise in
this regime. In fact, one can show [10] that all limits (14) in Kähler moduli space are of
infinite distance in the metric derived from (2) using (4), (9). The degeneration types Ia
are at finite distance and arise, for example, at the conifold point in complex structure
moduli space. For the remaining three cases, the degeneration type of the individual
limits (14) is evaluated by determining the ranks of (N(I), N 2

(I)
, N 3

(I)
). We first define

K(I)
I J ≡

∑
i∈I

Ki I J , K(I)
I ≡

∑
i, j∈I

Ki j I and K(I) ≡
∑

i, j,k∈I
Ki jk . (19)

The powers of N(I) are then computed to be

N 2
(I) =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0

K(I)
I 0 0 0

0 K(I)
J 0 0

⎞
⎟⎟⎟⎠ , N 3

(I) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

−KI 0 0 0

⎞
⎟⎟⎠ . (20)

It is now straightforward to use Table 1 and translate the rank conditions into condi-
tions on the intersection numbers. The result is presented in Table 3.

This concludes our introductionof the classificationof limits in theh1,1(Y3)-dimensional
Kähler moduli space. The aim of the next sections is to argue that, when collecting the
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information about all possible limits, we obtain a classification of Calabi–Yau threefolds
that captures many core features of the geometry. In particular, we show that the fibration
structure can be inferred from the enhancement pattern in Sect. 4.

3. Enhancement Diagrams to Classify CYs

Having introduced the relevant mathematical background to classify degeneration limits
in the Kähler moduli space in Sect. 2, we now use these techniques to classify Calabi–
Yau threefolds themselves. We systematically consider different paths that can be taken
for such limits in the Kähler cone, and then characterize each Calabi–Yau threefold Y3
via the resulting pattern of degenerations. We call these patterns enhancement patterns,
since they encode all enhancement chains (16) that can occur around the large volume
point for theCalabi–YaumanifoldY3. Thereafter, we construct aHasse diagram from this
data, which provides a natural graphical representation of these enhancement patterns
in terms of graphs, dubbed enhancement diagrams. These graphs serve as an invariant
based on the intersection numbersKI J K of the Calabi–Yau threefold, cf. Sect. 5, and can
be used to read off various properties of Calabi–Yau threefold as discussed for fibrations
in Sect. 4.

In order to be able to classify a Calabi–Yau threefold based on degeneration limits,
we need to consider all regions of its Kähler moduli space entering such limits. This
moduli space has the structure of a cone, spanned by generators ωI ∈ H2(Y3,R), such
that the Kähler form J = v I ωI is valued inside the cone v I ≥ 0. As discussed above,
these cones can be simplicial or non-simplicial.

3.1. Enhancement diagrams for simplicial Kähler cones. We begin our discussion with
simplicial Kähler cones, and thereafter extend our discussion to non-simplicial cones in
Sect. 3.3. The decompactification limits correspond to limits t i → i∞ for the Kähler
moduli, where we will consider sending any (sub)set I of these moduli to infinity.
Following Table 3, one can label each of these limits based on the rank properties of the
intersection numbers. More precisely, for a limit involving the moduli t i , with i ∈ I,
one computes the quantities rkK(I), rkK(I)

I , rkK(I)
I J , and deduces the corresponding

degeneration type. When only a single modulus t i is send to i∞, this means we compute
rkKi i i , rkKi i I , rkKi I J , and associate the ray spanned by (ωi ) with the corresponding
type of degeneration. Similarly, for two moduli t i , t j , we can label the face spanned by
(ωi , ω j ) with the degeneration type. Continuing in this fashion, one can label all faces
of the Kähler cone, as done for instance in Fig. 1.

Collecting all these sets of generators paired with degeneration types, we obtain
the enhancement pattern of the Calabi–Yau threefold at its large volume point. Namely,
using this pattern one can deduce all possiblemanners inwhich the degeneration type can
worsen by sending additional Kähler moduli to their limit, resulting in all enhancement
chains that occur around the large volume point. For instance, one could have(

(), I0
)
,
(
(ω1), II1

)
,
(
(ω2), III1

)
,
(
(ω3), IV2

)
,(

(ω1, ω2), IV3
)
,
(
(ω1, ω3), IV2

)
,
(
(ω2, ω3), IV3

)
,
(
(ω1, ω2, ω3), IV3

)
. (21)

And as an example, by first sending t1 → i∞, then t3 → i∞, and lastly t2 → i∞, we
read off the enhancement chain

I0
t1→i∞−−−−−→ II1

t3→i∞−−−−−→ IV2
t2→i∞−−−−−→ IV3 , (22)
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Fig. 1. Example for a simplicial Kähler cone with generators ωi , i = 1, 2, 3. All faces of a simplicial
Kähler cone are labeled by the degeneration types associated to the corresponding growth sectors, following
enhancement pattern (21)

Fig. 2. Example of an enhancement diagramof aCYwith simplicialKähler cone (polytope 230 in theKreuzer–
Skarke list with its unique fine regular star triangulation) and the corresponding enhancement diagram. The
example is for the enhancement pattern of (21) with enhancement chain (22) explicitly indicated

from the enhancement pattern (21), via the limits associated with (ω1), (ω1, ω3) and
(ω1, ω2, ω3) respectively.

To provide a natural way to present these enhancement patterns, we will make use of
so-called Hasse diagrams. Such a diagram simply displays a finite partially ordered set
as a graph, via a drawing of its transitive reductions. Namely, one considers all elements
in the set as vertices, and draws an edge between two elements x, y if they satisfy x < y
and if there is no z such that x < z < y. For our purposes, we will consider the power
set of the set of generators of the Kähler cone as a finite partially ordered set, where
inclusion serves to define a partial ordering of different elements of the power set, see
for example in Fig. 2a.
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Fig. 3. Enhancement diagram of the quintic, a dP6 transition for the quintic, a conifold transition for the
quintic, and a combined dP6 and conifold transition for the quintic

Instead of labeling the vertices of the Hasse diagramwith their associated generators,
we label themwith their degeneration type as obtained from the enhancement patterns, as
done for instance inFig. 2b. Then edges betweenvertices indicate one-step enhancements
between limits, i.e. sending an additional Kähler modulus to its limit. This results in a
diagram consisting of h1,1 + 1 rows, where we will count rows from 0 to h1,1, such that
the nth row corresponds precisely to a vertex for a set of n generators. Note that this
provides a convenient tool to read off all possible enhancement chains, since one can
simply take all possible downward paths in the diagram. We will therefore call these
diagrams enhancement diagrams. Each enhancement chain always starts at I0, where all
Kähler parameters are at a generic point away from the boundary and the Calabi–Yau
threefold has not yet degenerated. They also all end at the maximal degeneration type
IVh1,1 where all Kähler moduli are sent to their limit t1, . . . , th1,1 → i∞ [8,10].

The enhancement pattern can also be recovered straightforwardly from the enhance-
ment diagram, up to a relabeling of the generators, as follows. The first row of the Hasse
diagram contains all the limits associated with a single generator of the Kähler cone.
Labeling each of the vertices in this row by a different generatorωi , we retrieve the limits
of the enhancement pattern associated with a single generator. The sets of generators
associated to lower vertices is determined by their connection to the vertices higher up
in the enhancement chain. After including the non-degenerate phase I0, this reproduces
the enhancement pattern. This strategy can also be applied to the enhancement diagrams
of non-simplicial Kähler cones, as we discuss next.
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3.2. Example: Enhancement diagrams for geometric transitions of the quintic. In order
to illustrate how the enhancement diagrams change, we study two types of toric transi-
tions starting from the quintic. The transitions for the diagrams are shown in Fig. 3. The
toric realization of these transitions have been described in [42].

The quintic is given as the anticanonical hypersurface inside P4, which can be de-
scribed by a reflexive polytope with vertices

v1 = (1, 1, 1, 1) , v2 = (−1, 0, 0, 0) , v3 = (0,−1, 0, 0) ,

v4 = (0, 0,−1, 0) , v5 = (0, 0, 0,−1) . (23)

Each of these vertices corresponds to a toric coordinate xi , whose zero locus gives rise
to a toric divisor Di = {xi = 0}. They are all linearly equivalent and correspond to the
hyperplane divisor of P4. Since the quintic has h1,1 = 1, it is favorable and a basis of
H1,1(X) is given by pulling back the hyperplane class to X . The triangulation in the
geometric phase is unique, and the Stanley-Reisner ideal is simply

SRI = 〈x1x2x3x4x5〉 . (24)

The Kähler cone is simplicial and spanned by any of the (linearly equivalent) Di (or
rather, the two-forms dual to the divisors), so that the Kähler form is given by

J = t1 J1 , (25)

with J1 = D1. The infinite distance limit t1 → i∞ corresponds to a decompactification
of the entire CY and is of type IV1.

By adding a vertex

v6 = (0, 0, 0, 1) (26)

to the polyhedron, we restrict the dual polyhedron such that a dP6 singularity occurs
in the quintic hypersurface. The triangulation is still unique and the Kähler cone is still
simplicial and can be written as

J = t1 J1 + t2 J2 , (27)

with J1 = D5 and J2 = D5−D6. The limit t1 → i∞ still gives rise to a IV1 degeneration,
while t2 → i∞ aswell as the combined limit t1, t2 → i∞give rise to a IV2 degeneration.

If we add instead of v6 a vertex

v′
6 = (0, 1, 1, 1) , (28)

the quintic develops 16 conifold singularities. The triangulation stays unique and the
Kähler cone simplicial, with

J = t1 J1 + t ′2 J ′
2 , (29)

where J1 = D5 and J ′
2 = D5 − D′

6. Note that now t1 → i∞ leads to a IV2 rather than
a IV1 degeneration. Moreover, the limit t ′2 → i∞ gives rise to a II1 degeneration. The
combined limit t1, t ′2 → i∞ gives rise to a IV2 degeneration.

It is also possible to add both vertices v6 and v′
6 simultaneously, in which case the

CY will have a non-generic dP6 singularity and 12 conifold points. The triangulation
stays unique and the Kähler cone simplicial with

J = t1 J1 + t2 J2 + t3 J3 , (30)
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where J1 = D5, J2 = D5 − D6, and J3 = D5 − D6 − D′
6. As in the previous case (29),

t1 → i∞ leads to a IV2 degeneration. Moreover, t2 → i∞ leads to a IV2 as in the
first blowup case (26). The limit t3 → i∞ leads to a II2 degeneration; in (29), the limit
t ′2 → i∞ gave rise to a II1 limit. However, the divisor J3 = J ′

2 − D6 and the topology
changed such that there are 12 instead of 16 conifold singularities. Combining limits
ti , t j → i∞ and t1, t2, t3 → i∞ gives rise to IV3 degenerations.

The enhancement diagrams corresponding to the enhancement chains are given in
Fig. 3. None of the four compactification spaces discussed here is elliptically fibered,
but both the conifold transition and the combined transition of the quintic have a K3
fibration. This can be seen from the presence of a type II but the absence of a type III
vertex, as we will discuss in Sect. 4.

3.3. Enhancement diagrams for non-simplicial Kähler cones. To address all regions in
a non-simplicial Kähler cone, one can subdivide this non-simplicial cone into simplicial
h1,1-dimensional subcones. This means we consider all subsets of h1,1 linearly inde-
pendent generators ωi1 , . . . , ωih1,1

out of the generators ωi that span the non-simplicial
cone. For each of these subcones one can then determine an enhancement pattern by
following the strategy for simplicial Kähler cones outlined above. By keeping track of
how generators are shared among subcones, we can thereafter patch all these differ-
ent enhancement patterns together, resulting in an enhancement pattern for the whole
non-simplicial Kähler cone, for example(

(), I0
)
,
(
(ω1), IV1

)
,
(
(ω2), IV2

)
,
(
(ω3), IV2

)
,
(
(ω4), IV3

)
,(

(ω1, ω2), IV2
)
,
(
(ω1, ω3), IV2

)
,
(
(ω1, ω4), IV3

)
,
(
(ω2, ω3), IV3

)
,(

(ω2, ω4), IV3
)
,
(
(ω3, ω4), IV3

)
,(

(ω1, ω2, ω3), IV3
)
,
(
(ω1, ω2, ω4), IV3

)
,
(
(ω1, ω3, ω4), IV3

)
,
(
(ω2, ω3, ω4), IV3

)
,

(31)

where each set of generators in the last row indicates a different three-dimensional sim-
plicial subcone.We note that the degeneration type for every h1,1-dimensional simplicial
subcone, when all its moduli are sent to their limit, will always be IVh1,1 , just like for a
simplicial Kähler cone.

To deal with the non-simplicial cone in this manner, it is crucial that the degeneration
type of a limit does not depend on the choice of simplicial subcone in which this limit
is considered. That is, for a limit of the generators ωi with i ∈ I = (i1, . . . , in), it
does not matter which additional (independent) generators ωin+1 , . . . , ωih1,1

we choose
to compute its limit type. This follows from the fact that the degeneration type can be
determined via the three quantities rkK(I), rkK(I)

I , rkK(I)
I J (see Table 3), and these are

invariant under the choice of basis for H2(Y3). Altogether, this allows us to label the
faces of the non-simplicial Kähler by degeneration types, as exemplified in Fig. 4, in a
fashion similar to the simplicial cone.

Next we can repackage this enhancement pattern into an enhancement diagram,
analogous to the simplicial Kähler cone. Namely, we can first consider theHasse diagram
associated with (the power set of) the total set of generators of the non-simplicial cone,
keeping only vertices corresponding to independent sets of generators, which results in a
diagram as displayed in Fig. 5. Then, one can label all the vertices with the corresponding
degeneration type as given by the corresponding enhancement pattern, which results in
an enhancement diagram such as in Fig. 5. Note that each of the vertices in the last row
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Fig. 4. Example of a non-simplicial Kähler cone with generators ωi , i = 1, 2, 3, 4. Each face is labeled with
its corresponding enhancement types. Note that all faces in the interior of the cone, such as (ω1, ω4), have not
been labeled explicitly, since the limit type of a generic point in the interior is always IVh1,1

Fig. 5. Hasse and enhancement diagrams for Calabi–Yau threefolds with non-simplicial Kähler cones. On the
left, we give the set of generators and on the right the enhancement diagram for the enhancement pattern of
(31). This diagram corresponds (for instance) to polytope 43 in the Kreuzer–Skarke list (its fine regular star
triangulation is unique)

of these diagrams will correspond to one of the simplicial h1,1-dimensional subcones,
and by considering all enhancement chains that end at such a vertex, i.e. all downward-
moving paths in the diagram, one can recover the enhancement diagram for each of these
subcones as a subgraph.

3.4. On symmetries of the enhancement diagrams. Now that we have established how to
construct enhancement diagrams when given the intersection numbers of a Calabi–Yau
threefold, we take a closer look at these graphs, and in particular their symmetries. In
general, an enhancement diagram (taken to be a graph) G1 with edge set E1 and vertex
set V1 is isomorphic to another enhancement diagram G2 with edge set E2 and vertex
set V2 if

1. |V1| = |V2|
2. There exists a bijection on the vertices f : V1 → V2 such that an edge (i, j) is in E1

if and only if ( f (i), f ( j)) is in E2.
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Fig. 6. Two enhancement diagrams for the enhancement patterns in (32), where indistinguishable sets of
vertices, i.e. vertices with the same subgraphs in the sense of Fig. 7, have been highlighted in the same color.
The first diagram is found for CICY 7860, and the second diagram for instance for polytope 288 in the
Kreuzer–Skarke list (its fine regular star triangulation is unique) and for CICY 7864

Even if two graphs are not isomorphic, they can have isomorphic subgraphs. Identifying
isomorphic subgraphs can help to simplify the presentation of enhancement diagrams,
as we shall discuss below (cf. also Fig. 10).

To illustrate the first part of this discussion, we use the two enhancement patterns

(
(), I0

)
,
(
(ω1), II3

)
,
(
(ω2), II3

)
,
(
(ω3), III1

)
,
(
(ω4), III1

)
,(

(ω1, ω2), III1
)
,
(
(ω1, ω3), III1

)
,
(
(ω1, ω4), III1

)
,
(
(ω2, ω3), IV4

)
,(

(ω2, ω4), IV4
)
,
(
(ω3, ω4), IV4

)
,(

(ω1, ω2, ω3), IV4
)
,
(
(ω1, ω2, ω4), IV4

)
,
(
(ω1, ω3, ω4), IV4

)
,
(
(ω2, ω3, ω4), IV4

)
,(

(), I0
)
,
(
(ω1), II3

)
,
(
(ω2), II3

)
,
(
(ω3), III1

)
,
(
(ω4), III1

)
,(

(ω1, ω2), III1
)
,
(
(ω1, ω3), III1

)
,
(
(ω1, ω4), IV4

)
,
(
(ω2, ω3), IV4

)
,(

(ω2, ω4), III1
)
,
(
(ω3, ω4), IV4

)
,(

(ω1, ω2, ω3), IV4
)
,
(
(ω1, ω2, ω4), IV4

)
,
(
(ω1, ω3, ω4), IV4

)
,
(
(ω2, ω3, ω4), IV4

)
,

(32)

whose enhancement diagrams are given in the first and second graph of Fig. 6, respec-
tively.

The two enhancement diagrams look very similar at first sight. Checking the existence
of a graph isomorphism can be cumbersome for large enhancement diagrams. So we
first perform some simple comparisons: A necessary (but not sufficient) condition for
two enhancement diagrams to be isomorphic is that they have the same degeneration
types at each row of the graph and that they have the same enhancement chains (for a
CY with Picard number h1,1, there are h1,1! enhancement chains). For the example at
hand, we find that the degeneration types at each row, as well as the set that contains all
4! enhancement chains coincide. Hence, for the example at hand, these simple checks
are not enough to decide whether the graphs are the same.

The question whether these two graphs are actually isomorphic reduces to studying
how these chains overlap and how they are connected. For our upcoming symmetry
discussion, we next focus on indistinguishable vertices. To identify these, we consider
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Fig. 7. Enhancement diagrams (both are the diagram in Fig. 6b) where the two subgraphs, obtained by
considering all enhancement chains through the two indistinguishable Type IV4 vertices in the second row,
have been highlighted. Indeed, the two subgraphs are identical

all enhancement chains that share a given vertex, as depicted in Fig. 7. Vertices that have
have the same subgraphs are indistinguishable and thus give rise to a symmetry of the
graph. For the example in Fig. 6, the set of indistinguishable vertices are different and
hence the diagrams are different. If this set had turned out to be the same, we would
have had to compare all edges in order to verify or exclude the existence of a bijection
on the edges between the graphs.

Let us now further discuss indistinguishable vertices and their symmetries. If vertices
at the last row are indistinguishable for non-simplicial Kähler cones, this indicates that
theh1,1-dimensional simplicial subcones associatedwith these vertices have the sameen-
hancement pattern, which thus results in a notion of indistinguishable h1,1-dimensional
simplicial subcones, see for instance Fig. 8.

We can use these symmetries to stack indistinguishable vertices on top of each other.
To illustrate this procedure, consider the enhancement pattern

(
(), I0

)
,
(
(ω1), II2

)
,
(
(ω2), II2

)
,
(
(ω3), III1

)
,(

(ω1, ω2), III0
)
,
(
(ω1, ω3), IV3

)
,
(
(ω2, ω3), IV3

)
,
(
(ω1, ω2, ω3), IV3

)
. (33)

Its associated (standard) enhancement diagram is given in Fig. 10a, and the reduced
enhancement diagram in Fig. 10b. Note that stacking vertices also results in stacked
edges. We therefore label each edge by its multiplicity. One can then deduce whether a
vertex in a symmetry-reduced graph represents multiple vertices in the (standard) non-
reduced graph via the number of incoming edges e at this vertex from above. For a single
vertex located at the nth row, there should be n such edges, since a set of n generators can
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Fig. 8. Enhancement diagram for enhancement pattern (31) for a non-simplicial Kähler cone (cf. Fig. 5),
where all sets of indistinguishable vertices have been highlighted. Note that two vertices at the last row, each
representing a simplicial h1,1-dimensional subcone, are indistinguishable

Fig. 9. Enhancement diagrams where the trivial enhancement steps have been highlighted

be split up into n different sets consisting of n − 1 generators, so the multiplicity m of a
vertex is m = e/n. The benefit of this procedure is that it reduces the complexity of the
graphs by reducing the number of its vertices. The number of vertices in a graph is h1,1!
for simplicial Kähler cones, and even larger for a non-simplicial Kähler cones. Thus,
reducing the number of vertices improves readability of the graphs for large values of
h1,1.

Another observation we want to point out is that the degeneration type does not
necessarily increase when additional moduli t I are sent to their limits. We call such
cases trivial enhancements. Note that the two diagrams of Fig. 6 have the same set of
trivial enhancements, as highlighted in Fig. 9, since these graphs have the same set of
enhancement chains. In the spirit of lowering the number of vertices in a graph, one
could then stack vertices connected by a trivial enhancement on top of each other and
indicate trivial enhancement steps via loops at the stacked vertices.

3.5. Construction of enhancement diagrams via recursion. The degeneration type fol-
lows a recursion formula (cf. equation (36) below), which determines the index (I, II,
III, or IV) of the degeneration type, but not its subindex. The recursion formula can be
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Fig. 10. Reduction of an enhancement diagram via its symmetries, where we stack sets of indistinguishable
vertices on top of each other. Note that each edge has nowbeen assigned a label, which indicates itsmultiplicity.
This diagram occurs for polytope 119 in the Kreuzer Skarke list (the polytope has a unique fine regular star
triangulation) and for CICY 7880

applied to any vertex below the third row of the enhancement diagram and only requires
the index of the degeneration type of the vertices which come before it in its enhance-
ment chains. This means that all indices in the enhancement pattern are fixed by the first
three rows. In particular, this fixes the numbers of fibrations, which are determined by
counting the numbers of II and III vertices, cf. Sect. 4.

Let us consider a vertex In = (i1, . . . , in) positioned below the third row (n > 3).
Recall from Table 3 that the index of this vertex is determined via rkK(In) and rkK(In)

I .
By expanding these quantities in sums over triples of generators via (19), and by using
that the intersection numbers are non-negative in the Kähler cone basis, we obtain

rkK(In) = max
J3⊂In

rkK(J3) ,

rkK(In)
I = max

J3⊂In

rkK(J3)
I ,

(34)

where J3 = ( j1, j2, j3) indicate the triples of generators. This implies that the index of
the degeneration type of this vertex is given by

Type Â(In) = max
J3⊂In

Type Â(J3) , (35)

where Â(In), Â(J3) denote the indices of the degeneration types (without subindex) for
limits In,J3. In other words, we find that the index of a vertex is given by the highest
index among all the vertices of the third row it is connected to. Equivalently, this means
that the index of any vertex below the third row is given by the largest index occurring
in any of its enhancement chains. Using (35), the indices in the first three rows of
the enhancement diagram thus allow us to determine the indices of all vertices in the
enhancement diagram.

Note that this tells us that there must be a Type IV vertex in the third row of the
enhancement diagram, since otherwise we can never obtain the maximal degeneration
type IVh1,1 , which always occurs when all Kähler moduli are sent to their limit. Further-
more, since the degeneration type cannot decrease when additional Kähler moduli are
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Fig. 11. Application of (35) for an enhancement diagram with h1,1 = 5. The index type of all vertices below
the third row are determined via the index types at the third row. This enhancement diagram was obtained for
CICY 7800

sent to a limit, we find that (h1,1 − 3)! − 2 additional vertices are fixed to be of Type
IV for a simplicial Kähler cone, and even more for a non-simplicial one. These vertices
are connected to this IV vertex at the third row via enhancement chains. An example
for how (35) can be used to determine the enhancement diagram from the third row is
given in Fig. 11. Alternatively this formula can also be recast into the form of a recursion
formula

Type Â(In) = max
Jn−1⊂In

Type Â(Jn−1) , (36)

whereJn−1 are vertices at row n−1 connected to vertex In at the nth row for n > 3. This
allows us to determine the indices of the vertices of rows 4 up to h1,1 of the enhancement
diagram by iteration.

4. Enhancement Diagrams and Fibrations

In this sectionwe study how fibrations of CYs are encoded in the enhancement diagrams.
The types of possible fibrations of a CY threefold and criteria for when they occur have
been classified by Oguiso [43]. Which case occurs depends only on the dimension of
the base and the value of the integrated second Chern class. One-dimensional fibers can
only be elliptic curves, and two-dimensional fibers can be either K3 surfaces or Abelian
surfaces (i.e. T 4).

We use two types of CY constructions: CYs that are constructed as hypersurfaces
in a toric ambient space A (as classified by Kreuzer and Skarke [35]), and CYs that
are constructed as complete intersections in an ambient space A that is a product of
projective spaces (as classified by Candelas et.al. [36]).

4.1. Kreuzer–Skarke and CICYs. TheKreuzer–SkarkeCYsare givenby the anti-canonical
hypersurface in a four-dimensional toric ambient space. The achievement of Kreuzer and
Skarke was to classify all reflexive polyhedra corresponding to the ambient spaces, of
which there are almost half a billion inequivalent ones. A 4D reflexive polyhedra is
specified (up to toric morphisms, which do not change the CY) by its vertices vi , which
are vectors in Z4.

We will restrict our focus to those with Picard number smaller than 6 and which are
favorable. In order to reference them in the text, we just label them with a running ID,
starting from 1, using the ordering of [35]. By favorable, we mean the following: A part
of H1,1(X,Z) can always be obtained by pulling back elements from H1,1(A,Z). In
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favorable cases, the entire second cohomology of the CY X descends from the ambient
space A. In non-favorable cases, there can be new, non-toric divisors on the CY that do
not descend directly from the ambient space. These cases can be easily identified using
Batyrev’s construction and the resulting formulas for the Hodge number of CYs given
by reflexive polyhedra [44].

While the reflexive polytopes of [35] fix the ambient space and a generic section
of the anticanonical bundle, we still need to triangulate the polyhedron. This fixes the
intersection ring (or, equivalently, the Stanley-Reisner ideal) and the integrated second
Chern classes andhenceuniquely determine theCYaccording toWall’s theorem [24].We
will use SAGE to construct all fine regular star triangulations (FRST) of each polytope.
We furthermore use SAGE to construct the Kähler cone of the ambient variety for each
of the FRSTs. Note that the Kähler cone can be non-simplicial, which means that it has
more generators than its dimension, cf. Sect. 3.5 Both the number of different FRSTs as
well as the number of simplicial subcones of the non-simplicial Kähler cone give rise to
a sizable number of examples, even when restricting to favorable cases with h1,1 ≤ 5,
cf. Table 4 and Table 5.

Candelas et.al. [36] classified all 7890 inequivalent complete intersection CYs (CI-
CYs) in products of projective ambient spaces. We restrict again to favorable configura-
tions and use the ID assigned in the list [36,37]. For CICYs, it is often possible to split
projective ambient space factors and the corresponding normal bundle into products of
smaller ambient spaces while not changing the CY. In this way, a favorable description
of almost all CICYs as intersecting hypersurfaces in products of projective spaces can
be obtained [37], which we will use here. Since there is no triangulation ambiguity for
CICYs and the Kähler cone of the ambient space is simplicial for the favorable CICYs
we consider here, the subtleties discussed above for toric constructions do not arise.
This means a CICY is completely specified in terms of the dimensions of the projective
ambient space factors and the degrees of the normal bundles of hypersurfaces that define
the complete intersection. Since the normal bundles need to cancel the anti-canonical
class in order to obtain a CY, the sum of the degrees of the normal bundle of each am-
bient space Pni factor needs to be equal to ni + 1. This allows us to specify a CICY by
just specifying the degrees of the normal bundles on each Pni ambient space factor. In
general we have an ambient space

A = Pn1 × Pn2 × . . . × PnK , (37)

whose dimension is

D =
K∑

i=1

ni . (38)

Since we are interested in favorable threefolds we get K = h1,1 (as every ambient
space hyperplane class pulls back to a generator of H1,1(X,Z) on the CICY X ) and we
need to specify d = D − 3 normal bundles. This allows us to specify a CICY in terms
of a K × d integer matrix called configuration matrix. The number of CICY geometries
is given in Table 6.

Note that, as in the toric case, it is possible that the Kähler cone of the CY differs
from the Kähler cone of the ambient space; it can be larger and/or non-simplicial. These

5 We content ourselves with constructing the Kähler cone on the ambient space rather than on the CY
hypersurface, which would be much more involved.
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cases are referred to as “non-Kähler favorable” in [37]. In particular, this happens if
part of the CICY defines a del Pezzo surface dPi (which can have non-simplicial Kähler
cones), and the CICY can be thought of as an intersection inside this dPi times some
other (projective) ambient space factors. For CICYs that have a favorable description
in products of projective ambient spaces, the del Pezzos that can occur are dPi , i =
0, 1, 2, 3.

4.2. Elliptic fibrations. Let us first illustrate how elliptic (or genus one) fibrations are
encoded in the enhancement diagrams. We observe the following correspondence:

1. The total number of elliptic fibrations is given by the number of Type IIIc vertices in
the enhancement diagram

2. The number of elliptic fibrations up to birational equivalence of the base is given by
the number of connected subgraphs of Type III vertices in the enhancement diagram

While 1. can be shown on general grounds (cf. Sect. 4.2.2), 2. is an observation based on
all models we have studied. Before we discuss examples, we explain how we identify
elliptic fibrations.

4.2.1. Identifying elliptic fibrations In order to identify elliptic fibrations of a CY X we
can follow different techniques. As was conjectured by Kollar in [45], X is genus-one
fibered (i.e. it has a torus fibration which does not necessarily have a section) iff there
exists a (1,1)-form D ∈ H2(X,Q) such that

D.C ≥ 0 ∀ algebraic curves C ⊂ X , D3 = 0 , D2 �= 0 . (39)

This was actually proven by Oguiso [43] andWilson [46] under the additional constraint
that

D is effective or
∫

X
c2(X) · D �= 0 . (40)

The idea behind the criterion is that D is the pullback of an ample divisor in the base.
Since it does not have any components in the fiber direction, D3 = 0. Note that if a
divisor D satisfies (39), so does any positive multiple of D. In [37], this redundancy is
dealt with by considering two elliptic fibrations with divisors D and D′ as equivalent if

D2 ∼ D′2 as curves in X . (41)

This equivalence can be checked either directly by comparing the corresponding ex-
pressions of D2 and D′2 in cohomology modulo the Stanley-Reisner ideal and linear
equivalences, or by comparing the triple intersections D2.Di with D′2.Di , where Di ,
i = 1, . . . , h1,1(X) is a basis of H2(X). Note that (41) can be true over generic points,
but at special points over the base the fibrations could still be different, which happens
for birationally equivalent bases.

For toric varieties, there exists another sufficient (but not necessary) criterion for
elliptic fibrations. As was noted in [47], if the polytope defining the toric ambient space
contains one of the 16 reflexive polytopes in 2D along a hypersurface through the origin
and there exists a compatible FRST, then this ambient space fibration is inherited by
the CY and the anticanonical hypersurface of the 2D polytope specifies the fiber of the
genus one fibration of the CY. Such “toric genus one fibrations” are particularly nice
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since they allow us to use powerful andwell-established techniques to study properties of
the fibration (such as its degenerations in various codimensions, the rank of theMordell-
Weil group, . . .). However, we find thatmost of elliptic fibrations as identified byKollar’s
criterion, are not of this type.

For CICYs, there is also an alternative way to identify elliptic fibrations, dubbed
obvious elliptic fibrations in [37]. Again, the idea is to identify those equations within
the whole set of complete intersection equations that define the fiber. This can be done
easily on the level of the configuration matrix. If the matrix can be rearranged to take
the form [

A1 0 F
A2 B T

]
, (42)

the genus one fiber is given by the complete intersection [A1 | F] and the base is given
by the complete intersection [A2 | B], where T determines how the base is fibered
(if T a zero matrix, the fibration is trivial, i.e. a direct product). Moreover, B can be
the empty set, in which case the base is given by just the ambient space factors A2. It
was observed in [37] by comparing results using Kollar’s criterion (39) and identifying
fibrations via (42), that the two methods agree for Kähler favorable CICYs, i.e. for
CICYs all elliptic fibrations can be written in the form (42). For toric methods, the
ambient space projection method severely underestimates the number of fibrations as
obtained by Kollar.

Now we are in a position to explain why a Type IIIc vertex in the enhancement
diagram indicates an elliptic fibration. As discussed in Sect. 4.2.1, one can deduce
whether a Calabi–Yau threefold is elliptically fibered from its topological data. Namely,
there should exist a nef divisor, such that its intersection numbers satisfy (39). Expanding
this divisor in generators I = (ωi1 , . . . , ωin ) (with positive coefficients), we obtain
straightforwardly the following two conditions on the intersection numbers

rkKI = 0 , rkKI
I = 1 , (43)

using the short-hand notation for KI ,KI
I defined in (19). These are exactly the two

conditions that indicate a Type IIIc limit for the large volume regime, as follows from
Table 3. Thus the presence of a Type IIIc limit in the enhancement diagram of a Calabi–
Yau threefold directly indicates whether it is elliptically fibered.

As an example, we give three different enhancement diagrams in Fig. 12. The CYs
for which the diagrams were computed are

1. The first example is obtained from CICY 7875, and from KS polytope 103 or 111.
The fine regular star triangulations of these polytopes is unique.

2. The second example is obtained from KS polytope 1460 with Stanley-Reisner ideal

SR = 〈z0z1, z0z2, z1z3, z3z6, z2z6, z4z5z7〉 (44)

(the coordinates are ordered in the same way as the vertices are ordered in [35]).
3. The third example is obtained fromCICY 7862, and fromKS polytopes 290 and 647.

For each of the three examples, vertices of Type III limits and the edges between these
vertices are highlighted in red in the top figure and drawn separately in the bottomFigure.
By counting the number of type III vertices, we find that the three example CYs have
3, 6 and 6 distinct elliptic fibrations, respectively. The number of elliptic fibrations with



262 T. W. Grimm, F. Ruehle, D. van de Heisteeg

Fig. 12. Three example enhancement diagrams to identify elliptic fibrations and elliptic fibrations up to
birational equivalence of the base

birationally equivalent bases are given by counting the number of connected subgraphs.
We find 2, 1, and 6 in the three examples, respectively.

Let us illustrate how to see these fibrations in more detail for the first example
in Fig. 12. This diagram, corresponding to CICY 7875 in the list of [36,37], has the
configuration matrix

X ∼
⎡
⎣P2 0 3
P1 1 1
P2 1 2

⎤
⎦ , (45)

where we have already reordered the rows to make the fibrations more apparent. Using
the method outlined above around equation (42), we can now identify three elliptic
fibrations:

Fibration 1. The elliptic fiber is given by the first row and second column of (45),
i.e. it is a genus one fibration where the elliptic curve E is given by a cubic in P2 and
the base B is a complete intersection of bi-degree (1, 1) in P1 × P2,

E ∼ [P2 3
]

, B ∼
[
P1 1
P2 1

]
. (46)

The base B can be seen to be P2 blown up at one point, i.e. B � dP1.
Fibration 2. The elliptic fiber is given by the first two rows and both columns of (45),

i.e. the elliptic curve E is given by a complete intersection and the base is just the last
ambient space P2 factor,

E ∼
[
P2 0 3
P1 1 1

]
, B ∼ [P2

]
. (47)
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Fibration 3. The elliptic fiber is given by the last two rows and both columns of (45),
i.e. the elliptic curve E is given by a complete intersection and the base is just the first
ambient space P2 factor,

E ∼
[
P1 1 1
P2 1 2

]
, B ∼ [P2

]
. (48)

As we can see, fibration 1 and 2 are related by including the second ambient space
factor, i.e. the P1 factor, in the base or the fiber, respectively. In the former case, the
base is dP1 and in the latter, it is a P2. These two fibrations correspond to the left and
middle Type III0 limits in (45), and the bases are birationally equivalent. Fibration 3 is
not related in this way to the other elliptic fibrations and corresponds to the right Type
III1 vertex in Fig. 12.

The CY can also be realized as a hypersurface in a 4D toric ambient space. It has
realizations in terms of KS polytope 103 and 111. Using Wall’s theorem, the CICY is
found to be equivalent to the polytope with ID 111 and vertices

v1 =

⎛
⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠ , v2 =

⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠ , v3 =

⎛
⎜⎜⎝

−1
−1
0
0

⎞
⎟⎟⎠ , v4 =

⎛
⎜⎜⎝
0
0
1
0

⎞
⎟⎟⎠ ,

v5 =

⎛
⎜⎜⎝

0
0

−1
0

⎞
⎟⎟⎠ , v6 =

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ , v7 =

⎛
⎜⎜⎝

0
0
1

−1

⎞
⎟⎟⎠ . (49)

In order to identify elliptic fibrations, we need to find a reflexive 2D subpolytope within
the 4D reflexive polytope defined by (49). This subpolytope is given at the intersection
of the lattice polytope with two codimension 1 hyperplanes.

Fibration 1. We first cut the polytope along the hyperplanes with normal directions
(0, 0, 1, 0) and (0, 0, 0, 1), i.e. the fiber is given by the first two coordinate entries and
the base by the last two entries:

E ∼
{

v1 =
(
1

0

)
, v2 =

(
0

1

)
, v3 =

(
−1

−1

)
, v4 =

(
0

0

)
, v5 =

(
0

0

)
, v6 =

(
0

0

)
, v7 =

(
0

0

)}
,

B ∼
{

v1=
(
0

0

)
, v2 =

(
0

0

)
, v3 =

(
0

0

)
, v4 =

(
1

0

)
, v5 =

(
−1

0

)
, v6 =

(
0

1

)
, v7 =

(
1

−1

)}
. (50)

The fiber polytope is that of aP2 and will give rise to a genus one fibration, and the base
is that of a dP1. The corresponding polytopes are given in Fig. 13b, c, respectively .

Fibration 2. We can also cut the polytope along the hyperplanes with normal direc-
tions (1, 0, 0, 0) and (0, 1, 0, 0), i.e. the fiber is given by the last two coordinate entries
and the base by the first two entries:

E ∼
{

v1=
(
0

0

)
, v2 =

(
0

0

)
, v3=

(
0

0

)
, v4=

(
1

0

)
, v5=

(
−1

0

)
, v6=

(
0

1

)
, v7=

(
1

−1

)}
,

B ∼
{

v1=
(
1

0

)
, v2 =

(
0

1

)
, v3=

(
−1

−1

)
, v4=

(
0

0

)
, v5=

(
0

0

)
, v6=

(
0

0

)
, v7=

(
0

0

)}
. (51)
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Fig. 13. .

Now, the fiber polytope is that of dP1 and will give rise to an elliptic fibration with two
sections, while the base is aP2. The toric diagrams are given in Fig. 13b, c, respectively.

Note that the third fibration is not realized torically, but can be found using Kollar’s
criterion as explained above.

4.3. K3 fibrations. The way in which K3 fibrations6 are encoded in the enhancement
diagrams is very similar to the elliptic case. We observe the following correspondence:

1. The total number of K3 fibrations is given by the number of Type IIb vertices in the
enhancement diagram

According to Oguiso [43], all these fibrations have a P1 base. Hence the case of bira-
tionally equivalent bases we encountered for genus one fibrations does not occur. This
also means that it can never happen that two Type IIb vertices are connected.

4.3.1. Identifying K3 fibrations In order to find the number of K3 fibrations, we use
very similar techniques to the ones for elliptic fibrations. The only difference is that we
identify two-dimensional rather than one-dimensional fibers.

For the toric CY constructions, we use PALP to find reflexive codimension one sub-
polytopes that define the K3 fiber, i.e. we identify toric K3 fibrations, where the fibration
is inherited from the ambient space polytope. For the CICYs, we also concentrate on
the K3 fibrations inherited from the ambient space in an obvious way, following [37].
The prescription is the same as in (42), except that the CICY defining the fiber should
be two-dimensional rather than one-dimensional.

4.3.2. Example: Enhancement diagrams of K3 fibered CYs We present three examples
of K3-fibered CYs in Fig. 14. They are obtained from the following CYs:

1. The first diagram corresponds to CICY 7806 or KS polytope 34 with triangulation

SR = 〈z1z2, z0z3z4z5〉 . (52)

2. The second diagram is the same one we used to discuss elliptic fibrations in Sect. 4.2,
i.e. CICY 7875 or KS polytopes 103 or 111.

3. The third diagram corresponds to CICY 7859 or KS polytopes 288, 643, or 668 (the
polytopes have a unique fine regular star triangulation).

6 Since Oguiso’s criterion to distinguish K3 and T 4 fibration is a condition on the second Chern class, and
this does not enter in our considerations, the same should hold true for T 4 fibrations. However, all cases we
discuss will be K3 fibrations.
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Fig. 14. Three example enhancement diagrams to identify K3 fibrations, which are given by vertices of
degeneration Type II

By counting the number of Type II vertices, we find that the three examples have 1, 1,
and 3 K3 fibrations, respectively. In order to illustrate the procedure of identifying these,
we use the example CY we already discussed in Sect. 4.2.2. We repeat the diagram in
Fig. 14, but this time we highlight the Type II vertex.

For the CICY representation of the manifold, we need to find a block that defines a
complex two-dimensional fiber. This fiber is given by using row one and three, and both
columns from the configuration matrix (45),

K3 ∼
[
P2 0 3
P2 1 2

]
, B ∼ [P1

]
, (53)

and the base is just theP1 ambient space factor, as was to be expected for a K3 fibration.
We can also see the K3 fibration torically. In order to identify it, we need to find a

single codimension one hypersurface along which to cut the 4D reflexive polytope. In
the example at hand, this is given by the hyperplane with normal vector (0, 0, 0, 1). We
then find for the fiber a K3 polytope and for the base again a P1,

E ∼

⎧⎪⎨
⎪⎩v1=

⎛
⎜⎝
1

0

0

⎞
⎟⎠ , v2 =

⎛
⎜⎝
0

1

0

⎞
⎟⎠ , v3=

⎛
⎜⎝

−1

−1

0

⎞
⎟⎠ , v4=

⎛
⎜⎝
0

0

1

⎞
⎟⎠ , v5 =

⎛
⎜⎝

0

0

−1

⎞
⎟⎠ , v6=

⎛
⎜⎝
0

0

0

⎞
⎟⎠ , v7=

⎛
⎜⎝
0

0

1

⎞
⎟⎠
⎫⎪⎬
⎪⎭ ,

B ∼
{
v1=

(
0
)

, v2 =
(
0
)

, v3=
(
0
)

, v4=
(
0
)

, v5=
(
0
)

, v6=
(
1
)

, v7=
(
−1
)}

. (54)

The corresponding toric diagrams are given in Fig. 13d.

4.4. Nested fibrations. Often, CYs are K3 fibered, and the K3 itself is elliptically fibered
over a P1. We observe the following correspondence:

1. A nested fibration corresponds to an edge that connects a Type II vertex to a Type
III vertex. The total number of nested fibrations is then given by the number of such
edges.

Note that the same elliptic fibration can appear in different K3 fibrations, i.e. a Type III
vertex can have edges connecting them with multiple Type II fibers.

4.4.1. Identifying nested fibrations In order to find nested fibrations,we can simply com-
bine the two techniques explained above to find K3 and elliptic fibrations, respectively.
Again, we use PALP and the results of [37] for the KS and CICY case, respectively.
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Fig. 15. An example enhancement diagrams to identify nested fibrations, i.e. K3 fibrations which are also
elliptically fibered. The nesting is given by edges connecting Type II to Type III vertices

Table 4. Statistics for the Kreuzer–Skarke examples, including only simplicial Kähler cones

h1,1 = 1 h1,1 = 2 h1,1 = 3 h1,1 = 4 h1,1 = 5

Geometries 5 48 393 2536 17411
Distinct diagrams 1 6 32 209 950

4.4.2. Example: Enhancement diagrams of nested fibrations We present our working
example in Fig. 15, i.e. CICY 7875 or KS polytopes 103 or 111. This diagram has a Type
II vertex which is connected to a Type III vertex. The corresponding nested fibration is
given by the K3 identified in Sect. 4.3, whose elliptic fiber corresponds to fibration 1 in
Sect. 4.2.

In more detail, we can see that for the CICY, the elliptic fibration (45) also sits inside
the K3 fibration given by the CICY in (53), i.e. the elliptic curve is given by a cubic in
P2, and the base P1 of the fibration is given by a linear in P2, which defines a P1.

Similarly for the toric case, we can find the elliptic fiber in the first three vertices of
the K3 fiber, by cutting in addition along the hypersurface with normal direction (0, 0, 1)
inside the three-dimensional polytope whose anticanonical hypersurface defines the K3.
Coordinates four and five can be seen to define a P1, and the last two correspond to
the origin, i.e. the unique interior point of all nested subpolytopes. In the toric diagram
of Fig. 13d, we can also see the nested structure by noticing that the 2D polytope
corresponding to the fiber (the polytope of the ambient P2 in Fig. 13b) is at height 0,
while the 2D polytope that defines the base P1 (cf. Fig. 13a) is given by the origin plus
the two vertices at height ±1.

5. Classification of CY Threefolds and Statistics

Here we discuss how we can tell Calabi–Yau threefolds apart from each other via their
enhancement diagrams, and how these graphs thus serve as a means to classify CYs. To
exhibit the use of enhancement diagrams for such a classification, we discuss the results
obtained in our scans of the Kreuzer–Skarke and CICY data sets. The numbers of distinct
enhancement diagrams found in each of these scans have been listed in Tables 4, 5, 6
and 7, and the diagrams obtained up to h1,1 = 3 are provided in Appendix B.
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Table 5. Statistics for Kreuzer–Skarke examples, including only non-simplicial Kähler cones

h1,1 = 3 h1,1 = 4

Geometries 58 1399
Distinct diagrams 6 165

Table 6. Statistics for the CICY examples

h1,1 = 1 h1,1 = 2 h1,1 = 3 h1,1 = 4 h1,1 = 5 h1,1 = 6 h1,1 = 7 h1,1 = 8 h1,1 = 9 h1,1 = 10

Geometries 5 36 155 425 856 1257 1462 1325 1032 643
Diagrams 1 4 11 25 53 117 235 220 271 267

Table 7. Statistics for combined Kreuzer–Skarke and CICY scan, including only simplicial Kähler cones

h1,1 = 1 h1,1 = 2 h1,1 = 3 h1,1 = 4 h1,1 = 5

Distinct diagrams 1 6 34 219 950

By Wall’s theorem [24], we find that two CYs are homotopically inequivalent when
their enhancement diagrams are inequivalent, since it implies that their triple intersection
numbers cannot be related to each other via a basis transformation for H2(Y3). In this
sense the enhancement diagrams serve as an invariant that can be computed for each
Calabi–Yau threefold, and can be used to determine whether two Calabi–Yau threefolds
are the same. Note however that these diagrams are not yet fine enough to distinguish all
CYs, since we obtain for instance the same diagram for all CYs with h1,1 = 1, because
they only have a Type IV1 degeneration. Wall’s theorem suggests that we would need to
incorporate other topological data such as the second Chern class c2(Y3) of the Calabi–
Yau threefold into the diagram. Note that while the integrated second Chern classes cI
appear explicitly in the definition of the nilpotent orbit in a0 (10) and consequently also
in the definition of the limitingmixedHodge structure, the enhancement diagrams do not
explicitly depend on them. It would be interesting to refine the classification to capture
this information as well.

From a practical perspective, extending this analysis to larger values of h1,1 becomes
rather tedious, since the number of vertices grows as h1,1!. Therefore one can resort to
more pragmatic checks first when comparing enhancement diagrams, as was already
touched upon briefly in Sect. 3.4. For instance, one could simply count how often each
degeneration type occurs in the diagram, and these numbers then serve as invariants
extracted from the diagram. Note that such extracted invariants lead to a less refined
classification then the diagrams themselves, as demonstrated by the twodistinct diagrams
in Fig. 6 which consist of the same numbers of degeneration types. Nevertheless these
numbers would capture properties of the Calabi–Yau manifold, since — in the spirit of
Sect. 4— they would capture to the number of elliptic fibrations (number of III vertices)
and K3 fibrations (number of II vertices). For low values of h1,1 comparing graphs is
not an issue, cf. Tables 4, 5, 6 and Appendix B.

To demonstrate the use of enhancement diagrams to classify Calabi–Yau threefolds,
we next discuss the results that were obtained by scanning the Kreuzer–Skarke and
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CICY data sets. First of all, note that there is a larger number of distinct diagrams found
from the KS data set than from the CICY data set, as can be seen from Tables 4 and 6,
although CICY does provide some new diagrams as follows from Table 7. Furthermore,
there is some overlap in the set of diagrams obtained from the two scans, which follows
partly from certain Calabi–Yau threefolds being present in both sets, such as e.g. the
quintic. On the one hand, this smaller number of distinct diagrams in the CICY scan
follows simply from the fact that the Kreuzer–Skarke data set has a larger number of
CYs for every value of h1,1. Another explanation for this lack of variation in the CICY
scan follows from the subindex of the IV vertices that occur in the diagrams. Namely, for
CICY threefolds we find that every Type IV limit has subindex h1,1, i.e. all IV vertices
in their enhancement diagrams are IVh1,1 vertices, whereas we did not observe such
restrictions for the Kreuzer–Skarke database.

6. Conclusion and Outlook

In this paper we introduced a newway to classify Calabi–Yau threefolds by using asymp-
totic Hodge theory. More concretely, we suggest that to any decompactification limit
performed in the Kähler moduli space of Y3 we can associate a limiting mixed Hodge
structure. These structures are defined by the large volume monodromy transformations
Ni , which are given in terms of the triple intersection numbers, and a limiting vector
a0, defined in terms of the integrated Chern classes of Y3. Of key importance in this
work has been the fact that the data (Ni , a0) does not only define a single limiting mixed
Hodge structure, but rather a collection of such structures, one for each ordered limit in
Kähler moduli space obtained by sending step-wise volume moduli to infinity. We have
combined this property with the recent classification of all possible types of limiting
mixed Hodge structures arising for Calabi–Yau threefolds in Kähler and complex struc-
ture moduli space [8,10,27]. For an m-dimensional moduli space these structures are
categorized into 4m degeneration types denoted by Ia , IIb, IIIc, IVd . We collected the
types arising at all possible decompactification limits in an enhancement diagram. This
provided us with a Hasse diagram that starts at the non-degenerate case I0 and ends on
the maximal degeneration IVh1,1(Y3)

. We then argued that these enhancement diagrams
provide a classification of all Calabi–Yau threefolds capturing many of their intrinsic
properties.

It is important to stress the enhancement diagrams are not one-to-one with homotopi-
cally distinct Calabi–Yau manifolds. We have seen this in various different ways. Firstly,
we have argued that the degeneration types in the Kähler moduli space only depended
on the intersection numbers, and hence not all data distinguishing the homotopy types of
Calabi–Yau threefolds according to Wall’s theorem [24]. Secondly, we have computed
the enhancement diagrams for large sets of examples taken from the Kreuzer–Skarke
list [35] and CICY list [36,37] of Calabi–Yau threefolds. We then compare the number
of diagrams to the number of Calabi–Yau threefolds indicating how many fall into the
equivalence classes represented by a distinct enhancement diagram. This was generally
possible and included cases with both simplicial and non-simplicial Kähler cones. The
enhancement diagrams turned out to have a rich structure and the number of possibilities
grows when increasing h1,1(Y3). Therefore, they provide a powerful tool to decide when
two threefolds are actually homotopically different and to analyze some of its important
topological features.

Note that all limits in the Kähler cone lead to a decompactification of the Calabi–
Yau manifold. The classification into types IIa , IIIb, IVc captures the information about
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the type of submanifolds that grow in a considered possibly multi-variable limit. This
should be contrasted with the equi-dimensional limits studied in [22], where the emer-
gence of weakly coupled strings was proposed. These limits require to approach the
walls of the Kähler cone at which the volume of the Calabi–Yau stays finite. In Type
II compactifications such limits receive quantum corrections which are under control
using mirror symmetry. One then can use the strategy presented in this work and de-
termine an associated enhancement pattern. It is crucial, however, to not use the large
volume monodromies (8) determined in terms of the intersection numbers, but rather
the monodromy associated to this specific limit using the same classification method
[8,10,27].

Based on studying Calabi–Yau threefolds constructed as hypersurfaces in a 4D toric
ambient space as well as from complete intersections in an ambient space that is given by
a product of projective spaces, we have identified how fibration structures are encoded
in the enhancement diagrams. Since fibrations lead to special intersection patterns, the
presence of fibrations is encoded in the triple intersection numbers: . For example, as
we explained in Sect. 4.2.1, a divisor that is located purely in the base has vanishing
triple intersection numbers, while it’s double intersection leads to a non-trivial curve in
the base. As classified by Oguiso, a Calabi–Yau threefold can have a fibration where the
fiber is either a T 2, a K3, or a T 4.Moreover, there can be nested fibrations, i.e. the K3 can
itself be elliptically fibered over P1. All this information can be read off directly from
the enhancement diagrams without the need to identify the base, the fiber, a section, the
Kollar divisor, etc. The rules are very simple:

1. Genus one fibrations are in one-to-one correspondence with type III vertex in the
enhancement diagram. Birationally equivalent fibrations are connected by edges.

2. K3 fibrations are in one-to-one correspondence with type II vertices in the enhance-
ment diagram. The base is always a P1.

3. Calabi–Yau manifolds that are K3 fibered, where the K3 itself is elliptically fibered
have a type II and a type III vertex. The nested fibration is encoded in an edge that
connects the two vertices.

One of the most interesting future directions is to use our proposed classification of
Calabi–Yau manifolds as a guiding principle to classify supergravity theories. In par-
ticular, compactifying M-theory on a Calabi–Yau threefold yields a five-dimensional
minimally supersymmetric supergravity theory. In this compactification the triple in-
tersection numbers determine the vector multiplet metric and Chern-Simons couplings
while the integrated second Chern class fixed certain higher-curvature terms. As dis-
cussed in this paper the same data is crucial in fixing a collection of mixed Hodge
structures arising at all possible limits in Kähler moduli space. It is then suggestive to
bypass the step of having a geometric compactification and directly specify the data
of the vector sector of every five-dimensional supergravity theory by a collection of a
certain type of mixed Hodge structures. The rich set of consistency conditions arising
from the underlying deep mathematical structure might yield unexpected constraints
that allow identifying models that are in the swampland of five-dimensional supergrav-
ity theories. In particular, we believe that the arising constraints are stronger then known
consistency conditions, such as the requirement of having positive kinetic terms.

Another very interesting question is to use this classification to study transitions in
Calabi–Yau geometries. Equipped with an understanding of what type of transitions
can occur purely on the level of the diagrams could shed light on the moduli space of
Calabi–Yau threefolds. As we have seen in Sect. 3.5, the first three rows of the enhance-
ment diagrams fix all possible indices for the degeneration types of subsequent rows,



270 T. W. Grimm, F. Ruehle, D. van de Heisteeg

thus putting a lower bound on the number of inequivalent Calabi–Yau threefolds. In
addition, we have exemplified in Sect. 3.2 that, starting from the quintic, one can obtain
more complicated diagrams by including blowups that lead to conifold or del Pezzo
transitions. Moreover, both blowups can be performed simultaneously, which results in
a combination of the diagrams of the individual cases. This begs the question whether
the connectedness of simply-connected Calabi–Yau threefolds, sometimes referred to
as Reid’s fantasy [48], can be studied in a diagrammatic way, purely using the types of
allowed transitions. One could also turn the question around and ask which types of en-
hancement or transition rules would allow for a finite number of Calabi–Yau threefolds.
In fact, a simpler question might be the following: given the fact that the number of
elliptically fibered Calabi–Yau threefolds is finite [49,50], what are the corresponding
constraints on diagrams (or equivalently mixed Hodge structures) with type III degener-
ations that lead to a finite number of possible diagrams? We leave these interesting open
questions for future work.

Lastly, identifying the correspondence between edges and vertices of a certain type
on the one hand and (nested or birationally equivalent) fibrations on the other was done
by studying a large class of examples in this paper. However, the diagrammatic way of
representing properties of Calabi–Yau threefolds lends itself to studies via data science
and machine learning, a growing subfield in the analysis of string theory [51–54]. For
example, supervised machine learning has been used previously to classify whether
CICYs are elliptically fibered, based on their intersection numbers [55]. Other Calabi–
Yau or physics data, such as the gauge group or the spectrum that arises e.g. from
compactification of F-Theory on these manifolds, is likely encoded in the enhancement
diagrams as well. These connections could be identified with white-box supervised
machine learning techniques such as decision trees, or via unsupervised techniques such
as feature extraction. Moreover, it is interesting to study whether this graph structure
helps with searches in the Kreuzer–Skarke database for models with specific properties
(such as finding threefolds with specific fibrations or gauge groups), using supervised
learning with deep or graph neural networks.
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A Limiting mixed Hodge structures

In this appendix we briefly introduce the mathematical notion of a limiting mixed Hodge
structure. It should be stressed, however, that our exposition is short and incomplete. We
refer the reader to the original papers [25,26] and the review [56]. Also [8] contains a
concise summary of some of the relevant aspects.

Let us first define a pure Hodge structure and its associated Hodge filtration. Let V be
a rational vector space. A pure Hodge structure of weight w describes a decomposition
of the complexification VC = V ⊗ C as

VC = Hw,0 ⊕ Hw−1,1 ⊕ . . . ⊕ H1,w−1 ⊕ H0,w , (55)

with the subspaces satisfying Hp,q = Hq,p with w = p + q. The complex conjugation
on VC is defined with respect to the rational vector space V . TheHp,q can also be used
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to define a Hodge filtration by setting F p = ⊕i≥pHi,w−i . These spaces are filtered and
satisfy

VC = F0 ⊃ F1 ⊃ . . . ⊃ Fw−1 ⊃ Fw = Hw,0 , (56)

such that Hp,q = F p ∩ F̄q . A crucial additional property arises from demanding that
the Hp,q define a polarized pure Hodge structure. This necessitates the existence of a
bilinear form S(·, ·) on VC, such that the conditions

S(Hp,q ,Hr,s) = 0 , p �= s, q �= r , (57)

i p−q S(v, v̄) > 0 , for all 0 �= v ∈ Hp,q , (58)

are satisfied. Note that these definitions define a fixed (p, q)-splitting. One can then ask
the question how such a structure can vary consistently over a complex base space M
and define families of polarized pure Hodge structures. This is captured by the theory
of variation Hodge structures. In particular, one demands that with respect to the flat
connection∇ on the family of Hodge structures varying overM, the Fi are holomorphic
sections and satisfy∇Fi ⊂ Fi−1⊗�M. Let us note that these definitions are essentially
algebraic. The application to geometric settings arises, for example, when using them
to describe the (p, q)-cohomology H p,q(Y3, C) of a Calabi–Yau threefold Y3 and how
it varies over the complex structure moduli space.

Let us next turn to the definition of a mixed Hodge structure. The crucial new in-
gredient is the so-called monodromy weight filtration Wi . This filtration is induced by
the action of a nilpotent matrix N on the vector space V . Concretely, one defines the
rational vector subspaces W j (N ) ⊂ V by requiring that they form a filtration

W−1 ≡ 0 ⊂ W0 ⊂ W1 ⊂ ... ⊂ W2w−1 ⊂ W2w = V , (59)

with the properties

1.) N Wi ⊂ Wi−2 , (60)

2.) N j : Grw+ j → Grw− j is an isomorphism, Gr j ≡ W j/W j−1 . (61)

Here the quotients Gri are equivalence classes of elements of Wi that differ by elements
of Wi−1. One can show that the filtration Wi with the above properties is unique for a
given N .

Finally, let us define a mixed Hodge structure (V, W, F). Let Wi be a monodromy
weight filtration defined by an N as above and Fq a filtration satisfying (56) on the
vector space V .7 We require that N is compatible with the Fq -filtration and acts on it
horizontally, i.e. N F p ⊂ F p−1. The defining feature of a mixed Hodge structure is that
each Gr j defined in (61) admits an induced Hodge filtration

F pGrCj ≡ (F p ∩ WC

j )/(F p ∩ WC

j−1) , (62)

where GrCj = Gr j ⊗C and WC

i = Wi ⊗C are the complexification. Referring back to
(55), this implies that we can split each Gr j into a pure Hodge structureHp,q as

Gr j =
⊕

p+q= j

Hp,q , Hp,q = F pGr j ∩ Fq Gr j , (63)

7 Note that the F p do not need to define a pure Hodge structure.
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Fig. 16. Enhancement diagrams obtained via scans of theKreuzer–Skarke andCICYdatabases up to h1,1 = 3,
including only simplicialKähler cones. The numbers beloweachdiagram indicate howoften itwas encountered
in the Kreuzer–Skarke and CICY scans respectively

where we recall thatw = p+q is the weight of the corresponding pure Hodge structure.
The operator N is a morphism among these pure Hodge structures. Using the action of
N on Wi and F p, we find N Gr j ⊂ Gr j−2 and NHp,q ⊂ Hp−1,q−1. Note that this
induces a jump in the weight of the pure Hodge structure by−2, while the mixed Hodge
structure is preserved by N . The natural next step is to introduce a polarized mixed
Hodge structure. This again uses the bilinear form S(·, ·). We first define the primitive
subspaces Pl ⊂ Grl+w, by setting Pl = ker(Nl+1 : Grw+l → Grw−l−2). The mixed
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Fig. 17. Enhancement diagrams obtained via our scan of the Kreuzer–Skarke database for h1,1 = 3, including
only non-simplicial Kähler cones, where the number below each diagram indicates its multiplicity in this scan

Hodge structure is polarized if for all l the restriction of the pure Hodge structure (63)
to the primitive subspaces Pl is polarized with respect to Sl(·, ·) = S(·, Nl ·).

With this definition at hand, we can now introduce a limiting mixed Hodge structure.
The introduction of this structure is needed due to the fact that a pure Hodge structure
at certain limits ofM can degenerate and no longer describe the splitting of VC. Let us
describe a one-parameter degeneration limit t → i∞. At such a limit one can introduce
a nilpotent matrix N from the monodromy transformation as discussed in the main part
of the paper. One can then split off the singular part of the pure Hodge filtration defining

F p∞ = lim
t→i∞ e−t N F p . (64)

While the F p∞ in general do not describe a pure Hodge structure, they can be used to
define a mixed Hodge structure. This mixed Hodge structure is defined with respect to
the limit t → i∞ and hence known as a limiting mixed Hodge structure.

B Enhancement diagrams obtained in KS and CICY scan

Wegive all distinct diagrams obtained in our scans of theKreuzer–Skarke andCICYdata
sets up to h1,1 = 3 for simplicial and non-simplicial Kähler cones in Figs. 16 and 17,
respectively. Each diagram is accompanied by the number of times it occurred in both
these data sets.
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